100% SPECIFICATIONS

VOLUME 2 of 2

May 10, 2019

PGAL Project No. R1003434.02

Prepared by

PGAL
TABLE OF CONTENTS

Cover, Volume II
Table of Contents, Volume II
Seal and signature page, Volume II

DIVISION 14 – CONVEYING EQUIPMENT – (NOT USED)

DIVISION 21 – FIRE SUPPRESSION

211313 Wet Pipe Sprinkler System

DIVISION 22 – PLUMBING

220523 General Duty Valves for Plumbing Piping
220529 Hangers and Supports for Plumbing Piping and Equipment
220553 Identification for Plumbing Piping and Equipment
220719 Plumbing Piping Insulation
221113 Facility Water Distribution Piping
221116 Domestic Water Piping
221119 Domestic Water Piping Specialties
221121 Natural Gas Piping Systems
221313 Facility Sanitary Sewers
221316 Sanitary Waste and Vent Piping
221319 Sanitary Waste and Vent Piping Specialties
224000 Plumbing Fixtures
224700 Drinking Fountains and Water Coolers

DIVISION 23 – HEATING VENTILATING AND AIR CONDITIONING

230200 Basic Materials and Methods
230513 Common Motor Requirements for HVAC Equipment
230526 Variable Frequency Motor Speed Control for HVAC Equipment
230529 Hangers and Support for Piping and Equipment HVAC
230548 Vibration and Seismic Controls for HVAC Piping and Equipment
230553 Identification for HVAC Piping and Equipment
230593 Testing, Adjusting, and Balancing
230713 HVAC Insulation
230719 HVAC Pipe Insulation
233113 Metal Ducts
233300 Air Duct Accessories
233400 HVAC Fans
233713 Diffusers, Registers, and Grilles
234100 Particulate Air Filtration
238130 Variable Refrigerant Flow HVAC System

DIVISION 25 – BUILDING SYSTEM – (NOT USED)

DIVISION 26 – ELECTRICAL
<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>260500</td>
<td>Common Work Results For Electrical</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
</tr>
<tr>
<td>260533</td>
<td>Raceways and Boxes for Electrical Systems</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
</tr>
<tr>
<td>260573</td>
<td>Overcurrent Protective Device Coordination Study</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
</tr>
<tr>
<td>263213</td>
<td>Engine Generators</td>
</tr>
<tr>
<td>264113</td>
<td>Lightning Protection for Structures</td>
</tr>
<tr>
<td>265100</td>
<td>Interior Lighting</td>
</tr>
<tr>
<td>283111</td>
<td>Digital Addressable Fire Alarm System</td>
</tr>
</tbody>
</table>

DIVISION 27 – COMMUNICATIONS – (NOT USED)

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

DIVISION 31 – EARTHWORK

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>311000</td>
<td>Site Clearing</td>
</tr>
<tr>
<td>312000</td>
<td>Earthmoving</td>
</tr>
<tr>
<td>312319</td>
<td>Dewatering</td>
</tr>
<tr>
<td>313116</td>
<td>Termite Control</td>
</tr>
</tbody>
</table>

DIVISION 32 – EXTERIOR IMPROVEMENTS

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>321216</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>321313</td>
<td>Concrete Paving</td>
</tr>
<tr>
<td>321373</td>
<td>Concrete paving Joint Sealants</td>
</tr>
<tr>
<td>321400</td>
<td>Unit Paving</td>
</tr>
<tr>
<td>321723</td>
<td>Pavement Markings</td>
</tr>
<tr>
<td>323113</td>
<td>Chain Link Fence and Gates</td>
</tr>
<tr>
<td>321713</td>
<td>Parking Bumpers</td>
</tr>
<tr>
<td>323119</td>
<td>Decorative Metal Fences and Gates</td>
</tr>
</tbody>
</table>

DIVISION 33 – UTILITIES

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>334100</td>
<td>Storm Utility Drainage Piping</td>
</tr>
</tbody>
</table>

END TABLE OF CONTENTS
MECHANICAL ENGINEER
Jones Engineers, L.P.
Address:
9820 Whithorn Dr.
Houston, TX, 77095
Texas Registered Engineer
N. Curtis Jones, Jr., PE
Registration # 58428

ELECTRICAL ENGINEER
Jones Engineers, L.P.
Address:
9820 Whithorn Dr.
Houston, TX, 77095
Texas Registered Engineer
N. Curtis Jones, Jr., PE
Registration # 58428

PLUMBING ENGINEER
Jones Engineers, L.P.
Address:
9820 Whithorn Dr.
Houston, TX, 77095
Texas Registered Engineer
N. Curtis Jones, Jr., PE
Registration # 58428

END OF SECTION 00 00 02
TABLE OF CONTENTS

Cover, Volume II
Table of Contents, Volume II
Seal and signature page, Volume II

DIVISION 14 – CONVEYING EQUIPMENT – (NOT USED)

DIVISION 21 – FIRE SUPPRESSION

211313 Wet Pipe Sprinkler System

DIVISION 22 – PLUMBING

220523 General Duty Valves for Plumbing Piping
220529 Hangers and Supports for Plumbing Piping and Equipment
220553 Identification for Plumbing Piping and Equipment
220719 Plumbing Piping Insulation
221113 Facility Water Distribution Piping
221116 Domestic Water Piping
221119 Domestic Water Piping Specialties
221121 Natural Gas Piping Systems
221313 Facility Sanitary Sewers
221316 Sanitary Waste and Vent Piping
221319 Sanitary Waste and Vent Piping Specialties
224000 Plumbing Fixtures
224700 Drinking Fountains and Water Coolers

DIVISION 23 – HEATING VENTILATING AND AIR CONDITIONING

230200 Basic Materials and Methods
230513 Common Motor Requirements for HVAC Equipment
230526 Variable Frequency Motor Speed Control for HVAC Equipment
230529 Hangers and Support for Piping and Equipment HVAC
230548 Vibration and Seismic Controls for HVAC Piping and Equipment
230553 Identification for HVAC Piping and Equipment
230593 Testing, Adjusting, and Balancing
230713 HVAC Insulation
230719 HVAC Pipe Insulation
233113 Metal Ducts
233300 Air Duct Accessories
233400 HVAC Fans
233713 Diffusers, Registers, and Grilles
234100 Particulate Air Filtration
238130 Variable Refrigerant Flow HVAC System

DIVISION 25 – BUILDING SYSTEM – (NOT USED)

DIVISION 26 – ELECTRICAL
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260500</td>
<td>Common Work Results For Electrical</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
</tr>
<tr>
<td>260533</td>
<td>Raceways and Boxes for Electrical Systems</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
</tr>
<tr>
<td>260573</td>
<td>Overcurrent Protective Device Coordination Study</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
</tr>
<tr>
<td>263213</td>
<td>Engine Generators</td>
</tr>
<tr>
<td>264113</td>
<td>Lightning Protection for Structures</td>
</tr>
<tr>
<td>265100</td>
<td>Interior Lighting</td>
</tr>
<tr>
<td>283111</td>
<td>Digital Addressable Fire Alarm System</td>
</tr>
</tbody>
</table>

DIVISION 27 – COMMUNICATIONS – (NOT USED)

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

DIVISION 31 – EARTHWORK

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>311000</td>
<td>Site Clearing</td>
</tr>
<tr>
<td>312000</td>
<td>Earthmoving</td>
</tr>
<tr>
<td>312319</td>
<td>Dewatering</td>
</tr>
<tr>
<td>313116</td>
<td>Termite Control</td>
</tr>
</tbody>
</table>

DIVISION 32 – EXTERIOR IMPROVEMENTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>321216</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>321313</td>
<td>Concrete Paving</td>
</tr>
<tr>
<td>321373</td>
<td>Concrete paving Joint Sealants</td>
</tr>
<tr>
<td>321400</td>
<td>Unit Paving</td>
</tr>
<tr>
<td>321723</td>
<td>Pavement Markings</td>
</tr>
<tr>
<td>323113</td>
<td>Chain Link Fence and Gates</td>
</tr>
<tr>
<td>321713</td>
<td>Parking Bumpers</td>
</tr>
<tr>
<td>323119</td>
<td>Decorative Metal Fences and Gates</td>
</tr>
</tbody>
</table>

DIVISION 33 – UTILITIES

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>334100</td>
<td>Storm Utility Drainage Piping</td>
</tr>
</tbody>
</table>

END TABLE OF CONTENTS
MECHANICAL ENGINEER
Jones Engineers, L.P.
Address:
9820 Whithorn Dr.
Houston, TX, 77095

Texas Registered Engineer
N. Curtis Jones, Jr., PE
Registration # 58428

ELECTRICAL ENGINEER
Jones Engineers, L.P.
Address:
9820 Whithorn Dr.
Houston, TX, 77095

Texas Registered Engineer
N. Curtis Jones, Jr., PE
Registration # 58428

PLUMBING ENGINEER
Jones Engineers, L.P.
Address:
9820 Whithorn Dr.
Houston, TX, 77095

Texas Registered Engineer
N. Curtis Jones, Jr., PE
Registration # 58428

END OF SECTION 00 00 02
SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 6. Control panels.
 7. Pressure gages.

1.3 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.5 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional using performance requirements and design criteria indicated.

C. Sprinkler system design shall be approved by authorities having jurisdiction.

 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 2. Sprinkler Occupancy Hazard Classifications:
 3. a. Building Service Areas: Ordinary Hazard, Group 1.
 b. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
c. General Storage Areas: Ordinary Hazard, Group 1.
d. Library Stack Areas: Ordinary Hazard, Group 2.
e. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
f. Office and Public Areas: Light Hazard.

4. Minimum Density for Automatic-Sprinkler Piping Design:

5.
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.

6. Maximum Protection Area per Sprinkler: Per UL listing.

1.6 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. LEED Submittal:
 1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, including printed statement of VOC content and chemical components.

C. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.

D. Qualification Data: For qualified Installer.

E. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

F. Welding certificates.

G. Fire-hydrant flow test report.

H. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

I. Field quality-control reports.

J. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 1. NFPA 13, "Installation of Sprinkler Systems."

1.8 COORDINATION

 A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.9 EXTRA MATERIALS

 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

 A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

 A. Schedule 30, Galvanized- and Black-Steel Pipe: ASTM A 135; ASTM A 795/A 795M, Type E; or ASME B36.10M, wrought steel; with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.

 C. Galvanized and Uncoated, Steel Couplings: ASTM A 865, threaded.

 E. Malleable- or Ductile-Iron Unions: UL 860.

 F. Cast-Iron Flanges: ASME 16.1, Class 125.

 G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

 I. Grooved-Joint, Steel-Pipe Appurtenances:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. National Fittings, Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.

2. Pressure Rating: 175 psig minimum.

4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

J. Steel Pressure-Seal Fittings: UL 213, FM-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers’ pressure-seal tools.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Victaulic Company.

2.3 PIPING JOINING MATERIALS

1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:
 1. Valves shall be UL listed or FM approved.

B. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Victaulic Company.
 2. Standard: UL 1091 except with ball instead of disc.
 3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
 4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
 5. Valves NPS 3: Ductile-iron body with grooved ends.
C. Bronze Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fivalco Inc.
 b. Global Safety Products, Inc.
 c. Milwaukee Valve Company.
 2. Standard: UL 1091.
 5. End Connections: Threaded.

D. Iron Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Milwaukee Valve Company.
 c. NIBCO INC.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.
 2. Standard: UL 1091.
 4. Body Material: Cast or ductile iron.
 5. Style: Lug or wafer.

E. Check Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 c. Anvil International, Inc.
 d. Crane Co.; Crane Valve Group; Crane Valves.
 e. Fire Protection Products, Inc.
 f. Fivalco Inc.
 g. NIBCO INC.
 h. Potter Roemer.
 i. Reliable Automatic Sprinkler Co., Inc.
 j. Tyco Fire & Building Products LP.
 k. Victaulic Company.
 l. Watts Water Technologies, Inc.
 4. Type: Swing check.
 5. Body Material: Cast iron.
 6. End Connections: Flanged or grooved.

F. Iron OS&Y Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
b. American Valve, Inc.
c. Clow Valve Company; a division of McWane, Inc.
d. Crane Co.; Crane Valve Group; Crane Valves.
e. Crane Co.; Crane Valve Group; Jenkins Valves.
f. Crane Co.; Crane Valve Group; Stockham Division.
g. Milwaukee Valve Company.
h. Mueller Co.; Water Products Division.
i. NIBCO INC.
j. Tyco Fire & Building Products LP.
k. Watts Water Technologies, Inc.

4. Body Material: Cast or ductile iron.
5. End Connections: Flanged or grooved.

G. Indicating-Type Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Shurjoint Piping Products.
 h. Tyco Fire & Building Products LP.
 i. Victaulic Company.

2. Standard: UL 1091.
4. Valves NPS 2 and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.

5. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.

H. NRS Gate Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Clow Valve Company; a division of McWane, Inc.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Kennedy Valve; a division of McWane, Inc.
 f. Mueller Co.; Water Products Division.
 g. NIBCO INC.
 h. Tyco Fire & Building Products LP.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:
 2. Pressure Rating: 175 psig minimum.

B. Angle Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

C. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Affiliated Distributors.
 b. Anvil International, Inc.
 c. Conbraco Industries, Inc.; Apollo Valves.
 d. Fire Protection Products, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Potter Roemer.
 h. Tyco Fire & Building Products LP.
 i. Victaulic Company.
 j. Watts Water Technologies, Inc.

D. Plug Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Southern Manufacturing Group.

2.6 SPECIALTY VALVES

A. General Requirements:
 2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
 3. Body Material: Cast or ductile iron.
 4. Size: Same as connected piping.
 5. End Connections: Flanged or grooved.
B. Alarm Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 c. Reliable Automatic Sprinkler Co., Inc.
 d. Tyco Fire & Building Products LP.
 e. Venus Fire Protection Ltd.
 f. Victaulic Company.
 g. Viking Corporation.
 3. Design: For horizontal or vertical installation.
 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, and fill-line attachment with strainer.
 5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
 6. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

2.7 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. National Fittings, Inc.
 c. Shurjoint Piping Products.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.
 5. Type: Mechanical-T and -cross fittings.
 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
 8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AGF Manufacturing Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
 5. Size: Same as connected piping.
 6. Inlet and Outlet: Threaded.
C. Branch Line Testers:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Fire-End & Croker Corporation.
 c. Potter Roemer.
 2. Standard: UL 199.
 5. Size: Same as connected piping.
 6. Inlet: Threaded.
 7. Drain Outlet: Threaded and capped.
 8. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AGF Manufacturing Inc.
 b. Triple R Specialty.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Viking Corporation.
 4. Body Material: Cast- or ductile-iron housing with sight glass.
 5. Size: Same as connected piping.
 6. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. CECA, LLC.
 b. Corcoran Piping System Co.
 c. Merit Manufacturing; a division of Anvil International, Inc.
 5. Size: Same as connected piping.
 7. Inlet and Outlet: Threaded.

2.8 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AFAC Inc.
 3. Reliable Automatic Sprinkler Co., Inc.
 4. Tyco Fire & Building Products LP.
5. Venus Fire Protection Ltd.

B. General Requirements:
4. Pressure Rating for High-Pressure Automatic Sprinklers: 250 psig minimum.

C. Automatic Sprinklers with Heat-Responsive Element:
2. Nonresidential Applications: UL 199.
3. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

1. Characteristics:
 a. Nominal 1/2-inch Orifice: With Discharge Coefficient K between 5.3 and 5.8.
 b. Nominal 17/32-inch Orifice: With Discharge Coefficient K between 7.4 and 8.2.

E. Sprinkler Finishes:
1. Chrome plated.

F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

G. Sprinkler Guards:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Reliable Automatic Sprinkler Co., Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
2. Standard: UL 199.
3. Type: Wire cage with fastening device for attaching to sprinkler.

2.9 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Motor-Operated Alarm:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
b. Tyco Fire & Building Products LP.
c. Victaulic Company.
d. Viking Corporation.

2. Standard: UL 753.
3. Type: Mechanically operated, with Pelton wheel.
5. Size: 10-inch diameter.
6. Components: Shaft length, bearings, and sleeve to suit wall construction.
8. Outlet: NPS 1 drain connection.

C. Electrically Operated Alarm Bell:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Notifier; a Honeywell company.
 c. Potter Electric Signal Company.
3. Type: Vibrating, metal alarm bell.
4. Size: 8-inch minimum diameter.
5. Finish: Red-enamel factory finish, suitable for outdoor use.

D. Water-Flow Indicators:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.
4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

E. Pressure Switches:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. Barksdale, Inc.
 c. Detroit Switch, Inc.
 d. Potter Electric Signal Company.
 e. System Sensor; a Honeywell company.
 f. Tyco Fire & Building Products LP.
 g. United Electric Controls Co.
h. Viking Corporation.
3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

F. Valve Supervisory Switches:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

G. Indicator-Post Supervisory Switches:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. System Sensor; a Honeywell company.
3. Type: Electrically supervised.
5. Design: Signals that controlled indicator-post valve is in other than fully open position.

2.10 MANUAL CONTROL STATIONS

A. Description: UL listed or FM approved, hydraulic operation, with union, NPS 1/2 pipe nipple, and bronze ball valve. Include metal enclosure labeled “MANUAL CONTROL STATION” with operating instructions and cover held closed by breakable strut to prevent accidental opening.

2.11 CONTROL PANELS

A. Description: Single-area, two-area, or single-area cross-zoned control panel as indicated, including NEMA ICS 6, Type 1 enclosure, detector, alarm, and solenoid-valve circuitry for operation of deluge valves. Panels contain power supply; battery charger; standby batteries; field-wiring terminal strip; electrically supervised solenoid valves and polarized fire-alarm bell; lamp test facility; single-pole, double-throw auxiliary alarm contacts; and rectifier.
1. Panels: UL listed and FM approved when used with thermal detectors and Class A detector circuit wiring. Electrical characteristics are 120-Vac, 60 Hz, with 24-V dc rechargeable batteries.
2. Manual Control Stations: Electric operation, metal enclosure, labeled "MANUAL CONTROL STATION" with operating instructions and cover held closed by breakable strut to prevent accidental opening.
3. Manual Control Stations: Hydraulic operation, with union, NPS 1/2 pipe nipple, and bronze ball valve. Include metal enclosure labeled "MANUAL CONTROL STATION" with
operating instructions and cover held closed by breakable strut to prevent accidental opening.

2.12 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AMETEK; U.S. Gauge Division.
 2. Ashcroft, Inc.
 4. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0 to 250 psig minimum.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance” Article.

B. Report test results promptly and in writing.

3.2 WATER-SUPPLY CONNECTIONS

A. Connect sprinkler piping to building’s interior water-distribution piping. Comply with requirements for interior piping in Division 22 Section “Domestic Water Piping.”

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-distribution piping.

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water supply.

3.3 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.
C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

F. Install “Inspector's Test Connections” in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

J. Install alarm devices in piping systems.

K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

M. Pressurize and check preaction sprinkler system piping.

N. Fill sprinkler system piping with water.

O. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing. Comply with requirements for heating cables in Division 21 "Heat Tracing for Fire-Suppression Piping" and for piping insulation in Division 21 Section "Fire-Suppression Systems Insulation."

P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."
3.4 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system’s pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs one-quarter turn or tighten retainer pin.

I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to “Quality Assurance” Article.
 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

K. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

L. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

M. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

N. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.
3.5 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.

3.6 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.

3.7 FIRE-DEPARTMENT CONNECTION INSTALLATION

A. Install wall-type, fire-department connections.

B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

3.8 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Start and run excess-pressure pumps.
 6. Coordinate with fire-alarm tests. Operate as required.
7. Coordinate with fire-pump tests. Operate as required.
8. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

3.10 CLEANING
A. Clean dirt and debris from sprinklers.
B. Remove and replace sprinklers with paint other than factory finish.

3.11 DEMONSTRATION
A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.12 PIPING SCHEDULE
A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded joints.
B. Sprinkler specialty fittings may be used, downstream of control vales, instead of specified fittings.
C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 3. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 3. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
E. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:
 1. Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 3. Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
3.13 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
 2. Rooms with Suspended Ceilings: Recessed sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
 3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
 4. Upright Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 211313
SECTION 220523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Bronze ball valves.
 2. Bronze lift check valves.
 4. Bronze globe valves.
 5. Lubricated plug valves.
 B. Related Sections:
 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS
 A. CWP: Cold working pressure.
 B. EPDM: Ethylene propylene copolymer rubber.
 C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
 D. NRS: Nonrising stem.
 E. OS&Y: Outside screw and yoke.
 F. RS: Rising stem.
 G. SWP: Steam working pressure.

1.4 SUBMITTALS
 A. Product Data: For each type of valve indicated.
1.5 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Handwheel: For valves other than quarter-turn types.
 2. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
 3. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 1. Gate Valves: With rising stem.
2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
1. Flanged: With flanges according to ASME B16.1 for iron valves.
2. Solder Joint: With sockets according to ASME B16.18.
3. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Hammond Valve.
 e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

2.3 BRONZE LIFT CHECK VALVES

A. Class 125, Lift Check Valves with Bronze Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
2.4 BRONZE GATE VALVES

A. Class 125, NRS Bronze Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l. Zy-Tech Global Industries, Inc.

 2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.
3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball, butterfly, or gate valves.
 3. Throttling Service: Ball or butterfly valves.
 4. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 3. For Grooved-End Copper Tubing: Valve ends may be grooved.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Bronze Angle Valves: Class 125, bronze disc.
 3. Ball Valves: Two piece, full port, bronze with bronze trim.
 4. Bronze Swing Check Valves: Class 125, bronze disc.
 5. Bronze Gate Valves: Class 125, RS.

B. Pipe NPS 2-1/2 and Larger:
1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
2. Iron Ball Valves: Class 150.
4. Iron, Grooved-End Butterfly Valves: 175 CWP.
5. Iron Swing Check Valves: Class 125, metal seats.
6. Iron Gate Valves: Class 125, OS&Y.

END OF SECTION 220523
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe stands.
 7. Pipe positioning systems.
 8. Equipment supports.

B. Related Sections:
 1. Division 21 fire-suppression piping Sections for pipe hangers for fire-suppression piping.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
3. Fiberglass strut systems.
4. Pipe stands.
5. Equipment supports.

C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. Flex-Strut Inc.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut Corporation; Tyco International, Ltd.
2. HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Carpenter & Paterson, Inc.
 3. ERICO International Corporation.
 5. PHS Industries, Inc.
 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 7. Piping Technology & Products, Inc.
 8. Rilco Manufacturing Co., Inc.
 9. Value Engineered Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; Stainless Steel
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.8 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.9 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Division 07 Section "Roof Accessories" for curbs.

G. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. See Division 22 plumbing fixture Sections for requirements for pipe positioning systems for plumbing fixtures.

H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
K. Install lateral bracing with pipe hangers and supports to prevent swaying.

L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

M. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

O. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING
 A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
 B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING
 A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
 B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in painting Sections.
 C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE
 A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
 B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
 C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
 D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
 E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Restraint-Control Devices (MSS Type 47): To control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

R. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
SECTION 220553 – IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. The Basic Materials and Methods, Section 22 02 00, are included as a part of this Section as though written in full in this document.

1.2 SCOPE

Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for owner’s use.

1.3 Refer to Architectural Sections for additional requirements.

PART 2 - PRODUCTS

2.1 VALVE AND PIPE IDENTIFICATION

A. Valves:

1. All valves shall be identified with a 1-1/2" diameter brass disc wired onto the handle. The disc shall be stamped with 1/2" high depressed black filled identifying numbers. These numbers shall be numerically sequenced for all valves on the job.

2. The number and description indicating make, size, model number and service of each valve shall be listed in proper operational sequence, properly typewritten. Three copies to be turned over to Owner at completion.

3. Tags shall be fastened with approved meter seal and 4 ply 0.018 smooth copper wire. Tags and fastenings shall be manufactured by the Seton Name Plate Company or approved equal.

4. All valves shall be numbered serially with all valves of any one system and/or trade grouped together.

B. Pipe Marking:

1. All interior visible piping located in accessible spaces such as above accessible ceilings, equipment rooms, attic space, under floor spaces, etc., shall be identified with all temperature pipe markers as manufactured by W.H. Brady Company, 431 West Rock Ave., New Haven, Connecticut, or approved equal.

2. All exterior visible piping shall be identified with UV and acid resistant outdoor grade acrylic plastic markers as manufactured by Set Mark distributed by Seton nameplate company. Factory location 20 Thompson Road, Branford, Connecticut, or approved equal.

3. Generally, markers shall be located on each side of each partition, on each side of each tee, on each side of each valve and/or valve group, on each side of each
piece of equipment, and, for straight runs, at equally spaced intervals not to exceed 75 feet. In congested area, marks shall be placed on each pipe at the points where it enters and leaves the area and at the point of connection of each piece of equipment and automatic control valve. All markers shall have directional arrows.

4. Markers shall be installed after final painting of all piping and equipment and in such a manner that they are visible from the normal maintenance position. Manufacturer’s installation instructions shall be closely followed.

5. Markers shall be colored as indicated below per ANSI/OSHA Standards:

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>COLOR</th>
<th>LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>Yellow</td>
<td>Natural Gas</td>
</tr>
</tbody>
</table>

C. Pipe Painting:

1. All piping exposed to view shall be painted as indicated or as directed by the Architect in the field. Confirm all color selections with Architect prior to installation.

2. The entire fire protection piping system shall be painted red.

3. All piping located in mechanical rooms and exterior piping shall be painted as indicated below:

<table>
<thead>
<tr>
<th>System</th>
<th>Color</th>
<th>Light Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Sewer</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Sanitary Sewer Waste and Vent</td>
<td>Dark Blue</td>
<td></td>
</tr>
<tr>
<td>Domestic Cold Water</td>
<td>Dark Blue</td>
<td>Light Gray</td>
</tr>
<tr>
<td>Domestic Hot Water Supply and Return</td>
<td>Orange</td>
<td></td>
</tr>
</tbody>
</table>

PART 3 - EXECUTION

3.1 All labeling equipment shall be installed as per manufacturers printed installation instructions.

3.2 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Contractors price shall include all items required as per manufacturers’ requirements.

3.3 All piping shall be cleaned of rust, dirt, oil and all other contaminants prior to painting. Install primer and a quality latex paint over all surfaces of pipe.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic recirculating hot-water piping.
 4. Domestic chilled-water piping for drinking fountains.
 5. Sanitary waste piping exposed to freezing conditions.
 6. Storm-water piping exposed to freezing conditions.
 7. Roof drains and rainwater leaders.
 8. Supplies and drains for handicap-accessible lavatories and sinks.

B. Related Sections:
 1. Division 22 Section "Plumbing Equipment Insulation."

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. LEED Submittals:
 1. Product Data for Credit EQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content and chemical components.
 2. Laboratory Test Reports for Credit EQ 4: For adhesives and sealants, documentation indicating that product complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at pipe expansion joints for each type of insulation.
 3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 4. Detail removable insulation at piping specialties, equipment connections, and access panels.
 5. Detail application of field-applied jackets.
 6. Detail application at linkages of control devices.
D. Qualification Data: For qualified Installer.

E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

F. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in “Piping Insulation Schedule, General,” “Indoor Piping Insulation Schedule,” ”Outdoor, Aboveground Piping Insulation Schedule,” and ”Outdoor, Underground Piping Insulation Schedule” articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber, Preformed Pipe Insulation:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000-Degree Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.
 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Ramco Insulation, Inc.; Super-Stik.

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Ramco Insulation, Inc.; Thermokote V.

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.
2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

D. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Corning Corporation; 739, Dow Silicone.
 d. Speedline Corporation; Polycy VP Adhesive.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.
2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; 749.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 501.
 d. Mon-Eco Industries, Inc.; 55-10.
 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 3. Service Temperature Range: 0 to 180 deg F.

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 570.
 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 550.
 e. Vimasco Corporation; WC-1/WC-5.
 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Products: Subject to compliance with requirements, provide one of the following:
 c. Vimasco Corporation; 713 and 714.
3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. Joint Sealants:
1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Permanently flexible, elastomeric sealant.
3. Service Temperature Range: Minus 100 to plus 300 deg F.
5. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
6. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers,” including 2004 Addenda.

B. FSK and Metal Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic
Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, provide one of the following:
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
 2. Adhesive: As recommended by jacket material manufacturer.
 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
c. RPR Products, Inc.; Insul-Mate.

 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 2. Width: 3 inches.
 3. Thickness: 11.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.
 2. Width: 2 inches.
 3. Thickness: 6 mils.
 5. Elongation: 500 percent.
 6. Tensile Strength: 18 lbf/inch in width.

C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 488 AWF.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
c. Compac Corporation; 120.
d. Venture Tape; 3520 CW.

2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lb/inch in width.

2.10 SECUREMENTS

A. Bands:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping and Seals.
 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch thick, 1/2 inch wide with closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
9. Stencil or label the outside insulation jacket of each union with the word “union.” Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.8 PIPING INSULATION SCHEDULE, GENERAL
A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.9 INDOOR PIPING INSULATION SCHEDULE
A. Domestic Cold Water:
 1. NPS 1 and Smaller: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 2. NPS 1-1/4 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
B. Domestic Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 2. NPS 1-1/2 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Domestic Chilled Water (Potable):
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

D. Stormwater and Overflow:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

E. Roof Drain and Overflow Drain Bodies:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

F. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1/2 inch thick.

G. Sanitary Waste Piping Where Heat Tracing Is Installed:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.

H. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

I. Hot Service Drains:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

J. Hot Service Vents:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

3.10 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

B. Domestic Hot and Recirculated Hot Water:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

C. Hot Service Drains:
 1. All Pipe Sizes: Insulation shall be the following:
a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. Aluminum, Smooth: 0.016 inch thick.

3.12 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. Aluminum, Smooth: 0.020 inch thick.

3.13 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 220719
SECTION 221113 - FACILITY WATER DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes water-distribution piping and related components outside the building for water service, fire-service mains and combined water service and fire-service mains.

B. Utility-furnished products include water meters that will be furnished to the site, ready for installation.

1.3 DEFINITIONS

A. EPDM: Ethylene propylene diene terpolymer rubber.

B. LLDPE: Linear, low-density polyethylene plastic.

C. PA: Polyamide (nylon) plastic.

D. PE: Polyethylene plastic.

E. PP: Polypropylene plastic.

F. PVC: Polyvinyl chloride plastic.

G. RTRF: Reinforced thermosetting resin (fiberglass) fittings.

H. RTRP: Reinforced thermosetting resin (fiberglass) pipe.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.

B. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For water valves and specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Regulatory Requirements:
 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 3. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with ASTM F 645 for selection, design, and installation of thermoplastic water piping.

E. Comply with FMG's "Approval Guide" or UL's "Fire Protection Equipment Directory" for fire-service-main products.

F. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.
 1. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 1. Ensure that valves are dry and internally protected against rust and corrosion.
 2. Protect valves against damage to threaded ends and flange faces.
 3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
2. Protect from weather. Store indoors and maintain temperature higher than ambient dew-point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.

F. Protect flanges, fittings, and specialties from moisture and dirt.

G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

1.9 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:

1. Notify Architect and Owner no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of water-distribution service without Architect's written permission.

1.10 COORDINATION

A. Coordinate connection to water main with utility company.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Application" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372.

2.2 COPPER TUBE AND FITTINGS

A. Soft Copper Tube: ASTM B 88, Type K, water tube, annealed temper.

B. Hard Copper Tube: **ASTM B 88, Type K**, water tube, drawn temper.

C. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.

D. Copper Unions:

1. MSS SP-123.
4. Solder-joint or threaded ends.

2.3 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
2. Gaskets: AWWA C111, rubber.

C. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, rounded-grooved ends.

1. Grooved-End, Ductile-Iron Pipe Appurtenances:
 b. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

D. Flanges: ASME 16.1, Class 125, cast iron.
2.4 PVC PIPE AND FITTINGS

A. PVC, Schedule 40 Pipe: ASTM D 1785.
 1. PVC, Schedule 40 Socket Fittings: ASTM D 2466.

B. PVC, Schedule 80 Pipe: ASTM D 1785.
 1. PVC, Schedule 80 Socket Fittings: ASTM D 2467.
 2. PVC, Schedule 80 Threaded Fittings: ASTM D 2464.

C. PVC, AWWA Pipe: AWWA C900, Class 150 and Class 200, with bell end with gasket, and with spigot end.
 1. Comply with UL 1285 for fire-service mains if indicated.
 2. PVC Fabricated Fittings: AWWA C900, Class 150 and Class 200, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 3. PVC Molded Fittings: AWWA C900, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 4. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 5. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 a. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.5 SPECIAL PIPE FITTINGS

A. Ductile-Iron Rigid Expansion Joints:
 1. Description: Three-piece, ductile-iron assembly consisting of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: 250 psig minimum.
 b. Expansion Required: As specified in drawings.

B. Ductile-Iron Flexible Expansion Joints:
 1. Description: Compound, ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: 250 psig minimum.
 b. Offset: As specified in drawings.
c. Expansion Required: As specified in drawings.

C. Ductile-Iron Deflection Fittings:
1. Description: Compound, ductile-iron coupling fitting with sleeve and 1 or 2 flexing sections for up to 15-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: 250 psig minimum.

2.6 JOINING MATERIALS

A. Refer to Section 330500 "Common Work Results for Utilities" for commonly used joining materials.

B. Brazing Filler Metals: AWS A5.8, BCuP Series.

C. Plastic Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

2.7 PIPING SPECIALTIES

A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

B. Tubular-Sleeve Pipe Couplings:
1. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners and with ends of same sizes as piping to be joined.
 b. Center-Sleeve Material: Ductile iron.
 c. Gasket Material: Natural or synthetic rubber.
 d. Pressure Rating: 150 psig.
 e. Metal Component Finish: Corrosion-resistant coating or material.

C. Split-Sleeve Pipe Couplings:
1. Description: Metal, bolted, split-sleeve-type, reducing or transition coupling with sealing pad and closure plates, O-ring gaskets, and bolt fasteners.
 c. Sleeve Dimensions: Of thickness and width required to provide pressure rating.
 d. Gasket Material: O-rings made of EPDM rubber, unless otherwise indicated.
 e. Pressure Rating: 150 psig minimum.
 f. Metal Component Finish: Corrosion-resistant coating or material.

D. Flexible Connectors:
1. Nonferrous-Metal Piping: Bronze hose covered with bronze wire braid; with copper-tube, pressure-type, solder-joint ends or bronze flanged ends brazed to hose.

2. Ferrous-Metal Piping: Stainless-steel hose covered with stainless-steel wire braid; with ASME B1.20.1, threaded steel pipe nipples or ASME B16.5, steel pipe flanges welded to hose.

E. Dielectric Fittings:

1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

2. Dielectric Unions:
 a. Description:
 1) Standard: ASSE 1079.
 2) Pressure Rating: 150 psig.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.

3. Dielectric Flanges:
 a. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: 150 psig.
 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

4. Dielectric-Flange Insulating Kits:
 a. Description:
 1) Nonconducting materials for field assembly of companion flanges.
 2) Pressure Rating: 150 psig.
 3) Gasket: Neoprene or phenolic.
 4) Bolt Sleeves: Phenolic or polyethylene.
 5) Washers: Phenolic with steel backing washers.

5. Dielectric Nipples:
 a. Description:
 1) Standard: IAPMO PS 66.
 2) Electroplated steel nipple complying with ASTM F 1545.
 3) Pressure Rating: 300 psig.
 4) End Connections: Male threaded or grooved.
 5) Lining: Inert and noncorrosive, propylene.
2.8 CORROSION-PROTECTION PIPING ENCASEMENT

A. Encasement for Underground Metal Piping:

1. Standards: ASTM A 674 or AWWA C105.
2. Form: Sheet or tube.
3. Material: High-density, crosslamintated PE film of 0.004-inch minimum thickness.

2.9 GATE VALVES

A. AWWA, Cast-Iron Gate Valves:

1. Nonrising-Stem, Metal-Seated Gate Valves:
 a. Description: Gray- or ductile-iron body and bonnet; with cast-iron or bronze double-disc gate, bronze gate rings, bronze stem, and stem nut.
 1) Standard: AWWA C500.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Mechanical joint.
 4) Interior Coating: Complying with AWWA C550.

2. Nonrising-Stem, Resilient-Seated Gate Valves:
 a. Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 1) Standard: AWWA C509.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Mechanical joint.
 4) Interior Coating: Complying with AWWA C550.

3. Nonrising-Stem, High-Pressure, Resilient-Seated Gate Valves:
 a. Description: Ductile-iron body and bonnet; with bronze or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 1) Standard: AWWA C509.
 2) Minimum Pressure Rating: 250 psig.
 3) End Connections: Push on or mechanical joint.
 4) Interior Coating: Complying with AWWA C550.

4. OS&Y, Rising-Stem, Metal-Seated Gate Valves:
 a. Description: Cast- or ductile-iron body and bonnet, with cast-iron double disc, bronze disc and seat rings, and bronze stem.
 1) Standard: AWWA C500.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Flanged.
5. OS&Y, Rising-Stem, Resilient-Seated Gate Valves:
 a. Description: Cast- or ductile-iron body and bonnet, with bronze or gray- or ductile-iron gate, resilient seats, and bronze stem.
 1) Standard: AWWA C509.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Flanged.

B. UL/FMG, Cast-Iron Gate Valves:
 1. UL/FMG, Nonrising-Stem Gate Valves:
 a. Description: Iron body and bonnet with flange for indicator post, bronze seating material, and inside screw.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Flanged.

 2. OS&Y, Rising-Stem Gate Valves:
 a. Description: Iron body and bonnet and bronze seating material.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Flanged.

C. Bronze Gate Valves:
 1. OS&Y, Rising-Stem Gate Valves:
 a. Description: Bronze body and bonnet and bronze stem.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Threaded.

 2. Nonrising-Stem Gate Valves:
 a. Description: Class 125, Type 1, bronze with solid wedge, threaded ends, and malleable-iron handwheel.
 1) Standard: MSS SP-80.

2.10 GATE VALVE ACCESSORIES AND SPECIALTIES

A. Tapping-Sleeve Assemblies:
 1. Description: Sleeve and valve compatible with drilling machine.
 a. Standard: MSS SP-60.
b. Tapping Sleeve: Cast- or ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.

c. Valve: AWWA, cast-iron, nonrising-stem, [metal] [resilient]-seated gate valve with one raised face flange mating tapping-sleeve flange.

B. Valve Boxes: Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches in diameter.

1. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.

C. Indicator Posts: UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.

2.11 CHECK VALVES

A. AWWA Check Valves:
1. Description: Swing-check type with resilient seat. Include interior coating according to AWWA C550 and ends to match piping.
 b. Pressure Rating: 175 psig.

B. UL/FMG, Check Valves:
1. Description: Swing-check type with pressure rating; rubber-face checks, unless otherwise indicated; and ends matching piping.
 a. Standards: UL 312 and FMG approved.
 b. Pressure Rating: 175 psig.

2.12 DETECTOR CHECK VALVES

A. Detector Check Valves:
1. Description: Galvanized cast-iron body, bolted cover with air-bleed device for access to internal parts, and flanged ends. Include one-piece bronze disc with bronze bushings, pivot, and replaceable seat. Include threaded bypass taps in inlet and outlet for bypass meter connection. Set valve to allow minimal water flow through bypass meter when major water flow is required.
 a. Standards: UL 312 and FMG approved.
 b. Pressure Rating: 175 psig.
 c. Water Meter: AWWA C700, disc type, at least one-fourth size of detector check valve. Include meter, bypass piping, gate valves, check valve, and connections to detector check valve.
2. Description: Iron body, corrosion-resistant clapper ring and seat ring material, flanged ends, with connections for bypass and installation of water meter.
 a. Standards: UL 312 and FMG approved.
 b. Pressure Rating: 175 psig.

2.13 BUTTERFLY VALVES

A. AWWA Butterfly Valves:
 1. Description: Rubber seated.
 b. Body: Cast or ductile iron.
 c. Body Type: Wafer or flanged.
 d. Pressure Rating: 150 psig.

B. UL Butterfly Valves:
 1. Description: Metal on resilient material seating.
 a. Standards: UL 1091 and FMG approved.
 b. Body: Cast or ductile iron.
 c. Body Type: Wafer or flanged.
 d. Pressure Rating: 175 psig.

2.14 PLUG VALVES

A. Plug Valves:
 1. Description: Resilient-seated eccentric.
 b. Body: Cast iron.
 c. Pressure Rating: 175-psig minimum CWP.
 d. Seat Material: Suitable for potable-water service.

2.15 CORPORATION VALVES AND CURB VALVES

A. Service-Saddle Assemblies: Comply with AWWA C800. Include saddle and valve compatible with tapping machine.
 1. Service Saddle: Copper alloy with seal and AWWA C800, threaded outlet for corporation valve.
 2. Corporation Valve: Bronze body and ground-key plug, with AWWA C800, threaded inlet and outlet matching service piping material.
 3. Manifold: Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.

B. Curb Valves: Comply with AWWA C800. Include bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.
C. Service Boxes for Curb Valves: Similar to AWWA M44 requirements for cast-iron valve boxes. Include cast-iron telescoping top section of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over curb valve and with a barrel approximately 3 inches in diameter.

1. Shutoff Rods: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and slotted end matching curb valve.

2.16 WATER METERS

A. Water meters will be furnished by utility company.

B. Displacement-Type Water Meters:

1. Description: With bronze main case.

 b. Registration: Flow in gallons.

C. Turbine-Type Water Meters:

1. Description:

 b. Registration: Flow in gallons.

D. Compound-Type Water Meters:

1. Description:

 b. Registration: Flow in gallons.

E. Remote Registration System:

1. Description: Utility company standard; direct-reading type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.

 b. Registration: Flow in gallons.

F. Remote Registration System:

1. Description: Utility company standard; encoder type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.

 b. Registration: Flow in gallons.
 c. Data-Acquisition Units: Comply with utility company requirements for type and quantity.
d. Visible Display Units: Comply with utility company requirements for type and quantity.

2.17 DETECTOR-TYPE WATER METERS

A. Detector-Type Water Meters:

B. Description: Main line, proportional meter with second meter on bypass. Register flow in gallons.

1. Standards: AWWA C703, UL listed, and FMG approved.
 a. Size: At least one-half nominal size of main-line meter.

C. Description: Main-line turbine meter with strainer and second meter on bypass. Register flow in gallons.

1. Standards: AWWA C703, UL listed, and FMG approved.
 a. Size: At least NPS 2.

D. Remote Registration System:

1. Description: Utility company standard; direct-reading type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 b. Registration: Flow in gallons.

E. Remote Registration System:

1. Description: Utility company standard; encoder type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 b. Registration: Flow in gallons.
 c. Data-Acquisition Units: Comply with utility company requirements for type and quantity.
 d. Visible Display Units: Comply with utility company requirements for type and quantity.

2.18 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:
1. Standard: **ASSE 1013 or AWWA C511.**
2. Operation: Continuous-pressure applications.
3. Pressure Loss: **12 psig** maximum, through middle 1/3 of flow range.
4. Size: As specified in drawings.
5. Design Flow Rate: As specified in drawings.
6. Body: Bronze for NPS 2 and smaller; **cast iron with interior lining complying with AWWA C550 or that is FDA approved** for NPS 2-1/2 and larger.
7. End Connections: Threaded for NPS 2 and smaller; **flanged** for NPS 2-1/2 and larger.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; OS&Y gate type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

B. Double-Check, Detector-Assembly Backflow Preventers:
1. Standards: ASSE 1048 and UL listed or FMG approved.
2. Operation: Continuous-pressure applications.
3. Pressure Loss: **5 psig** maximum, through middle 1/3 of flow range.
4. Size: As specified in drawings.
5. Design Flow Rate: As specified in drawings.
6. Body: **Cast iron with interior lining complying with AWWA C550 or that is FDA approved.**
8. Accessories:
 a. Valves: UL 262, FMG-approved, OS&Y gate type with flanged ends on inlet and outlet.
 b. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.

2.19 WATER METER BOXES

A. Description: Cast-iron body and cover for disc-type water meter, with lettering "WATER METER" in cover; and with slotted, open-bottom base section of length to fit over service piping.
 1. Option: Base section may be cast-iron, PVC, clay, or other pipe.

B. Description: Cast-iron body and double cover for disc-type water meter, with lettering "WATER METER" in top cover; and with separate inner cover; air space between covers; and slotted, open-bottom base section of length to fit over service piping.

C. Description: Polymer-concrete body and cover for disc-type water meter, with lettering "WATER" in cover; and with slotted, open-bottom base section of length to fit over service piping. Include vertical and lateral design loadings of **15,000 lb minimum over 10 by 10 inches square.**
2.20 CONCRETE VAULTS

A. Description: Precast, reinforced-concrete vault, designed for A-16 load designation according to ASTM C 857 and made according to ASTM C 858.

1. Ladder: ASTM A 36/A 36M, steel or polyethylene-encased steel steps.
2. Manhole: ASTM A 48/A 48M Class No. 35A minimum tensile strength, gray-iron traffic frame and cover.
 a. Dimension: 24-inch minimum diameter, unless otherwise indicated.

3. Manhole: ASTM A 536, Grade 60-40-18, ductile-iron traffic frame and cover.
 a. Dimension: 24-inch minimum diameter, unless otherwise indicated.

4. Drain: ASME A112.6.3, cast-iron floor drain with outlet of size indicated. Include body anchor flange, light-duty cast-iron grate, bottom outlet, and integral or field-installed bronze ball or clapper-type backwater valve.

2.21 PROTECTIVE ENCLOSURES

A. Freeze-Protection Enclosures:
 1. Description: Insulated enclosure designed to protect aboveground water piping, equipment, or specialties from freezing and damage, with heat source to maintain minimum internal temperature of 40 deg F when external temperatures reach as low as minus 34 deg F.
 b. Class I: For equipment or devices other than pressure or atmospheric vacuum breakers.
 c. Class I-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.
 1) Housing: Reinforced aluminum or fiberglass construction.
 a) Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 b) Drain opening for units with drain connection.
 c) Access doors with locking devices.
 d) Insulation inside housing.
 e) Anchoring devices for attaching housing to concrete base.
 2) Electric heating cable or heater with self-limiting temperature control.

B. Weather-Resistant Enclosures:
 1. Description: Uninsulated enclosure designed to protect aboveground water piping, equipment, or specialties from weather and damage.
b. Class III: For equipment or devices other than pressure or atmospheric vacuum breakers.
c. Class III-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.

1) Housing: Reinforced **aluminum or fiberglass** construction.
 a) Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 b) Drain opening for units with drain connection.
 c) Access doors with locking devices.
 d) Anchoring devices for attaching housing to concrete base.

C. Expanded-Metal Enclosures:
 1. Description: Enclosure designed to protect aboveground water piping, equipment, or specialties from damage.
 a. Material: ASTM F 1267, expanded metal side and top panels, of weight and with reinforcement of same metal at edges as required for rigidity.
 b. Type: Type I, expanded or Type II, expanded and flattened.
 c. Class: Class 1, uncoated carbon steel or 2, hot-dip, zinc-coated carbon steel.
 d. Finish: Manufacturer’s enamel paint.
 e. Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 f. Locking device.
 g. Lugs or devices for securing enclosure to base.

D. Enclosure Bases:
 1. Description: **6-inch-minimum thickness precast concrete**, of dimensions required to extend at least 6 inches beyond edges of enclosure housings. Include openings for piping.

2.22 FIRE HYDRANTS

A. Dry-Barrel Fire Hydrants: In accordance with Utility company and local Fire Department Standards, Specifications and Requirements.

2.23 FIRE DEPARTMENT CONNECTIONS

A. Fire Department Connections:
 1. Description: Freestanding, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, and threaded bottom outlet. Include lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; **18-inch- high brass sleeve**; and round escutcheon plate.
 b. Connections: As specified by project MEP engineer and/or required by local Fire Department.
c. Inlet Alignment: As specified by project MEP engineer and/or required by local Fire Department.

d. Finish Including Sleeve: Polished chrome-plated or Polished bronze.

e. Escutcheon Plate Marking: "AUTO SPKR & STANDPIPE or as applicable."

2.24 ALARM DEVICES

A. Alarm Devices, General: UL 753 and FMG approved, of types and sizes to mate and match piping and equipment.

B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psig working pressure; designed for horizontal or vertical installation; with 2 single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.

C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.

D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.

B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.

C. Do not use flanges or unions for underground piping.

D. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.

E. Underground water-service piping NPS 3/4 to NPS 3 shall be the following:
 1. PVC, Schedule 40 pipe; PVC, Schedule 40 socket fittings; and solvent-cemented joints.

F. Underground water-service piping NPS 4 to NPS 8 shall be any of the following:
 1. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint mechanical-joint fittings.
 2. PVC, AWWA C900; DR 18 with ductile iron or mechanical-joint fittings; and gasketed joints.
G. Aboveground Water-Service Piping **NPS 3/4 to NPS 3** shall be the following:
 1. PVC, Schedule 80 pipe; PVC, Schedule 80 socket fittings; and solvent-cemented or threaded fittings; and threaded joints.

H. Aboveground water-service piping **NPS 4 to NPS 8** shall be the following:
 1. Ductile-iron, flanged end or grooved-end pipe; ductile-iron, flanged end or grooved-end appurtenances; and flanged end or grooved joints.

I. Underground Fire-Service-Main Piping **NPS 4 to NPS 12** shall be one of the following:
 1. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint or mechanical-joint fittings; and gasketed joints.
 2. PVC, AWWA C900 DR 14 150 pipe listed for fire-protection service; ductile iron fittings; and gasketed joints.

J. Aboveground Fire-Service-Main Piping **NPS 4 to NPS 12** shall be ductile-iron, flanged or grooved-end pipe; ductile-iron-pipe appurtenances; and flanged or grooved joints.

K. Underground Combined Water-Service and Fire-Service-Main Piping **NPS 6 to NPS 12** shall be any of the following:
 1. Ductile-iron, push-on-joint pipe; push-on-joint or mechanical-joint fittings; and gasketed joints.
 2. PVC, AWWA C900 DR 18 or DR 14 as specified pipe listed for fire-protection service; ductile iron fittings and gasketed joints.

L. Aboveground Combined Water Service and Fire-Service-Main Piping **NPS 6 to NPS 12** shall be ductile-iron, flanged end or grooved-end pipe; ductile-iron-pipe appurtenances; and flanged end or grooved joints.

3.3 VALVE APPLICATIONS

A. General Application: Use mechanical-joint-end valves for **NPS 3** and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, nonrising-stem gate valves for installation with indicator posts. Use corporation valves and curb valves with ends compatible with piping, for **NPS 2** and smaller installation.

B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

 1. Underground Valves, **NPS 3** and Larger: AWWA, cast-iron, nonrising-stem, resilient-seated gate valves with valve box.
 2. Underground Valves, **NPS 4** and Larger, for Indicator Posts: UL/FMG, cast-iron, nonrising-stem gate valves with indicator post.
 3. Use the following for valves in vaults and aboveground:

 - **Gate Valves, NPS 2** and Smaller: Bronze, nonrising stem.
 - **Gate Valves, NPS 3** and Larger: **AWWA, cast iron, OS&Y rising stem, resilient seated.**
 - **Check Valves: AWWA C508 or UL/FMG, swing type.**
4. Detector Check Valves: Use for water-service piping in vaults and aboveground to detect unauthorized use of water.

3.4 PIPING SYSTEMS - COMMON REQUIREMENTS

A. See Section 330500 "Common Work Results for Utilities" for piping-system common requirements.

3.5 PIPING INSTALLATION

A. Water-Main Connection: Arrange with utility company for tap of size and in location indicated in water main.

B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.

C. Make connections larger than NPS 2 with tapping machine according to the following:
 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.

D. Make connections NPS 2 and smaller with drilling machine according to the following:
 1. Install service-saddle assemblies and corporation valves in size, quantity, and arrangement required by utility company standards.
 2. Install service-saddle assemblies on water-service pipe to be tapped. Position outlets for corporation valves.
 3. Use drilling machine compatible with service-saddle assemblies and corporation valves. Drill hole in main. Remove drilling machine and connect water-service piping.
 4. Install corporation valves into service-saddle assemblies.
 5. Install manifold for multiple taps in water main.
 6. Install curb valve in water-service piping with head pointing up and with service box.

E. Comply with NFPA 24 for fire-service-main piping materials and installation.
 1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.
 2. Install copper tube and fittings according to CDA's "Copper Tube Handbook."

F. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
 1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.

G. Install PE pipe according to ASTM D 2774 and ASTM F 645.

H. Install PVC, AWWA pipe according to ASTM F 645 and AWWA M23.
I. Install fiberglass AWWA pipe according to AWWA M45.

J. Bury piping with depth of cover over top at least **36 inches**, and according to the following:
 1. Under Driveways: With at least **36 inches** cover over top.
 2. In Loose Gravelly Soil and Rock: With at least **12 inches** additional cover.

K. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.

L. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
 1. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.

M. Sleeves are specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

N. Mechanical sleeve seals are specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

O. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

P. See Section 211200 "Fire-Suppression Standpipes," Section 211313 "Wet-Pipe Sprinkler Systems," and Section 211316 "Dry-Pipe Sprinkler Systems" for fire-suppression-water piping inside the building.

Q. See Section 221116 "Domestic Water Piping" for potable-water piping inside the building.

3.6 JOINT CONSTRUCTION

A. See Section 330500 "Common Work Results for Utilities" for basic piping joint construction.

B. Make pipe joints according to the following:
 1. Copper-Tubing, Pressure-Sealed Joints: Join copper tube and pressure-seal fittings with tools and procedures recommended by pressure-seal-fitting manufacturer. Leave insertion marks on pipe after assembly.
 5. PE Piping Insert-Fitting Joints: Use plastic insert fittings and fasteners according to fitting manufacturer's written instructions.
6. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139 and pipe manufacturer's written instructions.

7. Fiberglass Piping Bonded Joints: Use adhesive and procedure recommended by piping manufacturer.

8. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 a. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples or unions.
 b. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric nipples.
 c. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.7 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:
 1. Concrete thrust blocks.
 2. Locking mechanical joints.
 4. Bolted flanged joints.
 5. Heat-fused joints.
 6. Pipe clamps and tie rods.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:
 2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.8 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.

B. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.

C. UL/FMG, Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.

D. UL/FMG, Valves Other Than Gate Valves: Comply with NFPA 24.

E. MSS Valves: Install as component of connected piping system.
F. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.

3.9 DETECTOR-CHECK VALVE INSTALLATION
A. Install in vault or aboveground.
B. Install for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.
C. Support detector check valves, meters, shutoff valves, and piping on brick or concrete piers.

3.10 WATER METER INSTALLATION
A. Install water meters, piping, and specialties according to utility company's written instructions.
B. Water Meters: Install [displacement] [turbine]-type water meters, NPS 2 and smaller, in meter boxes with shutoff valves on water meter inlets. Include valves on water meter outlets and valved bypass around meters unless prohibited by authorities having jurisdiction.
C. Water Meters: Install [compound] [turbine]-type water meters, NPS 3 and larger, in meter vaults. Include shutoff valves on water meter inlets and outlets and valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.
D. Water Meters: Install detector-type water meters in meter vault according to AWWA M6. Include shutoff valves on water meter inlets and outlets and full-size valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.

3.11 ROUGHING-IN FOR WATER METERS
A. Rough-in piping and specialties for water meter installation according to utility company's written instructions.

3.12 VACUUM BREAKER ASSEMBLY INSTALLATION
A. Install pressure vacuum breaker assemblies of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
B. Do not install pressure vacuum breaker assemblies in vault or other space subject to flooding.

3.13 BACKFLOW PREVENTER INSTALLATION
A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
B. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.

C. Do not install bypass piping around backflow preventers.

D. Support NPS 2-1/2 and larger backflow preventers, valves, and piping near floor and on brick or concrete piers.

3.14 WATER METER BOX INSTALLATION

A. Install water meter boxes in paved areas flush with surface.

B. Install water meter boxes in grass or earth areas with top 2 inches above surface.

3.15 CONCRETE VAULT INSTALLATION

A. Install precast concrete vaults according to ASTM C 891.

3.16 PROTECTIVE ENCLOSURE INSTALLATION

A. Install concrete base level and with top approximately 2 inches above grade.

B. Install protective enclosure over valves and equipment.

C. Anchor protective enclosure to concrete base.

3.17 FIRE HYDRANT INSTALLATION

A. General: Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.

B. Wet-Barrier Fire Hydrants: Install with valve below frost line. Provide for drainage.

C. AWWA Fire Hydrants: Comply with AWWA M17.

D. UL/FMG Fire Hydrants: Comply with NFPA 24.

3.18 FLUSHING HYDRANT INSTALLATION

A. Install post-type flushing hydrants with valve below frost line and provide for drainage. Support in upright position. Include separate gate valve or curb valve and restrained joints in supply piping.

B. Install ground-type flushing hydrants with valve below frost line and provide for drainage. Install hydrant box flush with grade. Include separate gate valve or curb valve and restrained joints in supply piping.
C. Install sampling stations with valve below frost line and provide for drainage. Attach weather-resistant housing and support in upright position. Include separate curb valve in supply piping.

3.19 FIRE DEPARTMENT CONNECTION INSTALLATION

A. Install ball drip valves at each check valve for fire department connection to mains.

B. Install protective pipe bollards [on two sides of] [on three sides of] <Describe arrangement> each fire department connection. Pipe bollards are specified in Section 055000 "Metal Fabrications."

3.20 ALARM DEVICE INSTALLATION

A. General: Comply with NFPA 24 for devices and methods of valve supervision. Underground valves with valve box do not require supervision.

B. Supervisory Switches: Supervise valves in open position.
 1. Valves: Grind away portion of exposed valve stem. Bolt switch, with plunger in stem depression, to OS&Y gate-valve yoke.
 2. Indicator Posts: Drill and thread hole in upper-barrel section at target plate. Install switch, with toggle against target plate, on barrel of indicator post.

C. Locking and Sealing: Secure unsupervised valves as follows:
 2. Post Indicators: Install padlock on wrench on indicator post.

D. Pressure Switches: Drill and thread hole in exposed barrel of fire hydrant. Install switch.

E. Water-Flow Indicators: Install in water-service piping in vault. Select indicator with saddle and vane matching pipe size. Drill hole in pipe, insert vane, and bolt saddle to pipe.

F. Connect alarm devices to building fire alarm system. Wiring and fire-alarm devices are specified in Section 284621.11 "Addressable Fire-Alarm Systems" and Section 284621.13 "Conventional Fire-Alarm Systems."

3.21 CONNECTIONS

A. See Section 330500 "Common Work Results for Utilities" for piping connections to valves and equipment.

B. Connect water-distribution piping to utility water main. Use tapping sleeve and tapping valve as indicated on the drawings.

C. Connect water-distribution piping to interior domestic water and fire-suppression piping as indicated on drawings.
D. Connect waste piping from concrete vault drains to storm-drainage system. See Section 334400 "Storm Utility Drainage Piping" for connection to storm-sewer piping.

E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.22 FIELD QUALITY CONTROL

A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.
 1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig. Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

C. Prepare reports of testing activities.

3.23 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 312000 "Earth Moving."

B. Permanently attach equipment nameplate or marker indicating plastic water-service piping, on main electrical meter panel. See Section 330500 "Common Work Results for Utilities" for identifying devices.

3.24 CLEANING

A. Clean and disinfect water-distribution piping as follows:
 1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
 2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
 3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.

b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.

c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.

d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.

END OF SECTION 221113
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 2. Specialty valves.
 3. Flexible connectors.

1.3 SUBMITTALS

A. Product Data: For the following products:
 1. Specialty valves.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Flexible connectors.
 5. Water meters.
 7. Water penetration systems.

B. LEED Submittal:
 1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, including printed statement of VOC content.

C. Water Samples: Specified in "Cleaning" Article.

D. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Fire-suppression-water piping.
 2. Domestic water piping.
 3. Compressed air piping.

E. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
B. Comply with NSF 14 for plastic, potable domestic water piping and components.

C. Comply with NSF 61 for potable domestic water piping and components.

1.5 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

2.3 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

C. Sleeve-Type Transition Coupling: AWWA C219.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cascade Waterworks Manufacturing.
 b. Dresser, Inc.; Dresser Piping Specialties.
 c. Ford Meter Box Company, Inc. (The).
 d. JCM Industries.
 e. Romac Industries, Inc.
 f. Smith-Blair, Inc; a Sensus company.
 g. Viking Johnson; c/o Mueller Co.

D. Plastic-to-Metal Transition Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
DOMESTIC WATER PIPING

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.

B. Dielectric Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. EPCO Sales, Inc.
 d. Hart Industries International, Inc.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 f. Zurn Plumbing Products Group; Wilkins Water Control Products.
2. Description:
 a. Pressure Rating: 150 psig at 180 deg F.
 b. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. EPCO Sales, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 a. Factory-fabricated, bolted, companion-flange assembly.
 b. Pressure Rating: 150 psig.
 c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.

E. Plastic-to-Metal Transition Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Colonial Engineering, Inc.
 b. NIBCO INC.
 c. Spears Manufacturing Company.
2. Description: CPVC or PVC one-piece fitting with manufacturer’s Schedule 80 equivalent dimensions; one end with threaded brass insert and one solvent-cement-socket or threaded end.

E. Plastic-to-Metal Transition Unions:
2. Description: CPVC or PVC four-part union. Include brass threaded end, solvent-cement-join or threaded plastic end, rubber O-ring, and union nut.
2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

E. Dielectric Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Calpico, Inc.
 b. Lochinvar Corporation.
 2. Description:
 a. Galvanized-steel coupling.
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Female threaded.
 d. Lining: Inert and noncorrosive, thermoplastic.

F. Dielectric Nipples:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Perfection Corporation; a subsidiary of American Meter Company.
 b. Precision Plumbing Products, Inc.
 c. Victaulic Company.
 2. Description:
 a. Electroplated steel nipple complying with ASTM F 1545.
 b. Pressure Rating: 300 psig at 225 deg F.
 c. End Connections: Male threaded or grooved.
 d. Lining: Inert and noncorrosive, propylene.

2.5 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flex-Hose Co., Inc.
 2. Flexicraft Industries.
 3. Flex Pression, Ltd.
 4. Flex-Weld, Inc.
 5. Hyspan Precision Products, Inc.
 7. Metraflex, Inc.
 8. Proco Products, Inc.
 10. Unaflex, Inc.
 11. Universal Metal Hose; a Hyspan company

B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
2. **End Connections NPS 2 and Smaller**: Threaded copper pipe or plain-end copper tube.
3. **End Connections NPS 2-1/2 and Larger**: Flanged copper alloy.

C. **Stainless-Steel-Hose Flexible Connectors**: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 1. **Working-Pressure Rating**: Minimum 200 psig.
 2. **End Connections NPS 2 and Smaller**: Threaded steel pipe nipple.
 3. **End Connections NPS 2-1/2 and Larger**: Flanged steel nipple.

PART 3 - EXECUTION

3.1 **EARTHWORK**

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 **PIPING INSTALLATION**

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.

E. Install shutoff valve immediately upstream of each dielectric fitting.

F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.

G. Install domestic water piping level without pitch and plumb.

H. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

I. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

J. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
K. Install piping adjacent to equipment and specialties to allow service and maintenance.

L. Install piping to permit valve servicing.

M. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.

N. Install piping free of sags and bends.

O. Install fittings for changes in direction and branch connections.

P. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

Q. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

R. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.

S. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2 and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

E. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.5 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.
3.6 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

3.7 FLEXIBLE CONNECTOR INSTALLATION

A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.

B. Install bronze-hose flexible connectors in copper domestic water tubing.

C. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.8 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Division 22 Section "Vibration for Plumbing Piping and Equipment".

B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.

1. Vertical Piping: MSS Type 8 or 42, clamps.

2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.

3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.

4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.

2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.

3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.

4. NPS 2-1/2: 108 inches with 1/2-inch rod.

5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.

6. NPS 6: 10 feet with 5/8-inch rod.

7. NPS 8: 10 feet with 3/4-inch rod.

F. Install supports for vertical copper tubing every 10 feet.
3.9 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment and machines to allow service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.10 IDENTIFICATION

A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.

B. Label pressure piping with system operating pressure.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
6. Prepare reports for tests and for corrective action required.

D. Domestic water piping will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.12 ADJUSTING

A. Perform the following adjustments before operation:
1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.13 CLEANING

A. Clean and disinfect potable domestic water piping as follows:
1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Prepare and submit reports of purging and disinfecting activities.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.14 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

D. Under-building-slab, domestic water, building service piping, NPS 3 and smaller, shall be the following:
 1. Soft copper tube, ASTM B 88, Type K; no joints.

E. Under-building-slab, domestic water, building-service piping, NPS 4 to NPS 8 and larger, shall be the following:
 1. Soft copper tube, ASTM B 88, Type K; wrought-copper solder-joint fittings; and brazed joints.

F. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be the following:
 1. Soft copper tube, ASTM B 88, Type K; no joints.

G. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and soldered joints.

H. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and soldered joints.

3.15 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following domestic water piping specialties:
 1. Vacuum breakers.
 2. Backflow preventers.
 4. Temperature-actuated water mixing valves.
 5. Strainers.
 6. Outlet boxes.
 8. Hose bibbs.
 9. Wall hydrants.
 10. Drain valves.
 12. Air vents.
 13. Trap-seal primer valves.
 14. Trap-seal primer systems.

B. Related Sections include the following:
 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 2. Division 22 Section "Domestic Water Piping" for water meters.
 3. Division 22 Section "Emergency Plumbing Fixtures" for water tempering equipment.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field quality-control test reports.
D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:
 2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. FEBCO; SPX Valves & Controls.
 e. Rain Bird Corporation.
 f. Toro Company (The); Irrigation Div.
 g. Watts Industries, Inc.; Water Products Div.
 h. Zurn Plumbing Products Group; Wilkins Div.
 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 5. Inlet and Outlet Connections: Threaded.

B. Hose-Connection Vacuum Breakers:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrowhead Brass Products, Inc.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. Legend Valve.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts Industries, Inc.; Water Products Div.
 h. Woodford Manufacturing Company.
i. Zurn Plumbing Products Group; Light Commercial Operation.
j. Zurn Plumbing Products Group; Wilkins Div.
k.
5. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
6. Finish: Chrome or nickel plated.

C. Reduced-Pressure-Principle Backflow Preventers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Watts Industries, Inc.; Water Products Div.
 f. Zurn Plumbing Products Group; Wilkins Div.
3. Operation: Continuous-pressure applications.
4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

D. Double-Check Backflow-Prevention Assemblies:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Watts Industries, Inc.; Water Products Div.
 f. Zurn Plumbing Products Group; Wilkins Div.
3. Operation: Continuous-pressure applications, unless otherwise indicated.
4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

E. Beverage-Dispensing-Equipment Backflow Preventers:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 c. Zurn Plumbing Products Group; Wilkins Div.
4. Operation: Continuous-pressure applications.

F. Dual-Check-Valve Backflow Preventers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Ford Meter Box Company, Inc. (The).
 f. Honeywell Water Controls.
 g. Legend Valve.
 h. McDonald, A. Y. Mfg. Co.
 i. Mueller Co.; Water Products Div.
 k. Zurn Plumbing Products Group; Wilkins Div.
 3. Operation: Continuous-pressure applications.

G. Carbonated-Beverage-Dispenser, Dual-Check-Valve Backflow Preventers:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Lancer Corporation.
 4. Operation: Continuous-pressure applications.

H. Hose-Connection Backflow Preventers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 c. Woodford Manufacturing Company.
3. Operation: Up to 10-foot head of water back pressure.
4. Inlet Size: NPS 1/2 or NPS 3/4.
5. Outlet Size: Garden-hose thread complying with ASME B1.20.7.
6. Capacity: At least 3-gpm flow.

2.2 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flo Fab Inc.
 c. ITT Industries; Bell & Gossett Div.
 d. NIBCO INC.
 e. TAC Americas.
 f. Taco, Inc.
 g. Watts Industries, Inc.; Water Products Div.
 2. Type: Ball valve with two readout ports and memory setting indicator.
 3. Body: Brass or bronze,
 4. Size: Same as connected piping, but not larger than NPS 2.
 5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

B. Memory-Stop Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Div.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corp.
 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 3. Pressure Rating: 400-psig minimum CWP.
 4. Size: NPS 2 or smaller.
 5. Body: Copper alloy.
 6. Port: Standard or full port.
 7. Ball: Chrome-plated brass.
 8. Seats and Seals: Replaceable.
 9. End Connections: Solder joint or threaded.

2.3 TEMPERATURE-ACTUATED WATER MIXING VALVES

A. Water-Temperature Limiting Devices:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Conbraco Industries, Inc.
 c. Honeywell Water Controls.
d. Leonard Valve Company.
e. Powers; a Watts Industries Co.
f. Symmons Industries, Inc.
g. Taco, Inc.
h. Watts Industries, Inc.; Water Products Div.
i. Zurn Plumbing Products Group; Wilkins Div.

4. Type: Thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Tempered-Water Setting: Adjustable 105F

B. Primary, Thermostatic, Water Mixing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Lawler Manufacturing Company, Inc.
 c. Leonard Valve Company.
 d. Powers; a Watts Industries Co.
 e. Symmons Industries, Inc.
4. Type: Cabinet-type, thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
9. Tempered-Water Setting: 105F.
10. Valve Finish: Rough bronze.
11. Piping Finish: Copper.
12. Cabinet: Factory-fabricated, stainless steel, for recessed mounting and with hinged, stainless-steel door.

C. Individual-Fixture, Water Tempering Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Conbraco Industries, Inc.
 c. Honeywell Water Controls.
 d. Lawler Manufacturing Company, Inc.
 e. Leonard Valve Company.
 f. Powers; a Watts Industries Co.
 g. Watts Industries, Inc.; Water Products Div.
 h. Zurn Plumbing Products Group; Wilkins Div.
3. Pressure Rating: 125 psig minimum, unless otherwise indicated.
5. Temperature Control: Adjustable.
6. Inlets and Outlet: Threaded.
7. Finish: Rough or chrome-plated bronze.
8.
D. Primary Water Tempering Valves:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Holby Valve Co., Inc.
3. Standard: ASSE 1017, thermostatically controlled tempering valve, listed as tempering valve.
4. Pressure Rating: 125 psig minimum, unless otherwise indicated.
5. Body: Bronze.
7. Inlets and Outlet: Threaded.

2.4 STRainers FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:
1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations, unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.

2.5 OUTLET BOXES

A. Clothes Washer Outlet Boxes:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Guy Gray Manufacturing Co., Inc.
 c. IPS Corporation.
 d. LSP Products Group, Inc.
 e. Oatey.
 f. Plastic Oddities; a division of Diverse Corporate Technologies.
 g. Symmons Industries, Inc.
 h. Watts Industries, Inc.; Water Products Div.
 i. Whitehall Manufacturing; a div. of Acorn Engineering Company.
 j. Zurn Plumbing Products Group; Light Commercial Operation.
4. Faucet: Combination, valved fitting or separate hot- and cold-water, valved fittings complying with ASME A112.18.1. Include garden-hose thread complying with ASME B1.20.7 on outlets.
5. Supply Shutoff Fittings: NPS 1/2 gate, globe, or ball valves and NPS 1/2 copper, water tubing.
6. Drain: NPS 2 standpipe and P-trap for direct waste connection to drainage piping.
7. Inlet Hoses: Two 60-inch long, rubber household clothes washer inlet hoses with female, garden-hose-thread couplings. Include rubber washers.
8. Drain Hose: One 48-inch long, rubber household clothes washer drain hose with hooked end.

B. Icemaker Outlet Boxes:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. IPS Corporation.
 c. LSP Products Group, Inc.
 d. Oatey.
 e. Plastic Oddities; a division of Diverse Corporate Technologies.
4. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
5. Supply Shutoff Fitting: NPS 1/2 gate, globe, or ball valve and NPS 1/2 copper, water tubing.

2.6 HOSE BIBBS

A. Hose Bibbs:
4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
10. Finish for Finished Rooms: Chrome or nickel plated.
11. Operation for Equipment Rooms: Wheel handle or operating key.
12. Operation for Service Areas: Operating key.
14. Include operating key with each operating-key hose bibb.
15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

B. Moderate-Climate Wall Hydrants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Woodford Manufacturing Company.
h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.

4. Operation: Loose key.
5. Inlet: NPS 3/4 or NPS 1.
6. Outlet: Concealed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011; and garden-hose thread complying with ASME B1.20.7.
7. Box: Deep, flush mounting with cover.
8. Box and Cover Finish: Polished nickel bronze.
9. Outlet: Exposed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011; and garden-hose thread complying with ASME B1.20.7.
11. Operating Keys(s): Two with each wall hydrant.

C. Vacuum Breaker Wall Hydrants:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Arrowhead Brass Products, Inc.
 b. Mansfield Plumbing Products LLC.
 d. Prier Products, Inc.
 g. Woodford Manufacturing Company.
 h. Zurn Plumbing Products Group; Light Commercial Operation.

3. Standard: ASSE 1019, Type A or Type B.
4. Type: Freeze-resistant, automatic draining with integral air-inlet valve.
5. Classification: Type A, for automatic draining with hose removed or Type B, for automatic draining with hose removed or with hose attached and nozzle closed.
7. Operation: Loose key.
8. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.

2.7 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
 8. Inlet: Threaded or solder joint.

B. Gate-Valve-Type, Hose-End Drain Valves:
2. Pressure Rating: Class 125.
5. Inlet: NPS 3/4 threaded or solder joint.
6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

C. Stop-and-Waste Drain Valves:
1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
2. Pressure Rating: 200-psig minimum CWP or Class 125.
5. Drain: NPS 1/8 side outlet with cap.

2.8 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Josam Company.
 c. MIFAB, Inc.
 d. PPP Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; Wade Div.
 h. Watts Drainage Products Inc.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
3. Type: Metal bellows.
4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.9 AIR VENTS

A. Bolted-Construction Automatic Air Vents:
1. Body: Bronze.
2. Pressure Rating: 125-psig minimum pressure rating at 140 deg F.
3. Float: Replaceable, corrosion-resistant metal.
5. Size: NPS 1/2 minimum inlet.

B. Welded-Construction Automatic Air Vents:
2. Pressure Rating: 150-psig minimum pressure rating.
3. Float: Replaceable, corrosion-resistant metal.

2.10 TRAP-SEAL PRIMER VALVES

A. Supply-Type, Trap-Seal Primer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. PPP Inc.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Watts Industries, Inc.; Water Products Div.
 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

B. Drainage-Type, Trap-Seal Primer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 3. Do not install bypass piping around backflow preventers.

C. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

D. Install balancing valves in locations where they can easily be adjusted.
E. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install thermometers and water regulators if specified.
 2. Install cabinet-type units recessed in or surface mounted on wall as specified.

F. Install Y-pattern strainers for water on supply side of each control valve, solenoid valve, and pump.

G. Install outlet boxes recessed in wall. Install 2-by-4-inch fire-retardant-treated-wood blocking wall reinforcement between studs. Fire-retardant-treated-wood blocking is specified in Division 06 Section "Rough Carpentry."

H. Install water hammer arresters in water piping according to PDI-WH 201.

I. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.

J. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

K. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Pressure vacuum breakers.
 2. Intermediate atmospheric-vent backflow preventers.
 3. Reduced-pressure-principle backflow preventers.
 5. Carbonated-beverage-machine backflow preventers.
 7. Calibrated balancing valves.
 8. Primary, thermostatic, water mixing valves.
 11. Supply-type, trap-seal primer valves.
B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:
 1. Test each reduced-pressure-principle backflow preventer double-check, detector-assembly backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 221119
SECTION 22 11 21 - NATURAL GAS PIPING SYSTEMS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. The Basic Materials and Methods, Section 22 02 00, are included as a part of this Section as though written in full in this document.

1.2 SCOPE

A. Scope of the Work shall include the furnishing, complete installation and testing of the gas piping system, with all metering, valves, piping and auxiliaries, ready for owner's use.

B. Coordinate with the gas company and pay all fees and permits required for a complete and operating gas service to the project.

PART 2 - PRODUCTS

2.1 All gas piping above ground shall be Schedule 40 black steel as manufactured by National Tube, Republic, Youngstown, or approved equal domestic manufacturer.

2.2 All gas piping larger than 2" shall be of welded construction. Screwed fittings will only be permitted for size 2" and smaller. Unions and valves will not be permitted above furred ceiling areas or in walls or chases.

2.3 All pipe fittings shall be of materials as follows:

A. All welding fittings shall be factory-made and shall be full line size, for each tee, branch, elbow, etc., with reducers after fittings, if required.

B. All screwed fittings shall be Crane, or approved equal, Class 150 malleable iron. Screwed joints shall be made up with graphite and oil or Teflon tape. Screwed threads shall be in accordance with American Pipe Thread Standards.

C. All piping and fittings shall be from a domestic manufacturer.

2.4 All underground gas piping with 5 pound working pressure or less shall be as follows:

A. The pipe shall be yellow polyethylene with socket heat fusion joints and fittings. Pipe sizes 1-1/2" and 2" shall be SDR 11, (PE 2406) and pipe sizes 3" and 4" shall be SDR 11.5 (PE 2406).

B. All socket heat fusion fittings shall be D.O.T. approved and meet ASTM D-2513 and ANSI B31.8 codes.

C. All gas valves shall be polyethylene ball type, doubled union, rated for natural gas use. All valves shall be placed in a cast-iron valve box of an adequate size for accessibility and maintenance.

D. All transition meter risers shall be D.O.T. approved anode-less service type, fusion coupled and PE 2406 rated.
E. The contractor shall take thermal expansion under consideration during installation. The contractor shall follow all requirements set by the manufacturer to protect the system from damage due to thermal expansion.

F. The contractor shall provide detector tape approximately 12” above all gas piping.

G. Wrap pipe with 18 gauge minimum copper tracer wire.

2.5 Gas piping installed in unventilated spaces shall be routed in properly vented continuous sleeve where required by the building code.

2.6 Gas valves shall be U.L. listed as follows:

A. Ball Valves: Nibco T585-70-UL for ¼” to 1” and T580-70-UL for 1-¼” to 3”.
B. Plug Valves: DeZurick Series 425 or 435 Eccentric valves with RS 49 plug seals.

2.7 Gas pressure regulators shall be capable of reducing 75 psi pressure gas to 0.5 psi gas at capacities required by Gas Demand. Install per A.G.A. Bulletin 90. Regulators shall be as manufactured by Rockwell, Fisher-Governor or approved equal.

2.8 All gas regulators located inside the building shall be vented to atmosphere with schedule 40 black steel pipe. This includes all regulators provided with mechanical and plumbing equipment and all other regulators provided under this contract. Vent piping shall be the full size of regulatory port opening, or as recommended by regulator manufacturer, and shall run independent of any other regulator vent through to point of termination.

PART 3 - EXECUTION

3.1 All piping shall be installed in accordance with the manufacturer’s recommendations and printed installation instructions.

3.2 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Provide all items required as per manufacturer’s requirements.

3.3 All underground gas piping shall be laid on 6” of wet compact banksand approximately 24” below grade. Backfill trench with wet compacted banksand to 6” above pipe. The remainder of backfill shall be selected backfill and shall meet all compaction requirements set forth by the general trenching and backfill requirements.

3.4 Provide lever handle gas valve, drip leg and union to each piece of equipment and where indicated.

3.5 All gas lines entering building shall be valved on the exterior of the building above grade.

PART 4 - TESTING

4.1 TESTING OF GAS PIPING SYSTEMS

A. All gas system testing shall be in compliance with local codes or as required in NFPA 54 National Fuel Gas Code whichever is the more stringent requirement.

B. All work shall be performed by a Journeyman Plumber holding current State and local licenses.
C. All tests shall be accomplished during normal working hours and after having given due notification to building owner, construction manager or designee, of tests to be performed. All tests shall be performed in the presence of and witnessed by the building owner's representative or designee.

D. All gas system piping shall be subjected to a pneumatic test pressure of 60 psig for not less than 2 hours upon completion of all rough-in work and prior to covering. While the systems are subjected to this air pressure test, all joints shall have a soapy water solution applied and shall be observed for leaks. During test period there shall be no perceptible drop in test gage pressure.

E. A final test shall be performed after all portions of the piping system are completely installed and covered. The entire system shall be tested, with all system outlets plugged or capped, before any equipment or appliances are connected to the piping.

1. Final test shall be with mercury, measured with a manometer or slope gage. Test pressures shall in no case be less than one and one half times the normal operating pressure or as listed below; which ever is the greater:
 a. 10.5 inches mercury (5 psig) for 4 ounce system.
 b. 21.0 inches mercury (10 psig) for 8 ounce system.

2. Tests shall be for a period of not less than 30 minutes and shall prove absolutely tight, showing no perceptible drop, for the entire test period.

F. Purge air from test piping before connecting equipment or appliances. Purge air to outdoors or to ventilated space of sufficient volume to prevent accumulation of flammable mixtures.

END OF SECTION 221121
SECTION 221313 - FACILITY SANITARY SEWER

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 2. Hubless cast-iron soil pipe and fittings.
 3. Ductile-iron, gravity sewer pipe and fittings.
 4. Ductile-iron, pressure pipe and fittings.
 5. ABS pipe and fittings.
 6. PVC pipe and fittings.
 7. Fiberglass pipe and fittings.
 8. Concrete pipe and fittings.
 10. Pressure-type pipe couplings.
 11. Expansion joints and deflection fittings.
 13. Cleanouts.
 15. Manholes.
 16. Concrete.

1.3 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Pipe and fittings.
 2. Non-pressure and pressure couplings
 3. Expansion joints and deflection fittings.
 4. Backwater valves.
 5. Cleanouts.
B. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings:
 1. Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
 2. Show system piping in profile. Draw profiles to horizontal scale of not less than 1 inch equals 50 feet and to vertical scale of not less than 1 inch equals 5 feet. Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing system piping.

B. Product Certificates: For each type of pipe and fitting.

C. Field quality-control reports.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic manholes, pipe, and fittings in direct sunlight.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

C. Handle manholes according to manufacturer's written rigging instructions.

1.7 FIELD CONDITIONS

A. Interruption of Existing Sanitary Sewerage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Architect and Owner no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of service without Architect's written permission.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

A. PVC Type PSM Sewer Piping:
 1. Pipe: ASTM D3034, SDR 26, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
 2. Fittings: ASTM D3034, PVC with bell ends.
B. PVC Pressure Piping:

1. Pipe: AWWA C900, **Class 150** PVC pipe with bell-and-spigot ends for gasketed joints.
2. Fittings: AWWA C900, **Class 150** PVC pipe with bell ends.

2.2 NONPRESSURE-TYPE TRANSITION COUPLINGS

A. Comply with ASTM C1173, elastomeric, sleeve-type, reducing or transition coupling; for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and include corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:

1. For Plastic Pipes: ASTM F477, elastomeric seal or ASTM D5926, PVC.
2. For Dissimilar Pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.

C. Unshielded, Flexible Couplings:

1. Description: Elastomeric sleeve with **stainless-steel shear ring and** corrosion-resistant-metal tension band and tightening mechanism on each end.

D. Shielded, Flexible Couplings:

1. Description: ASTM C1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

E. Ring-Type, Flexible Couplings:

1. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.

F. Nonpressure-Type, Rigid Couplings:

1. Description: ASTM C1461, sleeve-type, reducing- or transition-type mechanical coupling; molded from ASTM C1440, TPE material; with corrosion-resistant-metal tension band and tightening mechanism on each end.

2.3 PRESSURE-TYPE PIPE COUPLINGS

A. Tubular-Sleeve Couplings: AWWA C219, with center sleeve, gaskets, end rings, and bolt fasteners.

B. Metal, bolted, sleeve-type, reducing or transition coupling; for joining underground pressure piping. Include **150-psig** minimum pressure rating and ends of same sizes as piping to be joined.
C. Center-Sleeve Material: Ductile iron.

D. Gasket Material: Natural or synthetic rubber.

E. Metal Component Finish: Corrosion-resistant coating or material.

2.4 EXPANSION JOINTS AND DEFLECTION FITTINGS

A. Ductile-Iron, Flexible Expansion Joints:

1. Description: Compound fitting with combination of flanged and mechanical-joint ends complying with AWWA C110/A21.10 or AWWA C153/A21.53. Include two gasketed ball-joint sections and one or more gasketed sleeve sections, rated for 250-psig minimum working pressure and for offset and expansion indicated.

B. Ductile-Iron Expansion Joints:

1. Description: Three-piece assembly of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110/A21.10 or AWWA C153/A21.53. Include rating for 250-psig minimum working pressure and for expansion indicated.

C. Ductile-Iron Deflection Fittings:

1. Description: Compound coupling fitting with ball joint, flexing section, gaskets, and restrained-joint ends complying with AWWA C110/A21.10 or AWWA C153/A21.53. Include rating for 250-psig minimum working pressure and for up to 15 degrees of deflection.

2.5 BACKWATER VALVES

A. Cast-Iron Backwater Valves:

1. Description: ASME A112.14.1, gray-iron body and bolted cover, with bronze seat.

2. Horizontal type; with swing check valve and hub-and-spigot ends.

3. Combination horizontal and manual gate-valve type; with swing check valve, integral gate valve, and hub-and-spigot ends.

4. Terminal type; with bronze seat, swing check valve, and hub inlet.

B. PVC Backwater Valves:

1. Description: Horizontal type; with PVC body, PVC removable cover, and PVC swing check valve.

2.6 CLEANOUTS

A. Cast-Iron Cleanouts:
1. **Description:** ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.

2. **Top-Loading Classification(s):** Heavy Duty.

3. **Sewer Pipe Fitting and Riser to Cleanout:** ASTM A74, Service class, cast-iron soil pipe and fittings.

B. PVC Cleanouts:

1. **Description:** PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.7 ENCASEMENT FOR PIPING

A. Standard: ASTM A674 or AWWA C105/A21.5.

B. Material: Linear low-density polyethylene film of 0.008-inch or high-density, cross-laminated polyethylene film of 0.004-inch minimum thickness.

C. Form: Sheet or tube.

D. Color: Black.

2.8 MANHOLES

A. Standard Precast Concrete Manholes:

1. **Description:** ASTM C478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
2. **Diameter:** 48 inches minimum unless otherwise indicated.
3. **Ballast:** Increase thickness of precast concrete sections or add concrete to base section, as required to prevent flotation.
4. **Base Section:** 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section; with separate base slab or base section with integral floor.
5. **Riser Sections:** 4-inch minimum thickness, of length to provide depth indicated.
6. **Top Section:** Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated; with top of cone of size that matches grade rings.
7. **Joint Sealant:** ASTM C990, bitumen or butyl rubber.
8. **Resilient Pipe Connectors:** ASTM C923, cast or fitted into manhole walls, for each pipe connection.
9. **Steps:** Individual FRP steps or FRP ladder; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
10. **Adjusting Rings:** Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Designed Precast Concrete Manholes:

1. Description: ASTM C913; designed according to ASTM C890 for A-16 (ASSHTO HS20-44 in AASHTO HL), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
4. Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.
5. Steps: Individual FRP steps or FRP ladder; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
6. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
7. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers:

1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser, with 4-inch-minimum-width flange and 26-inch-diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "SANITARY SEWER."

D. Manhole-Cover Inserts:

1. Description; Manufactured, plastic form, of size to fit between manhole frame and cover and designed to prevent stormwater inflow. Include handle for removal and gasket for gastight sealing.
2. Type: Valve.

2.9 CONCRETE

A. General: Cast-in-place concrete complying with ACI 318, ACI 350, and the following:

1. Cement: ASTM C150/C150M, Type II.
B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.
 2. Reinforcing Bars: ASTM A615/A615M, Grade 60 deformed steel.

C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.
 1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 a. Invert Slope: 1 percent through manhole.
 2. Benches: Concrete, sloped to drain into channel.
 a. Slope: 4 percent.

D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.
 2. Reinforcing Bars: ASTM A615/A615M, Grade 60 deformed steel.

PART 3 - EXECUTION

3.1 EARTHWORK
 A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION
 A. General Locations and Arrangements: Drawing plans and details to indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
 B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
 C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
 D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Install gravity-flow, nonpressure, drainage piping according to the following:
 1. Install piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.
 2. Install piping with 36-inch minimum cover.
 4. Install hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook."
 5. Install ductile-iron, gravity sewer piping according to ASTM A746.
 6. Install ABS sewer piping according to ASTM D2321 and ASTM F1668.
 7. Install PVC cellular-core sewer piping according to ASTM D2321 and ASTM F1668.
 8. Install PVC corrugated sewer piping according to ASTM D2321 and ASTM F1668.
 9. Install PVC profile sewer piping according to ASTM D2321 and ASTM F1668.
 10. Install PVC Type PSM sewer piping according to ASTM D2321 and ASTM F1668.
 11. Install PVC gravity sewer piping according to ASTM D2321 and ASTM F1668.
 12. Install fiberglass sewer piping according to ASTM D3839 and ASTM F1668.
 13. Install nonreinforced-concrete sewer piping according to ASTM C1479 and ACPA's "Concrete Pipe Installation Manual."

G. Install force-main, pressure piping according to the following:
 1. Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place-concrete supports or anchors.
 2. Install piping with 36-inch minimum cover.
 3. Install ductile-iron pressure piping according to AWWA C600 or AWWA M41.
 4. Install ductile-iron special fittings according to AWWA C600.
 5. Install PVC pressure piping according to AWWA M23 or to ASTM D2774 and ASTM F1668.
 6. Install PVC water-service piping according to ASTM D2774 and ASTM F1668.

H. Install corrosion-protection piping encasement over the following underground metal piping according to ASTM A674 or AWWA C105/A21.5:
 2. Hubless cast-iron soil pipe and fittings.
 3. Ductile-iron pipe and fittings.
 4. Expansion joints and deflection fittings.

I. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.
3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure, drainage piping according to the following:
 1. Join ductile-iron, gravity sewer piping according to AWWA C600 for push-on joints.
 2. Join PVC Type PSM sewer piping according to ASTM D2321 and ASTM D3034 for elastomeric-seal joints or ASTM D3034 for elastomeric-gasket joints.
 3. Join dissimilar pipe materials with nonpressure-type, flexible or rigid couplings.

B. Join force-main, pressure piping according to the following:
 1. Join ductile-iron pressure piping according to AWWA C600 or AWWA M41 for push-on joints.
 2. Join ductile-iron special fittings according to AWWA C600 or AWWA M41 for push-on joints.
 3. Join PVC pressure piping according to AWWA M23 for gasketed joints.
 4. Join PVC water-service piping according to ASTM D2855.
 5. Join dissimilar pipe materials with pressure-type couplings.

C. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 1. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 a. Shielded flexible or rigid couplings for pipes of same or slightly different OD.
 b. Unshielded, increaser/reducer-pattern, flexible or rigid couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.
 2. Use pressure pipe couplings for force-main joints.

3.4 MANHOLE INSTALLATION

A. General: Install manholes complete with appurtenances and accessories indicated.

B. Install precast concrete manhole sections with sealants according to ASTM C891.

C. Install FRP manholes according to manufacturer's written instructions.

D. Form continuous concrete channels and benches between inlets and outlet.

E. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.

F. Install manhole-cover inserts in frame and immediately below cover.
3.5 CONCRETE PLACEMENT
 A. Place cast-in-place concrete according to ACI 318.

3.6 BACKWATER VALVE INSTALLATION
 A. Install horizontal-type backwater valves in piping manholes or pits.
 B. Install combination horizontal and manual gate-type valves in piping and in manholes.
 C. Install terminal-type backwater valves on end of piping and in manholes. Secure units to sidewalls.

3.7 CLEANOUT INSTALLATION
 A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use Medium-Duty, top-loading classification cleanouts in earth, paved or unpaved foot-traffic areas.
 2. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
 B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.
 C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.8 CONNECTIONS
 A. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains specified in Section 221316 "Sanitary Waste and Vent Piping."
 B. Connect force-main piping to building's sanitary force mains specified in Section 221316 "Sanitary Waste and Vent Piping." Terminate piping where indicated.
 C. Make connections to existing piping and underground manholes.
 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes by cutting opening into existing unit large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of, and be flush with, inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.

 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.

4. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

D. Connect to grease, oil and sand interceptors specified in Section 221323 "Sanitary Waste Interceptors."

3.9 CLOSING ABANDONED SANITARY SEWER SYSTEMS

A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:

 1. Close open ends of piping with at least 8-inch-thick, brick masonry bulkheads.
 2. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.

B. Abandoned Manholes: Excavate around manhole as required and use either procedure below:

 1. Remove manhole and close open ends of remaining piping.
 2. Remove top of manhole down to at least 36 inches below final grade. Fill to within 12 inches of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.

C. Backfill to grade according to Section 312000 "Earth Moving."

3.10 IDENTIFICATION

A. Comply with requirements in Section 312000 "Earth Moving" for underground utility identification devices. Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.

 1. Use warning tape over ferrous piping.
 2. Use detectable warning tape over nonferrous piping and over edges of underground manholes.
3.11 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

1. Submit separate report for each system inspection.
2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.

3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 a. Fill sewer piping with water. Test with pressure of at least 10-foot head of water, and maintain such pressure without leakage for at least 15 minutes.
 b. Close openings in system and fill with water.
 c. Purge air and refill with water.
 d. Disconnect water supply.
 e. Test and inspect joints for leaks.

6. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Test plastic gravity sewer piping according to ASTM F1417.
 b. Test concrete gravity sewer piping according to ASTM C1628.

7. Force Main: Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psig.
 a. Ductile-Iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.
 b. PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.
8. Manholes: Perform hydraulic test according to ASTM C969.

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.12 CLEANING

A. Clean dirt and superfluous material from interior of piping. **Flush with potable water.**

END OF SECTION 221313
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.

B. Related Sections:
 1. Division 22 Section "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.
 2. Division 22 Section "Sanitary Sewerage Pumps" for effluent and sewage pumps.
 3. Division 22 Section "Chemical-Waste Systems for Laboratory and Healthcare Facilities" for chemical-waste and vent piping systems.

1.3 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. LEED Submittal:
 1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.

C. Shop Drawings: For solvent drainage system. Include plans, elevations, sections, and details.

D. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Extra Heavy class(es).
B. Gaskets: ASTM C 564, rubber.
C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.
B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.
C. CISPI, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 c. Fernco Inc.
 d. Matco-Norca, Inc.
 e. MIFAB, Inc.
 f. Mission Rubber Company; a division of MCP Industries, Inc.
 g. Stant.
 h. Tyler Pipe.
 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
D. Heavy-Duty, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Clamp-All Corp.
 d. MIFAB, Inc.
 e. Mission Rubber Company; a division of MCP Industries, Inc.
3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
C. Adhesive Primer: ASTM F 656.
1. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
D. Solvent Cement: ASTM D 2564.
1. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
3. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Fernco Inc.
 3) Mission Rubber Company; a division of MCP Industries, Inc.
 4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 d. Sleeve Materials:
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
4. Shielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Mission Rubber Company; a division of MCP Industries, Inc.
c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Division 31 Section "Earth Moving."

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
L. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

M. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

O. Install underground PVC piping according to ASTM D 2321.

P. Install engineered soil and waste drainage and vent piping systems as follows:
 2. Septic Drainage System: Comply with ASSE 1043 and solvent fitting manufacturer's written installation instructions.
 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

Q. Plumbing Specialties:
 1. Install backwater valves in sanitary waste gravity-flow piping. Comply with requirements for backwater valves specified in Division 22 Section "Sanitary Waste Piping Specialties."
 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Sanitary Waste Piping Specialties."
 3. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Sanitary Waste Piping Specialties."

R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."
3.3 JOINT CONSTRUCTION

C. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

D. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 3. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in OD's.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

B. Shutoff Valves:
 1. Install shutoff valve on each sewage pump discharge.
 2. Install gate or full-port ball valve for piping NPS 2 and smaller.
 3. Install gate valve for piping NPS 2-1/2 and larger.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

D. Backwater Valves: Install backwater valves in piping subject to backflow.
 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.
 4. Comply with requirements for backwater valve specified in Division 22 Section "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
B. Comply with requirements for pipe hanger and support devices and installation specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 4. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 6. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.
 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 5. NPS 3: 12 feet with 1/2-inch rod.
 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 7. NPS 6 and NPS 8: 12 feet with 3/4-inch rod.
 8. NPS 10 and NPS 12: 12 feet with 7/8-inch rod.

I. Install supports for vertical steel piping every 15 feet.

J. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 2. NPS 3: 48 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.

K. Install supports for vertical PVC piping every 48 inches.
L. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Install horizontal backwater valves with cleanout cover flush with floor in pit with pit cover flush with floor.
 6. Comply with requirements for backwater valves cleanouts and drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
 7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION
A. Clean interior of piping. Remove dirt and debris as work progresses.
B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
C. Place plugs in ends of uncompleted piping at end of day and when work stops.
D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.

3.11 PIPING SCHEDULE
A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
C. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
D. Aboveground, vent piping **NPS 4** and smaller shall be any of the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

E. Underground, soil, waste, and vent piping **NPS 4** and smaller shall be any of the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

F. Underground, soil and waste piping **NPS 5** and larger shall be any of the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following sanitary drainage piping specialties:
 1. Backwater valves.
 2. Cleanouts.
 3. Floor drains.
 4. Trench drains.
 5. Air-admittance valves.
 6. Roof flashing assemblies.
 7. Through-penetration firestop assemblies.
 10. Solids interceptors.

B. Related Sections include the following:
 1. Division 22 Section "Storm Drainage Piping Specialties" for trench drains for storm water, channel drainage systems for storm water, roof drains, and catch basins.
 2. Division 22 Section "Plumbing Fixtures" for hair interceptors.

1.3 DEFINITIONS

B. FOG: Fats, oils, and greases.

C. FRP: Fiberglass-reinforced plastic.

D. HDPE: High-density polyethylene plastic.

E. PE: Polyethylene plastic.

F. PP: Polypropylene plastic.

G. PVC: Polyvinyl chloride plastic.
1.4 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
 1. Grease interceptors.

B. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 BACKWATER VALVES

A. Horizontal, Cast-Iron Backwater Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
 3. Size: Same as connected piping.
5. Cover: Cast iron with bolted or threaded access check valve.
7. Type Check Valve: Removable, bronze, swing check, factory assembled or field modified to hang closed.
8. Extension: ASTM A 74, Service class; full-size, cast-iron, soil-pipe extension to field-installed cleanout at floor; replaces backwater valve cover.

B. Drain-Outlet Backwater Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Watts Drainage Products Inc.
 d. Zurn Plumbing Products Group; Specification Drainage Operation.
2. Size: Same as floor drain outlet.
3. Body: Cast iron or bronze made for vertical installation in bottom outlet of floor drain.
4. Check Valve: Removable ball float.
5. Inlet: Threaded.
6. Outlet: Threaded or spigot.

C. Horizontal, Plastic Backwater Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Canplas LLC.
 b. IPS Corporation.
 c. NDS Inc.
 d. Oatey.
 e. Plastic Oddities; a division of Diverse Corporate Technologies.
 f. Sioux Chief Manufacturing Company, Inc.
 g. Zurn Plumbing Products Group; Light Commercial Operation.
2. Size: Same as connected piping.
3. Body: PVC.
4. Cover: Same material as body with threaded access to check valve.
5. Check Valve: Removable swing check.

2.2 CLEANOUTS

A. Exposed Metal Cleanouts:
1.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
 g. Josam Company; Blucher-Josam Div.
4. Size: Same as connected drainage piping
7. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Metal Floor Cleanouts:
1.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Oatey.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Zurn Plumbing Products Group; Light Commercial Operation.
 h. Zurn Plumbing Products Group; Specification Drainage Operation.
 i. Josam Company; Josam Div.
 j. Kusel Equipment Co.
 l. Josam Company; Blucher-Josam Div.
4. Size: Same as connected branch.
5. Type: Adjustable housing Cast-iron soil pipe with cast-iron ferrule.
6. Body or Ferrule: Cast iron.
7. Clamping Device: Required.
8. Outlet Connection: Spigot.
9. Closure: Brass plug with straight threads and gasket.
10. Adjustable Housing Material: Cast iron with.
12. Frame and Cover Shape: Round.
14. Riser: ASTM A 74, Extra-Heavy class, cast-iron drainage pipe fitting and riser to cleanout.
16. Size: Same as connected branch.
17. Housing: Stainless steel.

C. Cast-Iron Wall Cleanouts:
1.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
3. Standard: ASME A112.36.2M. Include wall access.
4. Size: Same as connected drainage piping.
5. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
6. Closure: Countersunk, plug.
2.3 FLOOR DRAINS

A. Cast-Iron Floor Drains:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Commercial Enameling Co.
 b. Josam Company; Josam Div.
 c. MIFAB, Inc.
 d. Prier Products, Inc.
 e. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 f. Tyler Pipe; Wade Div.
 g. Watts Drainage Products Inc.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
2. Standard: ASME A112.6.3.
3. Pattern: Area Floor Funnel floor drain.
5. Seepage Flange: Required.
6. Anchor Flange: Required.
7. Clamping Device: Not required.
8. Outlet: Bottom.
10. Sediment Bucket: Not required.
11. Top or Strainer Material: Nickel bronze.
13. Top Shape: Round.
15. Trap Material: Cast iron.
17. Trap Features: Trap-seal primer valve drain connection.

B. Plastic Floor Drains:
1.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Canplas LLC.
 b. IPS Corporation.
 c. Josam Company; Josam Div.
 d. Oatey.
 e. Plastic Oddities; a division of Diverse Corporate Technologies.
 f. Sioux Chief Manufacturing Company, Inc.
 g. Zurn Plumbing Products Group; Light Commercial Operation.
4. Material: PVC.
5. Seepage Flange: Required.
7. Outlet: Bottom.
8. Sediment Bucket: Not required.
11. Top Shape: Square.
12. Dimensions of Top or Strainer: 12”x 12”

2.4 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:
 1.
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Engineering Company; Elmdor/Stoneman Div.
 b. Thaler Metal Industries Ltd.
 c.

B. Description: Manufactured assembly made of 4.0-lb/sq. ft., 0.0625-inch-thick, lead flashing collar and skirt extending at least 6 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.

2.5 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:
 1.
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ProSet Systems Inc.
 4. Size: Same as connected soil, waste, or vent stack.
 5. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 7. Special Coating: Corrosion resistant on interior of fittings.

2.6 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:
 1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
 2. Size: Same as connected waste piping.

B. Deep-Seal Traps:
 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
2. Size: Same as connected waste piping.
 a. NPS 2: 4-inch- minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

C. Floor-Drain, Trap-Seal Primer Fittings:
 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

D. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

E. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.

F. Stack Flashing Fittings:
 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 2. Size: Same as connected stack vent or vent stack.

G. Vent Caps Insert drawing designation if any:
 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
 2. Size: Same as connected stack vent or vent stack.

H. Expansion Joints:
 1. Standard: ASME A112.21.2M.
 2. Body: Cast iron with bronze sleeve, packing, and gland.
 3. End Connections: Matching connected piping.
 4. Size: Same as connected soil, waste, or vent piping.

2.7 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft. thickness.
2. Vent Pipe Flashing: 8 oz./sq. ft. thickness.

C. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.

E. Fasteners: Metal compatible with material and substrate being fastened.

F. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

G. Solder: ASTM B 32, lead-free alloy.

H. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

2.8 SOLIDS INTERCEPTORS

A. Solids Interceptors:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Rockford Sanitary Systems, Inc.
 d. Schier Products Company.
 e. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 f. Tyler Pipe; Wade Div.
 g. Watts Drainage Products Inc.
 h. Zurn Plumbing Products Group; Specification Drainage Operation.
 i. Ashland Trap Distribution Co.
 j. Schier Products Company.
 k. Town & Country Plastics, Inc.
2. Type: Factory-fabricated interceptor made for removing and retaining sediment from wastewater.
3. Body Material: Cast iron or steel.
5. Interior Lining: Corrosion-resistant enamel.

2.9 MOTORS

A. General requirements for motors are specified in Division 22 Section "Common Motor Requirements for Plumbing Equipment."
1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backwater valves in building drain piping. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.

C. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate at base of each vertical soil and waste stack.

D. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

E. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

F. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

G. Install trench drains at low points of surface areas to be drained. Set grates of drains flush with finished surface, unless otherwise indicated.

H. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

I. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

J. Assemble open drain fittings and install with top of hub 2 inches above floor.

K. Install deep-seal traps on floor drains and other waste outlets, if indicated.

L. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.
M. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

N. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

O. Install vent caps on each vent pipe passing through roof.

P. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.

Q. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
 2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashings or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."
F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 224000 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following conventional plumbing fixtures and related components:
 1. Faucets for lavatories bathtub/showers showers and sinks.
 2. Laminar-flow faucet-spout outlets.
 3. Flushometers.
 4. Toilet seats.
 5. Protective shielding guards.
 6. Fixture supports.
 7. Interceptors.
 8. Shower receptors.
 10. Urinals.
 12. Lavatories.
 13. Commercial sinks.
 15. Group showers.
 16. Whirlpool bathtubs.
 18. Service sinks.
 20. Owner-furnished fixtures.

B. Related Sections include the following:
 1. Division 10 Section "Toilet, Bath, and Laundry Accessories."
 2. Division 22 Section "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.
 3. Division 22 Section "Domestic Water Filtration Equipment" for water filters.
 4. Division 22 Section "Healthcare Plumbing Fixtures."
 5. Division 22 Section "Emergency Plumbing Fixtures."
 6. Division 22 Section "Security Plumbing Fixtures."
 7. Division 22 Section "Drinking Fountains and Water Coolers."
 8. Division 31 Section "Facility Water Distribution Piping" for exterior plumbing fixtures and hydrants.

1.3 DEFINITIONS

B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.

C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.

D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.

E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

F. FRP: Fiberglass-reinforced plastic.

G. PMMA: Polymethyl methacrylate (acrylic) plastic.

H. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.

B. LEED Submittal:
 1. Product Data for Credit WE 2, 3.1, and 3.2: Documentation indicating flow and water consumption requirements.

C. Shop Drawings: Diagram power, signal, and control wiring.

D. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.

E. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
 2. Porcelain-Enameled, Formed-Steel Fixtures: ASME A112.19.4M.
 6. Vitreous-China Fixtures: ASME A112.19.2M.
 9. Whirlpool Bathtub Fittings: ASME A112.19.8M.

H. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:
 1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.
 2. Backflow Protection Devices for Faucets with Hose-Thread Outlet: ASME A112.18.3M.
 5. Hose-Connection Vacuum Breakers: ASSE 1011.

I. Comply with the following applicable standards and other requirements specified for shower faucets:
 1. Backflow Protection Devices for Hand-Held Showers: ASME A112.18.3M.
 2. Combination, Pressure-Equalizing and Thermostatic-Control Antiscald Faucets: ASSE 1016.

J. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
2. Brass and Copper Supplies: ASME A112.18.1.

K. Comply with the following applicable standards and other requirements specified for miscellaneous components:
2. Floor Drains: ASME A112.6.3.
6. Off-Floor Fixture Supports: ASME A112.6.1M.

1.6 WARRANTY

A. Special Warranties: Manufacturer's standard form in which manufacturer agrees to repair or replace components of whirlpools that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures of unit shell.
 b. Faulty operation of controls, blowers, pumps, heaters, and timers.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.
2. Warranty Period for Commercial Applications: One year(s) from date of Substantial Completion.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
2. Flushometer Valve, Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than 12 of each type.
3. Provide hinged-top wood or metal box, or individual metal boxes, with separate compartments for each type and size of extra materials listed above.
4. Flushometer Tank, Repair Kits: Equal to 5 percent of amount of each type installed, but no fewer than 2 of each type.
PART 2 - PRODUCTS- REFER TO DRAWINGS

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.

B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

D. Install counter-mounting fixtures in and attached to casework.

E. Install fixtures level and plumb according to roughing-in drawings.

F. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

G. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

H. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.

I. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.

J. Install toilet seats on water closets.

K. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

L. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

M. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

N. Install shower flow-control fittings with specified maximum flow rates in shower arms.

O. Install traps on fixture outlets.
 1. Exception: Omit trap on fixtures with integral traps.
 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
P. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Escutcheons for Plumbing Piping."

Q. Set shower receptors and service basins in leveling bed of cement grout. Grout is specified in Division 22 Section "Common Work Results for Plumbing."

R. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

E. Install fresh batteries in sensor-operated mechanisms.

3.4 ADJUSTING

A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.

C. Replace washers and seals of leaking and dripping faucets and stops.
D. Install fresh batteries in sensor-operated mechanisms.

3.5 CLEANING

A. Clean fixtures, faucets, and other fittings with manufacturers’ recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.6 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224000
SECTION 224700 - DRINKING FOUNTAINS AND WATER COOLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following drinking fountains and water coolers and related components:
 1. Drinking fountains.
 2. Pressure water coolers.
 4. Fixture supports.

1.3 DEFINITIONS
 A. Accessible Drinking Fountain or Water Cooler: Fixture that can be approached and used by people with disabilities.
 B. Cast Polymer: Dense, cast-filled-polymer plastic.
 C. Drinking Fountain: Fixture with nozzle for delivering stream of water for drinking.
 D. Fitting: Device that controls flow of water into or out of fixture.
 E. Fixture: Drinking fountain or water cooler unless one is specifically indicated.
 F. Remote Water Cooler: Electrically powered equipment for generating cooled drinking water.
 G. Water Cooler: Electrically powered fixture for generating and delivering cooled drinking water.

1.4 SUBMITTALS
 A. Product Data: For each fixture indicated. Include rated capacities, furnished specialties, and accessories.
 B. Shop Drawings: Diagram power, signal, and control wiring.
 C. Field quality-control test reports.
 D. Operation and Maintenance Data: For fixtures to include in emergency, operation, and maintenance manuals.
1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. ASHRAE Standard: Comply with ASHRAE 34, "Designation and Safety Classification of Refrigerants," for water coolers. Provide HFC 134a (tetrafluoroethane) refrigerant, unless otherwise indicated.

1.6 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filter Cartridges: Equal to 5 percent of amount installed for each type and size indicated, but no fewer than 5 of each.

PART 2 - PRODUCTS- REFER TO DRAWINGS

2.1 FIXTURE SUPPORTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Josam Co.
 2. MIFAB Manufacturing, Inc.
 4. Tyler Pipe; Wade Div.
 5. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.

B. Description: ASME A112.6.1M, water cooler carriers. Include vertical, steel uprights with feet and tie rods and bearing plates with mounting studs matching fixture to be supported.
 1. Type I: Hanger-type carrier with two vertical uprights.
 2. Type II: Bilevel, hanger-type carrier with three vertical uprights.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water and waste piping systems to verify actual locations of piping connections before fixture installation. Verify that sizes and locations of piping and types of supports match those indicated.

B. Examine walls and floors for suitable conditions where fixtures are to be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Use carrier off-floor supports for wall-mounting fixtures, unless otherwise indicated.

B. Use mounting frames for recessed water coolers, unless otherwise indicated.

C. Set remote water coolers on floor, unless otherwise indicated.

D. Use chrome-plated brass or copper tube, fittings, and valves in locations exposed to view. Plain copper tube, fittings, and valves may be used in concealed locations.

3.3 INSTALLATION

A. Install off-floor supports affixed to building substrate and attach wall-mounting fixtures, unless otherwise indicated.

B. Install mounting frames affixed to building construction and attach recessed water coolers to mounting frames, unless otherwise indicated.

C. Install fixtures level and plumb. For fixtures indicated for children, install at height required by authorities having jurisdiction.

D. Install water-supply piping with shutoff valve on supply to each fixture to be connected to water distribution piping. Use ball, gate, or globe valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

E. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.

F. Install pipe escutcheons at wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding pipe fittings. Escutcheons are specified in Division 22 Section "Escutcheons for Plumbing Piping."

G. Seal joints between fixtures and walls and floors using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."
3.4 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.5 FIELD QUALITY CONTROL

A. Water Cooler Testing: After electrical circuitry has been energized, test for compliance with requirements. Test and adjust controls and safeties.
 1. Remove and replace malfunctioning units and retest as specified above.
 2. Report test results in writing.

3.6 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.

B. Adjust water cooler temperature settings.

3.7 CLEANING

A. After completing fixture installation, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer’s written instructions.

END OF SECTION 224700
SECTION 23 02 00 - BASIC MATERIALS AND METHODS

PART 1 - GENERAL

1.01 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all Work herein.

B. The Contract Drawings indicate the extent and general arrangement of the systems. If any departure from the Contract Drawings are deemed necessary by the Contractor, details of such departures and the reasons therefore, shall be submitted to the Architect for approval as soon as practicable. No such departures shall be made without the prior written approval of the Architect.

C. Notwithstanding any reference in the Specifications to any article, device, product, material, fixture, form or type of construction by name, make or catalog number, such reference shall not be construed as limiting competition; and the Contractor, in such cases, may at his option use any article, device, product, material, fixture, form or type of construction which in the judgment of the Architect, expressed in writing, is equal to that specified.

1.02 SCOPE OF WORK

A. The Work included under this Contract consists of the furnishing and installation of all equipment and material necessary and required to form the complete and functioning systems in all of its various phases, all as shown on the accompanying Drawings and/or described in these Specifications. The contractor shall review all pertinent drawings, including those of other contracts prior to commencement of Work.

B. This Division requires the furnishing and installing of all items Specified herein, indicated on the Drawings or reasonably inferred as necessary for safe and proper operation; including every article, device or accessory (whether or not specifically called for by item) reasonably necessary to facilitate each system's functioning as indicated by the design and the equipment specified. Elements of the work include, but are not limited to, materials, labor, supervision, transportation, storage, equipment, utilities, all required permits, licenses and inspections. All work performed under this Section shall be in accordance with the Project Manual, Drawings and Specifications and is subject to the terms and conditions of the Contract.

C. The approximate locations of Mechanical (HVAC) items are indicated on the Drawings. These Drawings are not intended to give complete and accurate details in regard to location of outlets, apparatus, etc. Exact locations are to be determined by actual measurements at the building, and will in all cases be subject to the Review of the Owner or Engineer, who reserves the right to make any reasonable changes in the locations indicated without additional cost to the Owner.

D. Items specifically mentioned in the Specifications but not shown on the Drawings and/or items shown on Drawings but not specifically mentioned in the Specifications shall be installed by the Contractor under the appropriate section of work as if they were both specified and shown.

E. All discrepancies between the Contract Documents and actual job-site conditions shall be reported to the Owner or Engineer so that they will be resolved prior to the bidding, where
this cannot be done at least 7 working days prior to bid; the greater or more costly of the discrepancy shall be bid. All labor and materials required to perform the work described shall be included as part of this Contract.

F. It is the intention of this Section of the Specifications to outline minimum requirements to furnish the Owner with a turn-key and fully operating system in cooperation with other trades.

G. It is the intent of the above "Scope" to give the Contractor a general outline of the extent of the Work involved; however, it is not intended to include each and every item required for the Work. Anything omitted from the "Scope" but shown on the Drawings, or specified later, or necessary for a complete and functioning heating, ventilating and air conditioning system shall be considered a part of the overall "Scope".

H. The Contractor shall rough-in fixtures and equipment furnished by others from rough-in and placement drawings furnished by others. The Contractor shall make final connection to fixtures and equipment furnished by others.

1.03 SCHEMATIC NATURE OF CONTRACT DOCUMENTS

A. The contract documents are schematic in nature in that they are only to establish scope and a minimum level of quality. They are not to be used as actual working construction drawings. The actual working construction drawings shall be the approved shop drawings.

B. All duct or pipe or equipment locations as indicated on the documents do not indicate every transition, offset, or exact location. All transitions, offsets clearances and exact locations shall be established by actual field measurements, coordination with the structural, architectural and reflected ceiling plans, and other trades. Submit shop drawings for approval.

C. All transitions, offsets and relocations as required by actual field conditions shall be performed by the contractor at no additional cost to the owner.

D. Additional coordination with electrical contractor may be required to allow adequate clearances of electrical equipment, fixtures and associated appurtenances. Contractor to notify Architect and Engineer of unresolved clearances, conflicts or equipment locations.

1.04 SITE VISIT AND FAMILIARIZATION

A. Before submitting a bid, it will be necessary for each Contractor whose work is involved to visit the site and ascertain for himself the conditions to be met therein in installing his work and make due provision for same in his bid. It will be assumed that this Contractor in submitting his bid has visited the premises and that his bid covers all work necessary to properly install the equipment shown. Failure on the part of the Contractor to comply with this requirement shall not be considered justification for the omission or faulty installation of any work covered by these Specifications and Drawings.

B. Understand the existing utilities from which services will be supplied; verify locations of utility services, and determine requirements for connections.

C. Determine in advance that equipment and materials proposed for installation fit into the confines indicated.
1.05 WORK SPECIFIED IN OTHER SECTIONS

A. Finish painting is specified. Prime and protective painting are included in the work of this Division.

B. Owner and General Contractor furnished equipment shall be properly connected to Mechanical (HVAC) systems.

C. Furnishing and installing all required Mechanical (HVAC) equipment control relays and electrical interlock devices, conduit, wire and J-boxes are included in the Work of this Division.

1.06 PERMITS, TESTS, INSPECTIONS

A. Arrange and pay for all permits, fees, tests, and all inspections as required by governmental authorities.

1.07 DATE OF FINAL ACCEPTANCE

A. The date of final acceptance shall be the date of owner occupancy, or the date all punch list items have been completed or final payment has been received. Refer to Division One for additional requirements.

B. The date of final acceptance shall be documented in writing and signed by the architect, owner and contractor.

1.08 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to the project properly identified with names, model numbers, types, grades, compliance labels, and other information needed for identification.

B. Deliver products to the project at such time as the project is ready to receive the equipment, pipe or duct properly protected from incidental damage and weather damage.

C. Damaged equipment, duct or pipe shall be promptly removed from the site and new, undamaged equipment, pipe and duct shall be installed in its place promptly with no additional charge to the Owner.

1.09 NOISE AND VIBRATION

A. The heating, ventilating and air conditioning systems, and the component parts there of, shall be guaranteed to operate without objectionable noise and vibration.

B. Provide foundations, supports and isolators as specified or indicated, properly adjusted to prevent transmission of vibration to the Building structure, piping and other items.

C. Carefully fabricate ductwork and fittings with smooth interior finish to prevent turbulence and generation or regeneration of noise.

D. All equipment shall be selected to operate with minimum of noise and vibration. If, in the opinion of the Architect, objectionable noise or vibration is produced or transmitted to or through the building structure by equipment, piping, ducts or other parts of the Work, the Contractor shall rectify such conditions without extra cost to the Owner.

1.10 APPLICABLE CODES
A. Obtain all required permits and inspections for all work required by the Contract Documents and pay all required fees in connection thereof.

B. Arrange with the serving utility companies for the connection of all required utilities and pay all charges, meter charges, connection fees and inspection fees, if required.

C. Comply with all applicable codes, specifications, local ordinances, industry standards, utility company regulations and the applicable requirements which includes and is not limited to the following nationally accepted codes and standards:

1. Air Moving & Conditioning Association, AMCA.
2. American Standards Association, ASA.
4. American Society of Mechanical Engineers, ASME.
5. American Society of Plumbing Engineers, ASPE.
6. American Society of Testing Materials, ASTM.
7. American Water Works Association, AWWA.
8. National Bureau of Standards, NBS.
10. Sheet Metal & Air Conditioning Contractors’ National Association, SMACNA.
11. Underwriters’ Laboratories, Inc., UL.

D. Where differences existing between the Contract Documents and applicable state or city building codes, state and local ordinances, industry standards, utility company regulations and the applicable requirements of the listed nationally accepted codes and standards, the more stringent or costly application shall govern. Promptly notify the Engineer in writing of all differences.

E. When directed in writing by the Engineer, remove all work installed that does not comply with the Contract Documents and applicable state or city building codes, state and local ordinances, industry standards, utility company regulations and the applicable requirements of the above listed nationally accepted codes and standards, correct the deficiencies, and complete the work at no additional cost to the Owner.

1.11 DEFINITIONS AND SYMBOLS

A. General Explanation: A substantial amount of construction and Specification language constitutes definitions for terms found in other Contract Documents, including Drawings which must be recognized as diagrammatic and schematic in nature and not completely descriptive of requirements indicated thereon. Certain terms used in Contract Documents are defined generally in this article, unless defined otherwise in Division 1.

B. Definitions and explanations of this Section are not necessarily either complete or exclusive, but are general for work to the extent not stated more explicitly in another provision of the Contract Documents.

C. Indicated: The term “Indicated” is a cross-reference to details, notes or schedules on the Drawings, to other paragraphs or schedules in the Specifications and to similar means of recording requirements in Contract Documents. Where such terms as “Shown”, “Noted”,...
"Scheduled", "Specified" and "Detailed" are used in lieu of "Indicated", it is for the purpose of helping the reader locate cross-reference material, and no limitation of location is intended except as specifically shown.

D. Directed: Where not otherwise explained, terms such as "Directed", "Requested", "Accepted", and "Permitted" mean by the Architect or Engineer. However, no such implied meaning will be interpreted to extend the Architect's or Engineer's responsibility into the Contractor's area of construction supervision.

E. Reviewed: Where used in conjunction with the Engineer's response to submittals, requests for information, applications, inquiries, reports and claims by the Contractor the meaning of the term "Reviewed" will be held to limitations of Architect's and Engineer's responsibilities and duties as specified in the General and Supplemental Conditions. In no case will "Reviewed" by Engineer be interpreted as a release of the Contractor from responsibility to fulfill the terms and requirements of the Contract Documents.

F. Furnish: Except as otherwise defined in greater detail, the term "Furnish" is used to mean supply and deliver to the project site, ready for unloading, unpacking, assembly, installation, etc., as applicable in each instance.

G. Install: Except as otherwise defined in greater detail, the term "Install" is used to describe operations at the project site including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protection, cleaning and similar operations, as applicable in each instance.

H. Provide: Except as otherwise defined in greater detail, the term "Provide" is used to mean "Furnish and Install", complete and ready for intended use, as applicable in each instance.

I. Installer: Entity (person or firm) engaged by the Contractor or its subcontractor or Sub-contractor for performance of a particular unit of work at the project site, including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protection, cleaning and similar operations, as applicable in each instance. It is a general requirement that such entities (Installers) be expert in the operations they are engaged to perform.

J. Imperative Language: Used generally in Specifications. Except as otherwise indicated, requirements expressed imperatively are to be performed by the Contractor. For clarity of reading at certain locations, contrasting subjective language is used to describe responsibilities that must be fulfilled indirectly by the Contractor, or when so noted by other identified installers or entities.

K. Minimum Quality/Quantity: In every instance, the quality level or quantity shown or specified is intended as minimum quality level or quantity of work to be performed or provided. Except as otherwise specifically indicated, the actual work may either comply exactly with that minimum (within specified tolerances), or may exceed that minimum within reasonable tolerance limits. In complying with requirements, indicated or scheduled numeric values are either minimums or maximums as noted or as appropriate for the context of the requirements. Refer instances of uncertainty to Owner or Engineer via a request for information (RFI) for decision before proceeding.

L. Abbreviations and Symbols: The language of Specifications and other Contract Documents including Drawings is of an abbreviated type in certain instances, and implies words and meanings which will be appropriately interpreted. Actual word abbreviations of
a self-explanatory nature have been included in text of Specifications and Drawings. Specific abbreviations and symbols have been established, principally for lengthy technical terminology and primarily in conjunction with coordination of Specification requirements with notations on Drawings and in Schedules. These are frequently defined in Section at first instance of use or on a Legend and Symbol Drawing. Trade and industry association names and titles of generally recognized industry standards are frequently abbreviated. Singular words will be interpreted as plural and plural words will be interpreted as singular where applicable and where full context of Contract Documents so indicate. Except as otherwise indicated, graphic symbols and abbreviations used on Drawings and in Specifications are those recognized in construction industry for indicated purposes. Where not otherwise noted symbols and abbreviations are defined by 1993 ASHRAE Fundamentals Handbook, chapter 34 "Abbreviations and Symbols", ASME and ASPE published standards.

1.12 DRAWINGS AND SPECIFICATIONS

A. These Specifications are intended to supplement the Drawings and it will not be the province of the Specifications to mention any part of the work which the Drawings are competent to fully explain in every particular and such omission is not to relieve the Contractor from carrying out portions indicated on the Drawings only.

B. Should items be required by these Specifications and not indicated on the Drawings, they are to be supplied even if of such nature that they could have been indicated thereon. In case of disagreement between Drawings and Specifications, or within either Drawings or Specifications, the better quality or greater quantity of work shall be estimated and the matter referred to the Architect or Engineer for review with a request for information and clarification at least 7 working days prior to bid opening date for issuance of an addendum.

C. The listing of product manufacturers, materials and methods in the various sections of the Specifications, and indicated on the Drawings, is intended to establish a standard of quality only. It is not the intention of the Owner or Engineer to discriminate against any product, material or method that is equal to the standards as indicated and/or specified, nor is it intended to preclude open, competitive bidding. The fact that a specific manufacturer is listed as an acceptable manufacturer should not be interpreted to mean that the manufacturers' standard product will meet the requirements of the project design, Drawings, Specifications and space constraints.

D. The Architect or Engineer and Owner shall be the sole judge of quality and equivalence of equipment, materials and methods.

E. Products by other reliable manufacturers, other materials, and other methods, will be accepted as outlined, provided they have equal capacity, construction, and performance. However, under no circumstances shall any substitution by made without the written permission of the Architect or Engineer and Owner. Request for prior approval must be made in writing 10 days prior to the bid date without fail.

F. Wherever a definite product, material or method is specified and there is not a statement that another product, material or method will be acceptable, it is the intention of the Owner or Engineer that the specified product, material or method is the only one that shall be used without prior approval.

G. Wherever a definite material or manufacturer's product is specified and the Specification states that products of similar design and equal construction from the specified list of
manufacturers may be substituted, it is the intention of the Owner or Engineer that products of manufacturers that are specified are the only products that will be acceptable and that products of other manufacturers will not be considered for substitution without approval.

H. Wherever a definite product, material or method is specified and there is a statement that "OR EQUAL" product, material or method will be acceptable, it is the intention of the Owner or Engineer that the specified product, material or method or an "OR EQUAL" product, material or method may be used if it complies with the specifications and is submitted for review to the Engineer as outline herein.

I. Where permission to use substituted or alternative equipment on the project is granted by the Owner or Engineer in writing, it shall be the responsibility of the Contractor or Subcontractor involved to verify that the equipment will fit in the space available which includes allowances for all required Code and maintenance clearances, and to coordinate all equipment structural support, plumbing and electrical requirements and provisions with the Mechanical (HVAC) Design Documents and all other trades, including Division 26.

J. Changes in architectural, structural, electrical, mechanical, and plumbing requirements for the substitution shall be the responsibility of the bidder wishing to make the substitution. This shall include the cost of redesign by the affected designer(s). Any additional cost incurred by affected subcontractors shall be the responsibility of this bidder and not the owner.

K. If any request for a substitution of product, material or method is rejected, the Contractor will automatically be required to furnish the product, material or method named in the Specifications. Repetitive requests for substitutions will not be considered.

L. The Owner or Engineer will investigate all requests for substitutions when submitted in accordance with above and if accepted, will issue a letter allowing the substitutions.

M. Where equipment other than that used in the design as specified or shown on the Drawings is substituted (either from an approved manufacturers list or by submittal review), it shall be the responsibility of the substituting Contractor to coordinate space requirements, building provisions and connection requirements with his trades and all other trades and pay all additional costs to other trades, the Owner, the Architect or Engineer, if any, due to the substitutions.

1.13 SUBMITTALS

A. Coordinate with Division 1 for submittal timetable requirements, unless noted otherwise within thirty (30) days after the Contract is awarded the Contractor shall submit a minimum of eight (8) complete bound sets of shop drawings and complete data covering each item of equipment or material. The first submittal of each item requiring a submittal must be received by the Architect or Engineer within the above thirty day period. The Architect or Engineer shall not be responsible for any delays or costs incurred due to excessive shop drawing review time for submittals received after the thirty (30) day time limit. The Architect and Engineer will retain one (1) copy each of all shop drawings for their files. Where full size drawings are involved, submit one (1) print and one (1) reproducible sepia or mylar in lieu of eight (8) sets. All literature pertaining to an item subject to Shop Drawing submittal shall be submitted at one time. A submittal shall not contain information from more than one Specification section, but may have a section subdivided into items or equipment as listed in each section. The Contractor may elect to submit each item or type of equipment separately. Each submittal shall include the following items enclosed in a suitable binder:
1. A cover sheet with the names and addresses of the Project, Architect, MEP Engineer, General Contractor and the Subcontractor making the submittal. The cover sheet shall also contain the section number covering the item or items submitted and the item nomenclature or description.

2. An index page with a listing of all data included in the Submittal.

3. A list of variations page with a listing all variations, including unfurnished or additional required accessories, items or other features, between the submitted equipment and the specified equipment. If there are no variations, then this page shall state “NO VARIATIONS”. Where variations affect the work of other Contractors, then the Contractor shall certify on this page that these variations have been fully coordinated with the affected Contractors and that all expenses associated with the variations will be paid by the submitting Contractor. This page will be signed by the submitting Contractor.

4. Equipment information including manufacturer’s name and designation, size, performance and capacity data as applicable. All applicable Listings, Labels, Approvals and Standards shall be clearly indicated.

5. Dimensional data and scaled drawings as applicable to show that the submitted equipment will fit the space available with all required Code and maintenance clearances clearly indicated and labeled at a minimum scale of 1/4" = 1'-0", as required to demonstrate that the alternate or substituted product will fit in the space available.

6. Identification of each item of material or equipment matching that indicated on the Drawings.

7. Sufficient pictorial, descriptive and diagrammatic data on each item to show its conformance with the Drawings and Specifications. Any options or special requirements or accessories shall be so indicated. All applicable information shall be clearly indicated with arrows or another approved method.

8. Additional information as required in other Sections of this Division.

9. Certification by the General Contractor and Subcontractor that the material submitted is in accordance with the Drawings and Specifications, signed and dated in long hand. Submittals that do not comply with the above requirements shall be returned to the Contractor and shall be marked "REVISE AND RESUBMIT".

B. Refer to Division 1 for additional information on shop drawings and submittals.

C. Equipment and materials submittals and shop drawings will be reviewed for compliance with design concept only. It will be assumed that the submitting Contractor has verified that all items submitted can be installed in the space allotted. Review of shop drawings and submittals shall not be considered as a verification or guarantee of measurements or building conditions.

D. Where shop drawings and submittals are marked "REVIEWED", the review of the submittal does not indicate that submittals have been checked in detail nor does it in any way relieve the Contractor from his responsibility to furnish material and perform work as required by the Contract Documents.

E. Shop drawings shall be reviewed and returned to the Contractor with one of the following categories indicated:

1. REVIEWED: Contractor need take no further submittal action, shall include this submittal in the O&M manual and may order the equipment submitted on.
2. REVIEWED AS NOTED: Contractor shall submit a letter verifying that required exceptions to the submittal have been received and complied with including additional accessories or coordination action as noted, and shall include this submittal and compliance letter in the O&M manual. The contractor may order the equipment submitted on at the time of the returned submittal providing the Contractor complies with the exceptions noted.

3. NOT APPROVED: Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is not approved, the Contractor will automatically be required to furnish the product, material or method named in the Specifications and/or drawings. Contractor shall not order equipment that is not approved. Repetitive requests for substitutions will not be considered.

4. REVISE AND RESUBMIT: Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is marked revise and resubmit, the Contractor will automatically be required to furnish the product, material or method named in the Specifications and/or provide as noted on previous shop drawings. Contractor shall not order equipment marked revise and resubmit. Repetitive requests for substitutions will not be considered.

5. CONTRACTOR’S CERTIFICATION REQUIRED: Contractor shall resubmit submittal on material, equipment or method of installation. The Contractor’s stamp is required stating the submittal meets all conditions of the contract documents. The stamp shall be signed by the General Contractor. The submittal will not be reviewed if the stamp is not placed and signed on all shop drawings.

6. MANUFACTURER NOT AS SPECIFIED: Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is marked manufacturer not as specified, the Contractor will automatically be required to furnish the product, material or method named in the specifications. Contractor shall not order equipment where submittal is marked manufacturer not as specified. Repetitive requests for substitutions will not be considered.

F. Materials and equipment which are purchased or installed without shop drawing review shall be at the risk of the Contractor and the cost for removal and replacement of such materials and equipment and related work which is judged unsatisfactory by the Owner or Engineer for any reason shall be at the expense of the Contractor. The responsible Contractor shall remove the material and equipment noted above and replace with specified equipment or material at his own expense when directed in writing by the Architect or Engineer.

G. Shop Drawing Submittals shall be complete and checked prior to submission to the Engineer for review.

H. Submittals are required for, but not limited to, the following items:

1. Pipe Material and Specialties.
2. Pipe Fabrication Drawings.
4. Variable Air Volume Boxes.
5. Air Handling Units.
6. Chillers.
7. Water Treatment.
8. Expansion Compensation.
11. HVAC Pipe and Duct Insulation.
13. Hydronic Piping and Accessories.
15. Portable Pipe Hanger and Equipment Supports.
17. Duct Fabrication Drawings.
19. Fan Coil Units.
20. Filters.
22. Fire Dampers and Fire Smoke Dampers.
23. Temperature Controls and Control Sequences.
24. Test, Adjust and Balance Reports.
25. Testing, Adjusting and Balancing Contractor Qualifications.
26. Coordination Drawings.

I. Refer to other Division 23 sections for additional shop drawing requirements. Provide samples of actual materials and/or equipment to be used on the Project upon request of the Owner or Engineer.

1.4 COORDINATION DRAWINGS

A. Prepare coordination drawings to a scale of 1/4"=1'-0" or larger; detailing major elements, components, and systems of mechanical equipment and materials in relationship with other systems, installations, and building components. Indicate locations where space is limited for installation and access and where sequencing and coordination of installations are of importance to the efficient flow of the Work, including (but not necessarily limited to) the following:

1. Indicate the proposed locations of pipe, duct, equipment, and other materials. Include the following:
 a. Wall and type locations.
 b. Clearances for installing and maintaining insulation.
 c. Locations of light fixtures and sprinkler heads.
 d. Clearances for servicing and maintaining equipment, including tube removal, filter removal, and space for equipment disassembly required for periodic maintenance.
 e. Equipment connections and support details.
 f. Exterior wall and foundation penetrations.
 g. Routing of storm and sanitary sewer piping.
 h. Fire-rated wall and floor penetrations.
 i. Sizes and location of required concrete pads and bases.
 j. Valve stem movement.
 k. Structural floor, wall and roof opening sizes and details.

2. Indicate scheduling, sequencing, movement, and positioning of large equipment into the building during construction.

3. Prepare floor plans, elevations, and details to indicate penetrations in floors, walls, and ceilings and their relationship to other penetrations and installations.

4. Prepare reflected ceiling plans to coordinate and integrate installations, air distribution devices, light fixtures, communication systems components, and other ceiling-mounted items.
B. This Contractor shall be responsible for coordination of all items that will affect the installation of the work of this Division. This coordination shall include, but not be limited to: voltage, ampacity, capacity, electrical and piping connections, space requirements, sequence of construction, building requirements and special conditions.

C. By submitting shop drawings on the project, this Contractor is indicating that all necessary coordination has been completed and that the systems, products and equipment submitted can be installed in the building and will operate as specified and intended, in full coordination with all other Contractors and Subcontractors.

1.15 RECORD DOCUMENTS

A. Prepare record documents in accordance with the requirements in Special Project Requirements, in addition to the requirements specified in Division 23, indicate the following installed conditions:

1. Duct mains and branches, size and location, for both exterior and interior; locations of dampers, fire dampers, duct access panels, and other control devices; filters, fuel fired heaters, fan coils, condensing units, and roof-top A/C units requiring periodic maintenance or repair.

2. Mains and branches of piping systems, with valves and control devices located and numbered, concealed unions located, and with items requiring maintenance located (i.e., traps, strainers, expansion compensators, tanks, etc.). Valve location diagrams, complete with valve tag chart. Indicate actual inverts and horizontal locations of underground piping.

3. Equipment locations (exposed and concealed), dimensioned from prominent building lines.

5. Contract Modifications, actual equipment and materials installed.

B. Engage the services of a Land Surveyor or Professional Engineer registered in the state in which the project is located as specified herein to record the locations and invert elevations of underground installations.

C. The Contractor shall maintain a set of clearly marked black line record "AS-BUILT" prints on the job site on which he shall mark all work details, alterations to meet site conditions and changes made by "Change Order" notices. These shall be kept available for inspection by the Owner, Architect or Engineer at all times.

D. Refer to Division 1 for additional requirements concerning record drawings. If the Contractor does not keep an accurate set of as-built drawings, the pay request may be altered or delayed at the request of the Architect. Mark the drawings with a colored pencil. Delivery of as-built prints and reproducibles is a condition of final acceptance.

E. The record prints shall be updated on a daily basis and shall indicate accurate dimensions for all buried or concealed work, precise locations of all concealed pipe or duct, locations of all concealed valves, controls and devices and any deviations from the work shown on the Construction Documents which are required for coordination. All dimensions shall include at least two dimensions to permanent structure points.

F. Submit three prints of the tracings for approval. Make corrections to tracings as directed and delivered "Auto Positive Tracings" to the architect. "As-Built" drawings shall be furnished in addition to shop drawings.
G. When the option described in paragraph F., above is not exercised then upon completion of the work, the Contractor shall transfer all marks from the submit a set of clear concise set of reproducible record "AS-BUILT" drawings and shall submit the reproducible drawings with corrections made by a competent draftsman and three (3) sets of black line prints to the Architect or Engineer for review prior to scheduling the final inspection at the completion of the work. The reproducible record "AS-BUILT" drawings shall have the Engineers Name and Seal removed or blanked out and shall be clearly marked and signed on each sheet as follows:

CERTIFIED RECORD DRAWINGS

DATE:

(NAME OF GENERAL CONTRACTOR)

BY:_______________________________
(SIGNATURE)

(NAME OF SUBCONTRACTOR)

BY:_______________________________
(SIGNATURE)

1.16 OPERATING MANUALS

A. Prepare maintenance manuals in accordance with Division 1 and in addition to the requirements specified in Division 1, include the following information for equipment items:

1. Description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of replacement parts.

2. Manufacturer’s printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.

3. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.

4. Servicing instructions and lubrication charts and schedules.
1.17 CERTIFICATIONS AND TEST REPORTS

A. Submit a detailed schedule for completion and testing of each system indicating scheduled dates for completion of system installation and outlining tests to be performed and schedule date for each test. This detailed completion and test schedule shall be submittal at least 90 days before the projected Project completion date.

B. Test result reporting forms shall be submitted for review no later than the date of the detailed schedule submitted.

C. Submit 4 copies of all certifications and test reports to the Architect or Engineer for review adequately in advance of completion of the Work to allow for remedial action as required to correct deficiencies discovered in equipment and systems.

D. Certifications and test reports to be submitted shall include, but not be limited to those items outlined in Section of Division 23.

1.18 MAINTENANCE MANUALS

A. Coordinate with Division 1 for maintenance manual requirements, unless noted otherwise bind together in “D ring type” binders by National model no. 79-883 or equal, binders shall be large enough to allow ¼” of spare capacity. Three (3) sets of all approved shop drawing submittals, fabrication drawings, bulletins, maintenance instructions, operating instructions and parts exploded views and lists for each and every piece of equipment furnished under this Specification. All sections shall be typed and indexed into sections and labeled for easy reference and shall utilize the individual specification section numbers shown in the Mechanical Specifications as an organization guideline. Bulletins containing information about equipment that is not installed on the project shall be properly marked up or stripped and reassembled. All pertinent information required by the Owner for proper operation and maintenance of equipment supplied by Division 23 shall be clearly and legibly set forth in memoranda that shall, likewise, be bound with bulletins.

B. Prepare maintenance manuals in accordance with Special Project Conditions, in addition to the requirements specified in Division 23, include the following information for equipment items:

1. Identifying names, name tags designations and locations for all equipment.
2. Valve tag lists with valve number, type, color coding, location and function.
3. Reviewed shop drawing submittals with exceptions noted compliance letter.
4. Fabrication drawings.
5. Equipment and device bulletins and data sheets clearly highlighted to show equipment installed on the project and including performance curves and data as applicable, i.e., description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and model numbers of replacement parts.
6. Manufacturer’s printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.
7. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions, servicing instructions and lubrication charts and schedules.
8. Equipment and motor name plate data.
10. Exploded parts views and parts lists for all equipment and devices.
11. Color coding charts for all painted equipment and conduit.
12. Location and listing of all spare parts and special keys and tools furnished to the
Owner.
13. Furnish recommended lubrication schedule for all required lubrication points with
listing of type and approximate amount of lubricant required.

C. Refer to Division 1 for additional information on Operating and Maintenance Manuals.

D. Operating and Maintenance Manuals shall be turned over to the Owner or Engineer a
minimum of 14 working days prior to the beginning of the operator training period.

1.19 OPERATOR TRAINING

A. The Contractor shall furnish the services of factory trained specialists to instruct the
Owner's operating personnel. The Owner's operator training shall include 12 hours of on
site training in three 4 hour shifts.

B. Before proceeding with the instruction of Owner Personnel, prepare a typed outline in
triplicate, listing the subjects that will be covered in this instruction, and submit the
outline for review by the Owner. At the conclusion of the instruction period obtain the signature of
each person being instructed on each copy of the reviewed outline to signify that he has a
proper understanding of the operation and maintenance of the systems and resubmit the
signed outlines.

C. Refer to other Division 23 Sections for additional Operator Training requirements.

1.20 FINAL COMPLETION

A. At the completion of the work, all equipment and systems shall be tested and faulty
equipment and material shall be repaired or replaced. Refer to Sections of Division 23 for
additional requirements.

B. Clean and adjust all air distribution devices and replace all air filters immediately prior to
final acceptance.

C. Touch up and/or refinish all scratched equipment and devices immediately prior to final
acceptance.

1.21 CONTRACTOR'S GUARANTEE

A. Use of the HVAC systems to provide temporary service during construction period will not
be allowed without permission from the Owner in writing and if granted shall not be cause
warranty period to start, except as defined below.

B. Contractor shall guarantee to keep the entire installation in repair and perfect working
order for a period of one year after its completion and final acceptance, and shall furnish
free of additional cost to the Owner all materials and labor necessary to comply with the
above guarantee throughout the year beginning from the date of issue of Substantial
Completion, Beneficial Occupancy by the Owner or the Certificate of Final Payment as
agreed upon by all parties.
C. This guarantee shall not include cleaning or changing filters except as required by testing, adjusting and balancing.

D. All air conditioning compressors shall have parts and labor guarantees for a period of not less than 5 years beyond the date of final acceptance.

E. Refer to Sections in Division 23 for additional guarantee or warranty requirements.

1.22 TRANSFER OF ELECTRONIC FILES

A. Project documents are not intended or represented to be suitable for reuse by Architect/Owner or others on extensions of this project or on any other project. Any such reuse or modification without written verification or adaptation by Engineer, as appropriate for the specific purpose intended, will be at Architect/Owner’s risk and without liability or legal exposure to Engineer or its consultants from all claims, damages, losses and expense, including attorney’s fees arising out of or resulting thereof.

B. Because data stored in electric media format can deteriorate or be modified inadvertently, or otherwise without authorization of the data’s creator, the party receiving the electronic files agrees that it will perform acceptance tests or procedures within sixty (60) days of receipt, after which time the receiving party shall be deemed to have accepted the data thus transferred to be acceptable. Any errors detected within the sixty (60) day acceptance period will be corrected by the party delivering the electronic files. Engineer is not responsible for maintaining documents stored in electronic media format after acceptance by the Architect/Owner.

C. When transferring documents in electronic media format, Engineer makes no representations as to the long term compatibility, usability or readability of documents resulting from the use of software application packages, operating systems, or computer hardware differing from those used by Engineer at the beginning of the Project.

D. Any reuse or modifications will be Contractor’s sole risk and without liability or legal exposure to Architect, Engineer or any consultant.

E. The Texas Board of Architectural Examiners (TBAE) has stated that it is in violation of Texas law for persons other than the Architect of record to revise the Architectural drawings without the Architect’s written consent.

It is agreed that “MEP” hard copy or computer-generated documents will not be issued to any other party except directly to the Architect/Owner. The contract documents are contractually copyrighted and cannot be used for any other project or purpose except as specifically indicated in AIA B-141 Standard Form of Agreement Between Architect and Owner.

If the client, Architect/Owner, or developer of the project requires electronic media for “record purposes”, then an AutoCAD based compact disc (“CD”) will be prepared. The “CD” will be submitted with all title block references intact and will be formatted in a “plot” format to permit the end user to only view and plot the drawings. Revisions will not be permitted in this configuration.

F. At the Architect/Owner’s request, Engineer will prepare one “CD” of electronic media to assist the contractor in the preparation of submittals. The Engineer will prepare and submit the “CD” to the Architect/Owner for distribution to the contractor. All copies of the “CD” will be reproduced for a cost of reproduction fee of Five Hundred Dollars ($500.00) per “CD”.

The “CD” will be prepared and all title blocks, names and dates will be removed. The “CD” will be prepared in a “.dwg” format to permit the end user to revise the drawings.

G. This Five Hundred Dollars ($500.00) per “CD” cost of reproduction will be paid directly from the Contractor to the Engineer. The “CD” will be prepared only after receipt of the Five Hundred Dollars ($500.00). The Five Hundred Dollars ($500.00) per “CD” cost of reproduction is to only recover the cost of the manhours necessary to reproduce the documents. It is not a contractual agreement between the Contractor and Engineer to provide any engineering services, nor any other service.
PART 2 - PRODUCTS

2.01 MATERIALS

A. Provide materials and equipment manufactured by a domestic United States manufacturer.

B. Access Doors: Provide access doors as required for access to equipment, valves, controls, cleanouts and other apparatus where concealed. Access doors shall have concealed hinges and screw driver cam locks.

C. All access panels located in wet areas such as restrooms, locker rooms, shower rooms, kitchen and any other wet areas shall be constructed of stainless steel.

D. Access Doors: shall be as follows:

1. Plastic Surfaces: Milcor Style K.
2. Ceramic Tile Surface: Milcor Style M.
3. Drywall Surfaces: Milcor Style DW.
4. Install panels only in locations approved by the Architect.

PART 3 - EXECUTION

3.01 ROUGH-IN

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected via reviewed submittals.

B. Refer to equipment specifications in Divisions 2 through 48 for additional rough-in requirements.

3.02 MECHANICAL INSTALLATIONS

A. General: Sequence, coordinate, and integrate the various elements of mechanical systems, materials, and equipment. Comply with the following requirements:

1. Coordinate mechanical systems, equipment, and materials installation with other building components.
2. Verify all dimensions by field measurements.
3. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for mechanical installations.
4. Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
5. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the Work. Give particular attention to large equipment requiring positioning prior to closing in the building.
6. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible.
7. Coordinate connection of mechanical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies. Provide required connection for each service.
8. Install systems, materials, and equipment to conform with architectural action markings on submittal, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, resolve conflicts and route proposed solution to the Architect for review.

9. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed exposed in finished spaces.

10. Install mechanical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations. Extend grease fittings to an accessible location and label.

11. Install access panel or doors where units are concealed behind finished surfaces. Access panels and doors are specified.

12. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.

14. The equipment to be furnished under this Specification shall be essentially the standard product of the manufacturer. Where two or more units of the same class of equipment are required, these units shall be products of a single manufacturer; however, the component parts of the system need not be the product of the same manufacturer.

15. The architectural and structural features of the building and the space limitations shall be considered in selection of all equipment. No equipment shall be furnished which will not suit the arrangement and space limitations indicated.

16. Lubrication: Prior to start-up, check and properly lubricate all bearings as recommended by the manufacturer.

17. Where the word "Concealed" is used in these Specifications in connection with insulating, painting, piping, ducts, etc., it shall be understood to mean hidden from sight as in chases, furred spaces or suspended ceilings. "Exposed" shall be understood to mean the opposite of concealed.

18. Identification of Mechanical Equipment:
 a. Mechanical equipment shall be identified by means of nameplates permanently attached to the equipment. Nameplates shall be engraved laminated plastic or etched metal. Shop drawings shall include dimensions and lettering format for approval. Attachments shall be with escutcheon pins, self-tapping screws, or machine screws.
 b. Tags shall be attached to all valves, including control valves, with nonferrous chain. Tags shall be brass and at least 1-1/2 inches in diameter. Nameplate and tag symbols shall correspond to the identification symbols on the temperature control submittal and the "as-built" drawings.

3.03 CUTTING AND PATCHING

A. Protection of Installed Work: During cutting and patching operations, protect adjacent installations.

B. Perform cutting, fitting, and patching of mechanical equipment and materials required to:
 1. Uncover Work to provide for installation of ill-timed Work.
2. Remove and replace defective Work.
3. Remove and replace Work not conforming to requirements of the Contract Documents.
4. Remove samples of installed Work as specified for testing.
5. Install equipment and materials in existing structures.
6. Upon written instructions from the Engineer, uncover and restore Work to provide for Engineer/Owner's observation of concealed Work, without additional cost to the Owner.
7. Patch existing finished surfaces and building components using new materials matching existing materials and experienced Installers. Patch finished surfaces and building components using new materials specified for the original installation and experienced Installers; refer to the materials and methods required for the surface and building components being patched; Refer to Section "DEFINITIONS" for definition of "Installer."

C. Cut, remove and legally dispose of selected mechanical equipment, components, and materials as indicated, including but not limited to removal of mechanical piping, mechanical ducts and HVAC units, and other mechanical items made obsolete by the new Work.

D. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.

E. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.

3.04 WORK SEQUENCE, TIMING, COORDINATION WITH OWNER

A. The Owner will cooperate with the Contractor, however, the following provisions must be observed:

1. A meeting will be held at the project site, prior to any construction, between the Owner's Representative, the General Contractor, the Sub-Contractors and the Engineer to discuss Contractor's employee parking space, access, storage of equipment or materials, and use of the Owner's facilities or utilities. The Owner's decisions regarding such matters shall be final.

2. During the construction of this project, normal facility activities will continue in existing buildings until renovated areas are completed. Plumbing, fire protection, lighting, electrical, communications, heating, air conditioning, and ventilation systems will have to be maintained in service within the occupied spaces of the existing building.

3.05 DEMOLITION AND WORK WITHIN EXISTING BUILDINGS

A. In the preparation of these documents every effort has been made to show the approximate locations of, and connections to the existing piping, duct, equipment and other apparatus related to this phase of the work. However, this Contractor shall be responsible for verifying all of the above information. This Contractor shall visit the existing site to inspect the facilities and related areas. This Contractor shall inspect and verify all details and requirements of all the Contract Documents, prior to the submission of a proposal. All discrepancies between the Contract Documents and actual job-site conditions shall be resolved by his contractor, who shall produce drawings that shall be
submitted to the Architect/Engineer for review. All labor and materials required to perform the work described shall be apart of this Contract.

B. All equipment and/or systems noted on the Drawings "To Remain" shall be inspected and tested on site to certify its working condition. A written report on the condition of all equipment to remain, including a copy of the test results and recommended remedial actions and costs shall be made by this Contractor to the Architect/Engineer for review.

C. All equipment and/or systems noted on the Drawings "To Be Removed" shall be removed including, associated pipe and duct pipe and duct hangers and/or line supports. Where duct or pipe is to be capped for future or end of line use, it shall be properly tagged with its function or service appropriately identified. Where existing equipment is to be removed or relocated and has an electric motor or connection, the Electrical Contractor shall disconnect motor or connection, remove wiring to a safe point and this Contractor shall remove or relocate motor or connection along with the equipment.

D. During the construction and remodeling, portions of the Project shall remain in service. Construction equipment, material tools, extension cords, etc., shall be arranged so as to present minimum hazard or interruption to the occupants of the building. None of the construction work shall interfere with the proper operation of the existing facility or be so conducted as to cause harm or danger to persons on the premises. All fire exits, stairs or corridors required for proper access, circulation or exit shall remain clear of equipment, materials or debris. The General Contractor shall maintain barricades, other separations in corridors and other spaces where work is conducted.

E. Certain work during the demolition phase of construction may require overtime or night time shifts or temporary evacuation of the occupants. Coordinate and schedule all proposed down time at least seventy-two (72) hours in advance in writing.

F. Any salvageable equipment as determined by the Owner, shall be delivered to the Owner, and placed in storage at the location of his choice. All other debris shall be removed from the site immediately.

G. Equipment, piping or other potential hazards to the working occupants of the building shall not be left overnight outside of the designated working or construction area.

H. Make every effort to minimize damage to the existing building and the owner’s property. Repair, patch or replace as required any damage that might occur as a result of work at the site. Care shall be taken to minimize interference with the Owner’s activities during construction and to keep construction disrupted areas to a minimum. Cooperate with the Owner and other trades in scheduling and performance of the work.

I. Include in the contract price all rerouting of existing pipe, duct, etc., and the reconnecting of the existing equipment as necessitated by field conditions to allow the installation of the new systems regardless of whether or not such rerouting, reconnecting or relocating is shown on the drawings. Furnish all temporary pipe, duct, controls, etc., as required to maintain heating, cooling, and ventilation services for the existing areas with a minimum of interruption.

J. All existing pipe, duct, materials, equipment, controls and appurtenances not included in the remodel or alteration areas are to remain in place.

K. Pipe, duct, equipment and controls serving mechanical and owner’s equipment, etc., which is to remain but which is served by pipe, duct, equipment and controls that are
disturbed by the remodeling work, shall be reconnected in such a manner as to leave this equipment in proper operating condition.

L. It is the intention of this Section of the Specifications to outline minimum requirements to furnish the Owner with a turn-key and operating system in cooperation with other trades with a minimum of disruption or downtime.

M. Refer to Architectural "Demolition and/or Alteration" plans for actual location of walls, ceiling, etc., being removed and/or remodeled.

END OF SECTION 230200
SECTION 23 05 13 – COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.01 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. The Basic Materials and Methods, Section 23 02 00, are included as a part of this Section as though written in full in this document.

1.02 SCOPE

A. Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for owner’s use.

B. WORK SPECIFIED ELSEWHERE:
 1. Painting
 2. Automatic temperature controls.
 3. Power control wiring to motors and equipment.

1.03 WARRANTY

Warrant the Work specified herein for one year and motors for five years beginning on the date of substantial completion against becoming unserviceable or causing an objectionable appearance resulting from either defective or nonconforming materials and workmanship.

1.04 SUBMITTALS

A. SHOP DRAWINGS: Indicate size material, and finish. Show locations and installation procedures. Include details of joints, attachments, and clearances.

B. PRODUCT DATA: Submit schedules, charts, literature, and illustrations to indicate the performance, fabrication procedures variations, and accessories.

C. MOTOR NAMEPLATE INFORMATION: Manufacturer's name, address, utility and operating data.

D. Refer to Division One for additional information.

1.05 DELIVERY AND STORAGE

A. DELIVERY: Deliver clearly labeled, undamaged materials in the manufacturers’ unopened containers.

B. TIME AND COORDINATION: Deliver materials to allow for minimum storage time at the project site. Coordinate delivery with the scheduled time of installation.

C. STORAGE: Store materials in a clean, dry location, protected from weather and abuse.

PART 2 - PRODUCTS
2.01 ELECTRIC MOTORS

A. APPROVED MANUFACTURERS: Provide motors by a single manufacturer as much as possible.
 1. Baldor
 2. Marathon
 3. Siemens-Allis
 4. General Electric
 5. U.S. Motor

B. TEMPERATURE RATING: Provide insulation as follows:
 1. CLASS B: 40 degrees C maximum.
 2. CLASS F:
 a. Between 40 degrees C and 65 degrees C maximum.
 b. Totally enclosed motors.

C. STARTING CAPABILITY: As required for service indicated five starts minimum per hour.

D. PHASES AND CURRENT: Verify electrical service compatibility with motors to be used.
 1. UP TO 1/2 HP: Provide permanent split, capacitor-start single phase with inherent overload protection.
 2. 3/4 HP AND LARGER: Provide squirrel-cage induction polyphone.
 3. Provide two separate windings on 2-speed polyphone motors.
 4. Name plate voltage shall be the same as the circuit's normal voltage, serving the motor.

E. SERVICE FACTOR: 1.15 for polyphase; 1.35 for single phase.

F. FRAMES: U-frames 1.5 hp. and larger.

G. BEARINGS: Provide sealed re-greaseable ball bearings; with top mounted zerc lubrication fittings and bottom side drains minimum average life 100,000 hours typically, and others as follows:
 1. Design for thrust where applicable.
 2. PERMANENTLY SEALED: Where not accessible for greasing.
 3. SLEEVE-TYPE WITH OIL CUPS: Light duty fractional hp. motors or polyphase requiring minimum noise level.

H. ENCLOSURE TYPE: Provide enclosures as follows:
 1. CONCEALED INDOOR: Open drip proof.
 2. EXPOSED INDOOR: Guarded.
 3. OUTDOOR TYPICAL: Type II. TEC.
 4. OUTDOOR WEATHER PROTECTED: Type I. TEA.

I. OVERLOAD PROTECTION: Built-in sensing device for stopping motor in all phase legs and signaling where indicated for fractional horse power motors.

J. NOISE RATING: “Quiet” except where otherwise indicated.

K. EFFICIENCY: Minimum full load efficiency listed in the following table, when tested in accordance with IEEE Test Procedure 112A, Method B, including stray load loss measure.
NEMA Efficiency
Motor Horsepower

INDEX Letter Minimum Efficiency

1800 RPM Synchronous Speed

<table>
<thead>
<tr>
<th>Horsepower</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5-10</td>
<td>F 89.5</td>
</tr>
<tr>
<td>15-20</td>
<td>E 91.0</td>
</tr>
<tr>
<td>25-30</td>
<td>E 92.4</td>
</tr>
<tr>
<td>40</td>
<td>D 93.0</td>
</tr>
<tr>
<td>50</td>
<td>C 93.0</td>
</tr>
<tr>
<td>60</td>
<td>C 93.6</td>
</tr>
<tr>
<td>75</td>
<td>C 94.1</td>
</tr>
<tr>
<td>100-125</td>
<td>B 94.5</td>
</tr>
<tr>
<td>150-200</td>
<td>B 95.0</td>
</tr>
</tbody>
</table>

1200 RPM Synchronous Speed

<table>
<thead>
<tr>
<th>Horsepower</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>G 87.5</td>
</tr>
<tr>
<td>7.5</td>
<td>G 89.5</td>
</tr>
<tr>
<td>10</td>
<td>F 90.2</td>
</tr>
<tr>
<td>15</td>
<td>E 90.2</td>
</tr>
<tr>
<td>20</td>
<td>E 91.7</td>
</tr>
<tr>
<td>25-30</td>
<td>D 93.0</td>
</tr>
<tr>
<td>40-50</td>
<td>D 93.6</td>
</tr>
<tr>
<td>60</td>
<td>C 93.6</td>
</tr>
<tr>
<td>75</td>
<td>C 94.1</td>
</tr>
<tr>
<td>100-125</td>
<td>B 94.5</td>
</tr>
<tr>
<td>150-200</td>
<td>B 95.0</td>
</tr>
</tbody>
</table>

2.02 MOTOR CONTROLLERS (STARTERS)

A. All motor controllers (for equipment furnished under Division 23) shall be furnished under Division 23 and installed under Division 26 unless otherwise noted on the plans.

1. Starters shall be provided for 3 phase motors 3/4 horsepower and greater.

B. Motor starters shall be furnished as follows.

1. GENERAL: Motor starters shall be Square D Company Class 8536 across-the-line magnetic type, full-voltage, non-reversing (FAVOR) starter. All starters shall be constructed and tested in accordance with the latest NEMA standards, sizes and horsepower. ICE sizes are not acceptable. Starters shall be mounted in a general purpose dead front, painted steel enclosure and surface-mounted. Provide size and number of poles as shown and required by equipment served. Provide two speed, two winding or two speed, single winding motor starter as required for two speed motors.

2. CONTACTS: Magnetic starter contacts shall be double break solid silver alloy. All contacts shall be replaceable without removing power wiring or removing starter from panel. The starter shall have straight-through wiring.

3. OPERATING COILS: Operating coils shall be 120 volts and shall be of molded construction. When the coil fails, the starter shall open and shall not lock in the closed position.

4. OVERLOAD RELAYS: Provide manual reset, trip-free Class 20 overload relays in each phase conductor in of all starters. Overload relays shall be melting alloy type with visual trip indication. All 3 phase and single phase starters shall have
one overload relay in each underground conductor. Relay shall not be field adjustable from manual to automatic reset. Provide 6 overload relays for two speed motor starters.

5. PILOT LIGHTS: Provide a red running pilot light for all motor starters. Pilot lights shall be mounted in the starter enclosure cover. Pilot lights shall be operated from an interlock on the motor starter and shall not be wired across the operating coil.

6. CONTROLS: Provide starters with HAND-OFF-AUTOMATIC switches. Coordinate additional motor starter controls with the requirements of Division 23. Motor starter controls shall be mounted in the starter enclosure cover.

7. CONTROL POWER TRANSFORMER: Provide a single-phase 480 volt control power transformer with each starter for 120 volt control power. Connect the primary side to the line side of the motor starter. The primary side shall be protected by a fuse for each conductor. The secondary side shall have one leg fused and one leg grounded. Arrange transformer terminals so that wiring to terminals will not be located above the transformer.

8. AUXILIARY CONTACTS: Each starter shall have one normally open and one normally closed convertible auxiliary contact in addition to the number of contacts required for the "holding interlock", remote monitoring, and control wiring. In addition, it shall be possible to field-install three more additional auxiliary contacts without removing existing wiring or removing the starter from its enclosure.

9. UNIT WIRING: Unit shall be completely pre-wired to terminals to eliminate any interior field wiring except for line and load power wiring and HVAC control wiring.

10. ENCLOSURES: All motor starter enclosures shall be NEMA 1, general purpose enclosures or NEMA-3R if mounted exposed to high moisture conditions. Provide NEMA 4X when located by cooling towers.

11. POWER MONITOR: Provide a square "D" 8430 MPS phase failure and under-voltage relay, base and wiring required for starters serving motors 5 horsepower and larger. Set the under-voltage setting according to minimum voltage required for the motor to operate within its range.

C. APPROVED MANUFACTURERS: Controller numbers are based on first named manufacturer. Provide one of the following manufacturer's.

1. Siemens.
2. Square D.

2.03 COMBINATION MOTOR STARTERS

A. GENERAL: Combination motor starters shall consist of a magnetic starter and a fusible or non-fusible disconnect switch in a dead front, painted steel NEMA 1 enclosure unless otherwise noted and shall be surface-mounted. Size and number of poles shall as shown and required by equipment served. Combination motor starters shall be as specified for motor starters in Paragraph 2.01/B, except as modified herein.

B. DISCONNECT SWITCH: Disconnect switches shall be as specified in Section 26 28 16.

C. APPROVED MANUFACTURERS: Controller numbers are based on first named manufacturer. Provide one of the following manufacturer's.

1. Siemens.
2. Square D.
PART 3 - EXECUTION

3.01 All equipment shall be installed in accordance with the manufacturers’ recommendations and printed installation instructions.

3.02 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Contractors’ price shall include all items required as per manufacturers’ requirements.

3.03 INSTALLATION

 A. GENERAL: Install in a professional manner. Any part or parts not meeting this requirement shall be replaced or rebuilt without extra expense to Owner.

 B. Install rotating equipment in static and dynamic balance.

 C. Provide foundations, supports, and isolators properly adjusted to allow minimum vibration transmission within the building.

 D. Correct objectionable noise or vibration transmission in order to operate equipment satisfactorily as determined by the Engineer.

END OF SECTION 230513
SECTION 23 05 26 - VARIABLE FREQUENCY MOTOR SPEED CONTROL FOR HVAC EQUIPMENT

PART 1 – GENERAL

1.01 GENERAL REQUIREMENTS

A. Furnish and install a complete adjustable frequency motor speed control for the following item:
 1. Variable volume air handling units
 2. Chilled water pumps

B. Certified noise data shall be submitted by drive manufacturer. Noise generated by variable frequency motor speed control drive shall not exceed preferred “RC” as listed in 1995 ASHRAE HVAC Applications, Chapter 43 Sound and Vibration Control, Table 2 Criteria For Acceptable HVAC Noise in Unoccupied Rooms.

1.02 RELATED SECTIONS

A. Section 23 02 00 – Basic Materials and Methods
B. Section 23 05 13 – Common Motor Requirements for HVAC Equipment
C. Section 23 05 48 – Vibration and Seismic Controls for HVAC Piping and Equipment
D. Section 23 05 93 – Testing, Adjusting and Balancing
E. Section 23 09 00 – Building Automation and Controls System
F. Section 23 21 23 – Hydronic Pumps
G. Section 23 73 13 – Modular Indoor Central Station Air Handling Units

SUBMITTALS

A. Submit shop drawings and product data under provisions of Division One.

1.03 WARRANTY

A. Warranty shall be 24 months from the date of certified start-up, not to exceed 30 months from the date of shipment. The warranty shall include all parts, labor, travel, time and expenses. There shall be 365/24 support available via a toll free phone number.

1.04 DELIVERY, STORAGE AND HANDLING

A. Equipment shall be stored and handled per manufacturer’s instructions.

PART 2 – PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

A. Yaskawa/Magnetek
B. ABB
C. Toshiba
D. Graham

2.02 ADJUSTABLE FREQUENCY INVERTER

A. The AFD package as specified herein shall be enclosed in a NEMA 12 enclosure, for interior applications and NEMA 4X stainless steel for exterior applications, completely assembled and tested by the manufacturer in an ISO9001 facility. The AFD shall operate from a line of +30% over nominal, and the undervoltage trip level shall be 35% under the nominal voltage as a minimum.

B. The fused input shall utilize fast acting current limiting type per manufacturer recommendations.

C. The variable frequency power and logic unit shall be completely solid state. The unit shall transform 480 volt, 3 phase, 60 hertz input power into frequency and voltage controlled, 3 phase output power suitable to provide positive speed and torque control to the fan motor. The speed control shall be step-less throughout the speed range under variable torque load on a continuous basis. The adjustable frequency control shall be of a pulse width modulated type utilizing a full wave diode bridge rectifier and shall have a power factor of 0.95 or better at all motor loads.

D. All AFD’s shall have the same customer interface, including a backlit LCD two line digital display, and keypad, regardless of horsepower rating. The keypad is to be used for local control, for setting all parameters, and for stepping through the displays and menus. The keypad shall be removable, capable of remote mounting, and shall have it’s own non-volatile memory. The keypad shall allow for uploading and downloading of parameter settings as an aid for the start-up of multiple AFD’s. The keypad shall include Hand-Off-Auto membrane selections. When in “Hand”, the AFD will be started and the speed will be controlled from the up/down arrows. When in “Off”, the AFD will be stopped. When in “Auto”, the AFD will start via an external contact closure and the AFD speed will be controlled via an external speed reference.

E. The adjustable frequency inverter shall conduct no radio frequency interference (RFI) back to the input power line.

F. The AFD shall have an integral 3% impedance line reactors to reduce the harmonics to the power line and to add protection from AC line transients. The inverter/reactor shall be a single wiring point.

2.03 SELF PROTECTION

A. The following features for self-protection shall be included:

1. The overload rating of the drive shall be 110% of its normal duty current rating for 1 minute every 10 minutes. The minimum FLA rating shall meet or exceed the values in the NEC/UL table 430-150 for 4-pole motors.
2. Limit the output current in under 50 microseconds due to phase to phase short circuits or severe overload conditions.
3. Protect the inverter due to non-momentary power or phase loss. The undervoltage trip shall activate automatically when the line voltage drops 15% below rated input voltage.
4. Protect the inverter due to voltage levels in excess of its rating. The overvoltage trip shall activate automatically when the DC bus in the controller exceeds 1000 VDC.

5. Protect the inverter from elevated temperatures in excess of its rating. An indicating light that begins flashing within 10 degrees C of the trip shall be provided to alert the operator to the increasing temperature condition. When the overtemperature trip point is reached, this light shall be continuously illuminated.

6. The inverter shall be equipped such that a trip condition resulting from overcurrent, undervoltage, overvoltage or overtemperature shall be automatically reset, and the inverter shall be automatically reset, and the inverter shall automatically restart upon removal, or correction of the faulty condition.

7. Status lights for indication of conditions described above shall be provided. A SPDT contact for remote indication shall be provided. Additionally, status lights to show power on, zero speed, and drive enabled shall be provided. All status lights shall be self-contained in the front panel of the unit and shall be duplicated for ease of troubleshooting on the inside of the unit.

8. Current and voltage signals shall be isolated from logic circuitry.

9. Drive logic shall be microprocessor based.

10. In the event of a sustained power loss, the control shall shut down safely without component failure. Upon return of power, the system shall automatically return to normal operation if the start is in the “On” condition.

11. In the event of a momentary power loss, the control shall be shut down safely without component failure. Upon return of power, the system shall automatically return to normal operation (if the start is in the “On” position) being able to restart into a rotating motor regaining positive speed control without shutdown or component failure.

12. In the event of a phase to phase short circuit, the control shall shut down safely without component failure.

13. In the event that an input power contactor is opened or closed while the control is activated, no damage shall result.

14. To facilitate startup and troubleshooting, the control shall operate without a motor or any other equipment connected to the inverter output.

2.04 ELECTRICAL CONSTANT SPEED BYPASS

A. Provide all components and circuitry necessary to provide manual full bypass of the inverter. The bypass package shall be mounted in a cabinet common with the inverter and shall be constructed in such as manner that the inverter can be removed for repair while still operating the motor in the “bypass” mode. Fast-acting semi-conductor with a fuse block shall be provided to isolate the drive for service. Bypass designs that have no such fuses must have a lockable disconnect that isolates the drive while running in bypass mode. Three contactor bypass schemes are not acceptable, as the input contactor is not an NEC approved disconnecting device and poses a safety hazard. A common start/stop signal shall be used for both the variable frequency drive mode and bypass mode. Manual bypass shall contain the following:

1. Two contactors mechanically interlocked via a three position through the door selector switch or keypad to provide the following controls:
 a. “Inverter” mode connects the motor the output of the inverter.
 b. “Bypass” mode connects the motor to the input since wave power.
 Transfer must occur with input disconnect open. Motor is protected via electronic overload.
 c. “Off” mode disconnects motor from all input power.
d. A molded case circuit breaker with door interlocked handle (lock out type) that interrupts input power to both the bypass circuitry and the drive.

e. Customer Interlock Terminal Strip – provide a separate terminal strip for connection of freeze, fire, smoke contacts, and external start command. All external safety interlocks shall remain fully functional whether the system is Hand, Auto, or Bypass modes. The remote start/stop contact shall operate in AFD and bypass modes.

f. An electronic overload selectable for class 20 or 30 shall provide protection of the motor in bypass mode.

2. The following indicating lights (LED type) shall be provided. A test mode or push to test feature shall be provided.

a. Power-on
b. External fault
c. Drive mode selected
d. Bypass mode selected
e. Drive running
f. Bypass running
g. Drive fault
h. Bypass fault
i. Bypass-H-O-A mode
j. Automatic transfer to bypass selected

3. The following relay (form C) outputs from the bypass shall be provided:

a. System started
b. System running
c. Bypass override enabled
d. Drive fault
e. Bypass fault (motor overload or underload (broken belt))
f. Bypass H-O-A position

4. The AFD shall include a “run permissive circuit” that will provide a normally open contact any time a run command is provided (local or remote start command in AFD or bypass mode). The AFD system (AFD or bypass) shall not operate the motor until it receives a dry contact closure from a damper or valve end-switch). When the AFD systems safety interlock (fire detector, freezestat, high static pressure switch, etc) opens, the motor shall coast to a stop and the run permissive contact shall open, closing the damper or valve.

5. There shall be an internal switch to select manual or automatic bypass.

6. There shall be an adjustable current sensing circuit for the bypass to provide loss of load indication when in the bypass mode.

7. The bypass mode must include a undervoltage and phase loss relay to protect the motor from single phase power and undervoltage conditions.

a. Bypass shall be UL listed.

b. Change: Bypass shall carry a UL 508 label.

2.05 FEATURES AND SPECIFICATIONS
A. Output frequency shall not vary with load nor with any input frequency variations. Output frequency shall not vary with \(\pm 10\% \) input voltage changes. Output frequency shall not vary with temperature changes within the ambient specification.

B. The following functions shall be performed internally by the drive. No auxiliary equipment shall be required. The output frequency shall be adjusted in proportion to 4-20 mA signal.

C. A zero to five volt DC signal shall be provided for remote indication. This 0 to 5 volt DC signal shall vary in direct proportion to the controller speed.

D. The controller shall be started or stopped by a contact closure or through serial communications.

E. A single pole, double throw contact shall be provided for remote indication. Contact will change state when any trip condition has occurred. (contact rated for 12-250 VAC-2 AMPS).

F. A second single pole, double throw contact shall be provided for remote indication. Contact will state when the VFD receives a run command (contact rated for 12-250 VAC-24 AMPS).

G. PID Setpoint controller shall be standard in the drive, allowing a pressure or flow signal to be connected to the AFD, using the microprocessor in the AFD for the closed loop control. The AFD shall have 250 ma of 24 VDC auxiliary power and be capable of loop powering a transmitter supplied by others. The PID setpoint shall be adjustable from the AFD keypad, analog inputs, or over the communications bus.

H. Unit to operate from a 4 to 20 m.A Vdc input signal and shall have hand-off-auto switch and door mounted potentiometer controls for manual speed selection.

I. Acceleration and deceleration times shall be adjustable from 30 to 300 seconds.

J. The drive shall have the ability to invert the speed signal input, as well as having offset and gain controls for speed signal conditioning.

K. Minimum and maximum speeds shall be adjustable in automatic and manual modes.

L. Hazard inputs shall be provided, capable of up to tow inputs (fire, freeze). These shall each be capable of safely shutting down the inverter and illuminating a front panel hazard depicting that a hazard condition, turned the inverter off.

M. The inverter shall be a starter, containing a door interlocked input disconnect switch and manual reset motor electronic overloads, with accessible reset on front door, when a bypass is not specified.

N. Solid state ground fault interrupt circuit.

O. The LED display shall monitor and display four parameters on a single display (i.e. frequency command, output frequency, output current and torque).

P. A N.O. auxiliary run-time contact shall be provided for control signaling to auxiliary equipment. Contact shall close when the pump is brought on line and open when the pump is taken off line. Contact shall be rated 20 amps at 120 volts.
Q. Inverter shall be UL listed.

R. Certified factory start-up shall be provided for each drive by a factory authorized service center. A certified start-up form shall be filled out for each drive with a copy provided to the owner, and a copy kept on file at the manufacturer.

S. Factory trained application engineering and service personnel that are thoroughly familiar with the AFD products offered shall be locally available at both the specifying and installation locations. A 24/365 technical support line shall be available on a toll-free line. A computer based training CD or 8-hour professionally generated video (VCR format) shall be provided to the owner at the time of project closeout. The training shall include installation, programming and operation of the AFD, bypass and serial communication.

T. Provide a motor end surge control voltage suppressive filter if the VFD manufacturer cannot limit their voltage surges to under 1000 volt at 100 feet.

U. Provide a motor acoustic noise reduction filter capable of approximately 12 dBA attenuation, if the VFD raises the dBA level above 3 dBA at a distance of 3 feet from the motor.

V. Provide each unit with a 3% reactor which is mounted on both the positive and negative DC bus. The reactor shall be a single wiring point and mounted internally to the drive.

PART 3 – INSTALLATION

3.01 Install units in accordance with manufacturer’s published installation instructions. Variable frequency speed control shall be located so that wiring to motor does not exceed 100 feet.

END OF SECTION 230526
SECTION 23 05 29 – HANGERS AND SUPPORT FOR PIPING AND EQUIPMENT - HVAC

PART 1 - GENERAL

1.01 WORK INCLUDED
 A. Pipe, and equipment hangers, supports, and associated anchors.
 B. Sleeves and seals.
 C. Flashing and sealing equipment and pipe stacks.

1.02 RELATED WORK
 A. Section 21 00 00 – Fire Suppression.
 B. Section 22 10 00 – Plumbing Piping and Pumps.
 C. Section 23 05 48 – Vibration and Seismic Controls for HVAC Piping and Equipment.
 D. Section 23 07 16 – HVAC Equipment Insulation.
 E. Section 23 07 19 – HVAC Piping Insulation.
 F. Section 23 21 13 – Above Ground Hydronic Piping.
 G. Section 23 21 16 – Underground Hydronic Piping.

1.03 REFERENCES
 C. NFPA 14 - Standard for the Installation of Standpipe and Hose Systems.

1.04 QUALITY ASSURANCE
 A. Supports for Sprinkler Piping: In conformance with NFPA 13.
 B. Supports for Standpipes: In conformance with NFPA 14.

1.05 SUBMITTALS
 A. Submit shop drawings and product data under provisions of Division One.
 B. Indicate hanger and support framing and attachment methods.

PART 2 - PRODUCTS

2.01 PIPE HANGERS AND SUPPORTS
 A. Hangers for Pipe Sizes 1/2 to 1-1/2 Inch Malleable iron, adjustable swivel, split ring.
B. Hangers for Pipe Sizes 2 to 4 Inches Carbon steel, adjustable, clevis.

C. Hangers for Pipe Sizes 6 Inches and Over: Adjustable steel yoke, cast iron roll, double hanger.

D. Multiple or Trapeze Hangers: Steel channels with welded spacers and hanger rods; cast iron roll and stand for pipe sizes 6 inches and over.

E. Wall Support for Pipe Sizes to 3 Inches: Cast iron hook.

F. Wall Support for Pipe Sizes 4 Inches and Over: adjustable steel yoke and cast iron roll.

G. Vertical Support: Steel riser clamp.

H. Floor Support for Pipe Sizes to 4 Inches: Cast iron adjustable pipe saddle, locknut nipple, floor flange, and concrete pier or steel support.

I. Floor Support for Pipe Sizes 6 Inches and Over: Adjustable cast iron roll and stand, steel screws, and concrete pier or steel support.

J. Roof Pipe Supports and Hangers: Galvanized Steel Channel System as manufactured by Portable Pipe Hangers, Inc. or approved equal.

L. For installation of protective shields refer to specification section 22 05 29 - 3.03.

M. Shields for Vertical Copper Pipe Risers: Sheet lead.

N. Pipe Rough-In Supports in Walls/Chases: Provide preformed plastic pipe supports, Sioux Chief “Pipe Titan” or equal.

2.02 HANGER RODS

A. Galvanized Hanger Rods: Threaded both ends, threaded one end, or continuous threaded.

2.03 INSERTS

A. Inserts: Malleable iron case of galvanized steel shell and expander plug for threaded connection with lateral adjustment, top slot for reinforcing rods, lugs for attaching to forms; size inserts to suit threaded hanger rods.

2.04 FLASHING

A. Metal Flashing: 20 gage galvanized steel.

B. Lead Flashing: 4 lb./sq. ft. sheet lead for waterproofing; 1 lb./sq. ft. sheet lead for soundproofing.
C. Caps: Steel, 20 gage minimum; 16 gage at fire resistant elements.
D. Coordinate with roofing contractor/architect for type of flashing on metal roofs.

2.05 EQUIPMENT CURBS
A. Fabricate curbs of hot dipped galvanized steel.

2.06 SLEEVES
A. Sleeves for Pipes Through Non-fire Rated Floors: Form with 18 gage galvanized steel, tack welded to form a uniform sleeve.
B. Sleeves for Pipes Through Non-fire Rated Beams, Walls, Footings, and Potentially Wet Floors: Form with steel pipe, schedule 40.
C. Sleeves for Pipes Through Fire Rated and Fire Resistive Floors and Walls, and Fireproofing: Prefabricated fire rated steel sleeves including seals, UL listed.
D. Sleeves for Round Ductwork: Form with galvanized steel.
E. Sleeves for Rectangular Ductwork: Form with galvanized steel.
F. Fire Stopping Insulation: Glass fiber type, non-combustible, U.L. listed.
G. Caulk: Paintable 25-year acrylic sealant.
H. Pipe Alignment Guides: Factory fabricated, of cast semi-steel or heavy fabricated steel, consisting of bolted, two-section outer cylinder and base with two-section guiding spider that bolts tightly to pipe. Length of guides shall be as recommended by manufacturer to allow indicated travel.

2.07 FABRICATION
A. Size sleeves large enough to allow for movement due to expansion and contraction. Provide for continuous insulation wrapping.
B. Design hangers without disengagement of supported pipe.
C. Design roof supports without roof penetrations, flashing or damage to the roofing material.

2.08 FINISH
A. Prime coat exposed steel hangers and supports. Hangers and supports located in crawl spaces, pipe shafts, and suspended ceiling spaces are not considered exposed.

PART 3 - EXECUTION
3.01 INSERTS
B. Provide hooked rod to concrete reinforcement section for inserts carrying pipe over 4 inches.
C. Where concrete slabs form finished ceiling, provide inserts to be flush with slab surface.

D. Where inserts are omitted, drill through concrete slab from below and provide thru-bolt with recessed square steel plate and nut recessed into and grouted flush with slab. Verify with structural engineer prior to start of work.

3.02 PIPE HANGERS AND SUPPORTS

A. Support horizontal piping as follows:

<table>
<thead>
<tr>
<th>PIPE SIZE</th>
<th>MAX. HANGER SPACING</th>
<th>HANGER DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Steel Pipe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 to 1-1/4 inch</td>
<td>7'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>1-1/2 to 3 inch</td>
<td>10'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>4 to 6 inch</td>
<td>10'-0" 1/2"</td>
<td></td>
</tr>
<tr>
<td>8 to 10 inch</td>
<td>10'-0" 5/8"</td>
<td></td>
</tr>
<tr>
<td>12 to 14 inch</td>
<td>10'-0" 3/4"</td>
<td></td>
</tr>
<tr>
<td>15 inch and over</td>
<td>10'-0" 7/8"</td>
<td></td>
</tr>
<tr>
<td>(Copper Pipe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 to 1-1/4 inch</td>
<td>5'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>1-1/2 to 2-1/2 inch</td>
<td>8'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>3 to 4 inch</td>
<td>10'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>6 to 8 inch</td>
<td>10'-0" 1/2"</td>
<td></td>
</tr>
<tr>
<td>(Cast Iron)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 to 3 inch</td>
<td>5'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>4 to 6 inch</td>
<td>10'-0" 1/2"</td>
<td></td>
</tr>
<tr>
<td>8 to 10 inch</td>
<td>10'-0" 5/8"</td>
<td></td>
</tr>
<tr>
<td>12 to 14 inch</td>
<td>10'-0" 3/4"</td>
<td></td>
</tr>
<tr>
<td>15 inch and over</td>
<td>10'-0" 7/8"</td>
<td></td>
</tr>
<tr>
<td>(PVC Pipe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/2 to 4 inch</td>
<td>4'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>6 to 8 inch</td>
<td>4'-0" 1/2"</td>
<td></td>
</tr>
<tr>
<td>10 and over</td>
<td>4'-0" 5/8"</td>
<td></td>
</tr>
</tbody>
</table>
B. Install hangers to provide minimum 1/2 inch space between finished covering and adjacent work.

C. Place a hanger within 12 inches of each horizontal elbow and at the vertical horizontal transition.

D. Use hangers with 1-1/2 inch minimum vertical adjustment.

E. Support horizontal cast iron pipe adjacent to each hub, with 5 feet maximum spacing between hangers.

F. Support vertical piping at every floor. Support vertical cast iron pipe at each floor at hub.

G. Where several pipes can be installed in parallel and at same elevation, provide multiple or trapeze hangers.

H. Support riser piping independently of connected horizontal piping.

I. Install hangers with nut at base and above hanger; tighten upper nut to hanger after final installation adjustments.

J. Portable pipe hanger systems shall be installed per manufactures instructions.

3.03 Insulated Piping: Comply with the following installation requirements.

A. Clamps: Attach galvanized clamps, including spacers (if any), to piping with clamps projecting through insulation; do not exceed pipe stresses allowed by ASME B31.9.

B. Saddles: Install galvanized protection saddles MSS Type 39 where insulation without vapor barrier is indicated. Fill interior voids with segments of insulation that match adjoining pipe insulation.

C. Shields: Install protective shields MSS Type 40 on cold and chilled water piping that has vapor barrier. Shields shall span an arc of 180 degrees and shall have dimensions in inches not less than the following:

<table>
<thead>
<tr>
<th>NPS</th>
<th>LENGTH</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 THROUGH 3-1/2</td>
<td>120.048</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>120.060</td>
<td></td>
</tr>
<tr>
<td>5 & 6</td>
<td>180.060</td>
<td></td>
</tr>
<tr>
<td>8 THROUGH 14</td>
<td>240.075</td>
<td></td>
</tr>
<tr>
<td>16 THROUGH 24</td>
<td>240.105</td>
<td></td>
</tr>
</tbody>
</table>

D. Piping 2” and larger provide galvanized sheet metal shields with calcium silicate at hangers/supports.

E. Insert material shall be at least as long as the protective shield.

F. Thermal Hanger Shields: Install where indicated, with insulation of same thickness as piping.

3.04 EQUIPMENT BASES AND SUPPORTS

A. Provide equipment bases of concrete.

B. Provide templates, anchor bolts, and accessories for mounting and anchoring equipment.
C. Construct support of steel members. Brace and fasten with flanges bolted to structure.

D. Provide rigid anchors for pipes after vibration isolation components are installed.

3.05 FLASHING

A. Provide flexible flashing and metal counter flashing where piping and ductwork penetrate weather or waterproofed walls, floors, and roofs.

B. Flash vent and soil pipes projecting 8 inches minimum above finished roof surface with lead worked one inch minimum into hub, 8 inches minimum clear on sides with 24 x 24 inches sheet size. For pipes through outside walls, turn flanges back into wall and caulk, metal counter flash and seal.

C. Flash floor drains in floors with topping over finished areas with lead, 10 inches clear on sides with minimum 36 x 36 inch sheet size. Fasten flashing to drain clamp device.

D. Seal floor shower mop sink and all other drains watertight to adjacent materials.

E. Provide curbs for mechanical roof installations 8 inches minimum high above roofing surface. Contact architect for all flashing details and roof construction. Seal penetrations watertight.

3.06 SLEEVES

A. Set sleeves in position in formwork. Provide reinforcing around sleeves.

B. Extend sleeves through floors minimum one inch above finished floor level. Caulk sleeves full depth with fire rated thermfiber and 3M caulking and provide floor plate.

C. Where piping or ductwork penetrates floor, ceiling, or wall, close off space between pipe or duct and adjacent work with U.L. listed fire stopping insulation and caulk seal air tight. Provide close fitting metal collar or escutcheon covers at both sides of penetration.

D. Fire protection sleeves may be flush with floor of stairways.

END OF SECTION 230529
SECTION 23 05 48 – VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.01 WORK INCLUDED

A. Vibration and sound control products.

1.02 RELATED DOCUMENTS

A. Drawings and general provisions of Contract including General and Supplementary Conditions and Division One specification sections, apply to work of this section
B. This section is Division-23 Basic Materials and Methods section, and is part of each Division-23 section making reference to vibration control products specified herein.

1.03 QUALITY ASSURANCE

A. Manufacturer’s Qualifications: Firms regularly engaged in manufacture of vibration control products, of type, size, and capacity required, whose products have been in satisfactory use in similar service for not less than 5 years.
B. Vibration and sound control products shall conform to ASHRAE criteria for average noise criteria curves for all equipment at full load conditions.
C. Except as otherwise indicated, sound and vibration control products shall be provided by a single manufacturer.

1.04 SUBMITTALS

A. SHOP DRAWINGS: Indicate size, material, and finish. Show locations and installation procedures. Include details of joints, attachments, and clearances.
B. PRODUCT DATA: Submit schedules, charts, literature, and illustrations to indicate the performance, fabrication procedures, product variations, and accessories.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

A. Amber/Booth Company, Inc.
B. Mason Industries, Inc.
C. Noise Control, Inc.

2.02 GENERAL

A. Provide vibration isolation supports for equipment, piping and ductwork, to prevent transmission of vibration and noise to the building structures that may cause discomfort to the occupants.
B. Model numbers of Amber/Booth products are included for identification. Products of the additional manufacturers will be acceptable provided they comply with all of the requirements of this specification.

2.03 FLOOR MOUNTED AIR HANDLING UNITS

A. Provide Amber/Booth XLW-2, style C aluminum housed isolators sized for 2” static deflection. Cast iron or steel housings may be used provided they are hot-dip galvanized after fabrication.
B. If floor mounted air handling units are furnished with internal vibration isolation option, provide 2” thick Amber/Booth type NRC ribbed neoprene pads to address high frequency breakout and afford additional unit elevation for condensate drains. Ribbed neoprene pads shall be located in accordance with the air handling unit manufacturer’s recommendations.

2.04 SUSPENDED AIR HANDLING UNITS
A. Provide Amber/Booth type BSWR-2 combination spring and rubber-in-shear isolation hanger sized for 2” static deflection.
B. If suspended air handling units are furnished with internal vibration isolation option, furnish Amber/Booth type BRD rubber-in-shear or NR AMPAD 3/8” thick neoprene pad isolation hangers sized for approximately ½” deflection to address high frequency break-out.

2.05 SUSPENDED FANS AND FAN COIL UNITS
A. Provide Amber/Booth type BSS spring hangers sized for 1” static deflection.

2.06 BASE MOUNTED PUMPS AND CHILLERS
A. Amber/Booth type SP-NR style E flexplate pad isolators consisting of two layers of 3/8” thick alternate ribbed neoprene pad bonded to a 16 gage galvanized steel separator plate.
B. Pads shall be sized for approximately 40 PSI loading and 1/8” deflection.

2.07 PIPING
A. Provide spring and rubber-in-shear hangers, Amber/Booth type BSR in mechanical equipment rooms, for a minimum distance of 50 feet from isolated equipment for all chilled water and hot water piping 1-1/2” diameter and larger. Springs shall be sized for 1” deflection.
B. Floor supported piping is required to be isolated with Amber/Booth type SW-1 open springs sized for 1” deflection.
C. Furnish line size flexible connectors at supply and return of pumps, amber/booth style 2800 single sphere EPDM construction, connector shall include 150 lb. cadmium plated carbon steel floating flanges.

2.08 CORROSION PROTECTION
A. All vibration isolators shall be designed and treated for resistance to corrosion.
B. Steel components: PVC coated or phosphated and painted with industrial grade enamel. Nuts, bolts, and washers: zinc-electroplated.

PART 3 - EXECUTION

3.01 All equipment shall be installed in accordance with the manufacturers recommendations and printed installation instructions.

3.02 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Provide all items required as per manufacturers requirements.

3.03 If internal isolation option is used on air handling units, the mechanical contractor shall verify proper adjustment and operation of isolators prior to start-up. All shipping brackets and temporary restraint devices shall be removed.

3.04 The vibration isolation supplier shall certify in writing that he has inspected the installation and that all external isolation materials and devices are installed correctly and functioning properly.
SECTION 23 05 53 – IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.01 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. The Basic Materials and Methods, Section 23 02 00, are included as a part of this Section as though written in full in this document.

1.02 SCOPE

Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for owner’s use.

1.03 Refer to Architectural Sections for additional requirements.

PART 2 - PRODUCTS

2.01 VALVE AND PIPE IDENTIFICATION

A. Valves:

1. All valves shall be identified with a 1-1/2” diameter brass disc wired onto the handle. The disc shall be stamped with 1/2” high depressed black filled identifying numbers. These numbers shall be numerically sequenced for all valves on the job.

2. The number and description indicating make, size, model number and service of each valve shall be listed in proper operational sequence, properly typewritten. Three copies to be turned over to Owner at completion.

3. Tags shall be fastened with approved meter seal and 4 ply 0.018 smooth copper wire. Tags and fastenings shall be manufactured by the Seton Name Plate Company or approved equal.

4. All valves shall be numbered serially with all valves of any one system and/or trade grouped together.

B. Pipe Marking:

1. All interior visible piping located in accessible spaces such as above accessible ceilings, equipment rooms, attic space, under floor spaces, etc., shall be identified with all temperature pipe markers as manufactured by W.H. Brady Company, 431 West Rock Ave., New Haven, Connecticut, or approved equal.

2. All exterior visible piping shall be identified with UV and acid resistant outdoor grade acrylic plastic markers as manufactured by Set Mark distributed by Seton nameplate company. Factory location 20 Thompson Road, Branford, Connecticut, or approved equal.
3. Generally, markers shall be located on each side of each partition, on each side of each tee, on each side of each valve and/or valve group, on each side of each piece of equipment, and, for straight runs, at equally spaced intervals not to exceed 75 feet. In congested area, marks shall be placed on each pipe at the points where it enters and leaves the area and at the point of connection of each piece of equipment and automatic control valve. All markers shall have directional arrows.

4. Markers shall be installed after final painting of all piping and equipment and in such a manner that they are visible from the normal maintenance position. Manufacturer’s installation instructions shall be closely followed.

5. Markers shall be colored as indicated below per ANSI/OSHA Standards:

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>COLOR</th>
<th>LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water</td>
<td>Green</td>
<td>Chilled Water Supply</td>
</tr>
<tr>
<td>Chilled Water Return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanitary Sewer</td>
<td>Green</td>
<td>Vent</td>
</tr>
<tr>
<td>Sanitary Sewer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm Drain</td>
<td>Green</td>
<td>Storm Drain</td>
</tr>
<tr>
<td>Domestic Water</td>
<td>Green</td>
<td>Domestic Water</td>
</tr>
<tr>
<td>Domestic Hot Water Supply</td>
<td>Yellow</td>
<td>Domestic Hot Water Supply</td>
</tr>
<tr>
<td>Domestic Hot Water Recirculating</td>
<td>Yellow</td>
<td>Domestic Hot Water Return</td>
</tr>
<tr>
<td>Fire Protection</td>
<td>Red</td>
<td>Fire Protection</td>
</tr>
<tr>
<td>Automatic Sprinkler</td>
<td>Red</td>
<td>Fire Sprinkler</td>
</tr>
<tr>
<td>Gas</td>
<td>Yellow</td>
<td>Natural Gas</td>
</tr>
<tr>
<td>Condenser Water</td>
<td>Green</td>
<td>Condenser Water</td>
</tr>
<tr>
<td>Condenser Water Return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressed Air</td>
<td>Blue</td>
<td>Compressed Air</td>
</tr>
<tr>
<td>Pneumatic Control</td>
<td>Yellow</td>
<td>Pneumatic Control</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Yellow</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Green</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Deionized Water</td>
<td>Green</td>
<td>Deionized Water</td>
</tr>
<tr>
<td>Steam</td>
<td>Yellow</td>
<td>Steam Supply</td>
</tr>
<tr>
<td>Steam Return</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C. Pipe Painting:

1. All piping exposed to view shall be painted as indicated or as directed by the Architect in the field. Confirm all color selections with Architect prior to installation.

2. The entire fire protection piping system shall be painted red.

3. All piping located in mechanical rooms and exterior piping shall be painted as indicated below:

<table>
<thead>
<tr>
<th>System</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Sewer</td>
<td>White</td>
</tr>
<tr>
<td>Sanitary Sewer Waste and Vent</td>
<td>Light Gray</td>
</tr>
<tr>
<td>Domestic Cold Water</td>
<td>Dark Blue</td>
</tr>
<tr>
<td>Domestic Hot Water Supply and Return</td>
<td>Orange</td>
</tr>
<tr>
<td>Condenser Water Supply and Return</td>
<td>Light Green</td>
</tr>
<tr>
<td>Gas</td>
<td>Yellow</td>
</tr>
<tr>
<td>Chilled Water Supply and Return</td>
<td>Light Blue</td>
</tr>
<tr>
<td>Heating Hot Water Supply and Return</td>
<td>Reddish Orange</td>
</tr>
</tbody>
</table>

PART 3 - EXECUTION

3.01 All labeling equipment shall be installed as per manufacturers printed installation instructions.

3.02 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Contractors price shall include all items required as per manufacturers' requirements.

3.03 All piping shall be cleaned of rust, dirt, oil and all other contaminants prior to painting. Install primer and a quality latex paint over all surfaces of pipe.

END OF SECTION 230553
SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING

PART 1 - GENERAL

1.01 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. The Basic Materials and Methods, Section 23 02 00, are included as a part of this Section as though written in full in this document.

1.02 RELATED DOCUMENTS

Approved submittal date on equipment installed, to accomplish the test procedures, outlined under Services of the Contractor of this Section, will be provided by the Contractor.

1.03 DESCRIPTION

A. The TAB of the air conditioning systems will be performed by an impartial technical firm whose operations are limited only to the field of professional TAB. The TAB work will be done under the direct supervision of a qualified engineer employed by the TAB firm.

B. The TAB firm will be responsible for inspecting, adjusting, balancing, and logging the date on the performance of fans, dampers in the duct system, and air distribution devices. The Contractor and the various subcontractors of the equipment installed shall cooperate with the TAB firm to furnish necessary data on the design and proper applications of the system components and provide labor and material required to eliminate deficiencies or malperformance.

1.04 QUALITY ASSURANCE

A. QUALIFICATIONS OF CONTRACTOR PERSONNEL: Submit evidence to show that the personnel who shall be in charge of correcting deficiencies for balancing the systems are qualified. The Owner and Engineer reserve the right to require that the originally approved personnel be replaced with other qualified personnel if, in the Owner and Engineer’s opinion, the original personnel are not qualified to properly place the system in condition for balancing.

B. QUALIFICATIONS OF TAB FIRM PERSONNEL:

1. A minimum of one registered Professional Engineer licensed in the State, is required to be in permanent employment of the firm.

2. Personnel used on the jobsite shall be either Professional Engineers or technicians, who shall have been permanent, full time employees of the firm for a minimum of six months prior to the start of Work for that specified project.

3. Evidence shall be submitted to show that the personnel who actually balance the systems are qualified. Evidence showing that the personnel have passed the tests required by the Associated Air Balance Council (AABC) shall be required.

C. CALIBRATION LIST: Submit to the Engineer for approval, a list of the gauges, thermometers, velometer, and other balancing devices to be used in balancing the system. Submit evidence to show that the balancing devices are properly calibrated before proceeding with system balancing.
PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.01 SERVICES OF THE CONTRACTOR

A. The Drawings and specifications have indicated valves, dampers, and miscellaneous adjustment devices for the purpose of adjustment to obtain optimum operating conditions, install these devices in a manner that leaves them accessible, provide access as requested by the TAB firm.

B. Have systems complete and in operational readiness prior to notifying the TAB firm that the project is ready for their services, and certify in writing to the Construction Manager that such a condition exists.

C. As a part of the Work of this Section, make changes in the sheaves, belts, and dampers or the addition of dampers required for correct balance of the new work as required by the TAB firm, at no additional cost to the Owner.

D. Fully examine the existing system to be balanced, to determine whether or not sufficient volume dampers, balancing valves, thermometers, gauges, pressure and temperature taps, means of reading static pressure and total pressure in duct systems, means of determining water flow, and other means of taking data needed for proper water and air balancing are existing. Submit to the Engineer in writing a listing of omitted items considered necessary to balance existing systems. Submit the list and proposal as a cost add item.

E. Verify that fresh air louvers are free of blockage, coils are clean and fresh air ducts to each air handling unit has individually adjustable volume regulating dampers.

F. Provide, correct, repair, or replace deficient items or conditions found during the testing, adjusting, and balancing period.

G. In order that systems may be properly tested, balanced, and adjusted as specified, operate the systems at no expense to the Owner for the length of time necessary to properly verify their completion and readiness for TAB period.

H. Project Contract completion schedules shall provide time for allowances to permit the successful completion of TAB services to Owner's final inspection and acceptance. Complete, operational readiness, prior to commencement of TAB services, shall include the following services of the Contractor:

1. Construction status of building shall permit the closing of doors, window, ceilings installed and penetrations complete, to obtain project operating conditions.

2. AIR DISTRIBUTION SYSTEMS:
 a. Verify installation for conformity to design. Supply, return, and exhaust ducts terminated and pressure tested for leakage as specified.
 b. Volume and fire dampers properly located and functional. Dampers serving requirements of minimum and maximum outside air, return and relief shall provide tight closure and full opening, smooth and free operation.
 c. Supply, return, exhaust and transfer grilles, registers and diffusers.
d. Air handling systems, units and associated apparatus, such as heating and cooling coils, filter sections, access doors, etc., shall be blanked and sealed to eliminate excessive bypass or leakage of air.

e. Fans (supply and exhaust) operating and verified for freedom from vibrations, proper fan rotation and belt tension; overload heater elements shall be of proper size and rating; record motor amperage and voltage and verify that these functions do not exceed nameplate ratings.

f. Furnish or revise fan drives or motors as necessary to attain the specified air volumes.

3. AUTOMATIC CONTROLS:

a. Verify that control components are installed in accordance with project documents and functional, electrical interlocks, damper sequences, air and water resets, fire and freeze stats.

b. Controlling instruments shall be functional and set for design operating conditions. Factory precalibration of room thermostats and pneumatic equipment will not be acceptable.

c. The temperature regulation shall be adjusted for proper relationship between the controlling instruments and calibrated by the TAB Contractor. Advise Owner of deficiencies or malfunctions.

3.02 SERVICES OF THE TAB FIRM

A. The TAB firm will act as liaison between the Owner, Engineer, and the Contractor and inspect the installation of mechanical piping system, sheet metal work, temperature controls and other component parts of the heating, air conditioning and ventilating systems being retrofitted, repaired, or added under this Contract. The reinspection of the Work will cover that part related to proper arrangement and adequate provision for the testing and balancing and will be done when the Work is 80 percent complete.

B. Upon completion of the installation and start-up of the mechanical equipment, to check, adjust, and balance system components to obtain optimum conditions in each conditioned space in the building. Prepare and submit to the Owner complete reports on the balance and operations of the systems.

C. Measurements and recorded readings of air, water, and electricity that appear in the reports will be done by the permanently employed technicians or engineers of the TAB firm.

D. Make an inspection in the building during the opposite season from that in which the initial adjustments were made. At the time, make necessary modifications to the initial adjustments required to produce optimum operation of system components to affect the proper conditions as indicated on the Drawings. At time of opposite season check-out, the Owner's representative will be notified before readings or adjustments are made.

E. In fan systems, the air quantities indicated on the Drawings may be varied as required to secure a maximum temperature variation of two degrees within each separately controlled space, but the total air quantity indicated for each zone must be obtained. It shall be the obligation of the Contractor to furnish or revise fan drive and motors if necessary, without cost to the Owner, to attain the specified air volumes.

F. The various existing water circulating systems shall be cleaned, filled, purged of air, and put into operation before hydronic balancing.

3.03 PROFESSIONAL REPORT
A. Before the final acceptance of the report is made, the TAB firm will furnish the Owner the following data to be approved by the Owner and Engineer:

1. Summary of main supply, return and exhaust duct pitot tube traverses and fan settings indicating minimum value required to achieve specified air volumes.
2. A listing of the measured air quantities at each outlet corresponding to the temperature tabulation as developed by the Engineer and TAB firm.
3. Air quantities at each return and exhaust air handling device.
4. Static pressure readings entering and leaving each supply fan, exhaust fan, filter, coil, balancing dampers and other components of the systems included in the retrofit Work. These readings will be related to performance curves in terms of the CFM handled if available.
5. Motor current readings at each equipment motor on load side of capacitors. The voltages at the time of the reading shall be listed.
6. The final report shall certify test methods and instrumentation used, final velocity reading obtained, temperatures, pressure drops, RPM of equipment, amperage of motors, air balancing problems encountered, recommendations and uncompleted punch list items. The test results will be recorded on standard forms.
7. A summary of actual operating conditions shall be included with each system outlining normal and ventilation cycles of operation. the final report will act as a reference of actual operating conditions for the Owner's operating personnel.

3.04 BALANCING AIR CONDITIONING SYSTEM

A. GENERAL:

1. Place all equipment into full operation, and shall continue the operating during each working day of balancing and testing. If the air conditioning system is balanced during Off-Peak cooling season Balancing Contractor shall return to rebalance air side system as required to put system in proper balance at that time.
2. The Contractor shall submit detailed balancing and recording forms for approval. After the approval by the Architect, prepare complete set of forms for recording test data on each system. All Work shall be done under the supervision of a Registered Professional Engineer. All instruments used shall be accurately calibrated to within 1% of scale and maintained in good working order.
3. Upon completion of the balancing and testing, the Balancing Contractor shall compile the test data in report forms, and forward five copies to the Architect for evaluation.
4. The final report shall contain logged results of all tests, including such data as:
 a. Tabulation of air volume at each outlet.
 b. Outside dry bulb and wet bulb temperature.
 c. Inside dry bulb and wet bulb temperatures in each conditioned space room or area.
 d. Actual fan capacities and static pressures. Motor current and voltage readings at each fan.

B. AIR SYSTEMS: Perform the following operations as applicable to system balance and test:

1. Check fan rotation.
2. Check filters (balancing shall be done with clean filters).
3. Test and adjust blower rpm to design requirements.
4. Test and record motor full load amperes.
5. Test and record system static pressures, suction and discharge.
6. Test and adjust system for design cfm, return air and outside air (+2%). Change-out fan sheaves as required to balance system.
7. Test and record entering air temperatures, db and wb.
8. Test and record leaving air temperatures, db and wb.
9. Adjust all zones to design cfm (+2%).
10. Test and adjust each diffuser, grille, and register to within 5% of design.

C. AIR DUCT LEAKAGE: (From SMACNA Duct Standards 3rd Edition) Test all ductwork (designed to handle over 1000 CFM) as follows:

1. Test apparatus
The test apparatus shall consist of:
 a. A source of high pressure air--a portable rotary blower or a tank type vacuum cleaner.
 b. A flow measuring device consisting of straightening vanes and an orifice plate mounted in a straight tube with properly located pressure taps. Each orifice assembly shall be accurately calibrated with its own calibration curve. Pressure and flow readings shall be taken with U-tube manometers.

2. Test Procedures
 a. Test for audible leaks as follows:
 1) Close off and seal all openings in the duct section to be tested. Connect the test apparatus to the duct by means of a section of flexible duct.
 2) Start the blower with its control damper closed.
 3) Gradually open the inlet damper until the duct pressure reaches 1.2 times the standard designed duct operating pressure.
 4) Survey all joint for audible leaks. Mark each leak and repair after shutting down blower. Do not apply a retest until sealants have set.
 b. After all audible leaks have been sealed, the remaining leakage should be measured with the orifice section of the test apparatus as follows:
 1) Start blower and open damper until pressure in duct reaches 25% in excess of designed duct operating pressure.
 2) Read the pressure differential across the orifice on manometer No. 2. If there is no leakage, the pressure differential will be zero.
 3) Total allowable leakage shall not exceed one (1) percent of the total system design air flow rate. When partial sections of the duct system are tested, the summation of the leakage for all sections shall not exceed the total allowable leakage.
 4) Even though a system may pass the measured leakage test, a concentration of leakage at one point may result in a noisy leak which, must be corrected.

D. DX SYSTEMS:

1. Test and record suction and discharge pressures at each compressor and record ambient air temperature entering the condensing coils.
2. Test and record unit full load amps and voltage.
3. Test and record staging and unloading of unit required by sequence of operation or drawing schedule.
E. Automatic temperature controls shall be calibrated and all thermostats and dampers, adjusted so that the control system is in proper operating condition, subject to the approval of the Architect.

F. The Air Balance Contractor shall report to Engineer all air distribution devices or other equipment that operate noisily so that corrective measures may be implemented by the Contractor at no additional cost to the Owner or Architect/Engineer.

END OF SECTION 230593
SECTION 23 07 13 - HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Insulation Materials:
 2. Adhesives.
 3. Mastics.
 4. Sealants.
 5. Factory-applied jackets.
 7. Tapes.
 8. Securements.
 9. Corner angles.

 B. Related Sections:
 1. Division 22 Section "Plumbing Insulation."
 2. Division 23 Section "Metal Ducts" for duct liners.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and
 jackets (both factory and field applied, if any).

 B. Qualification Data: For qualified Installer.

 C. Material Test Reports: From a qualified testing agency acceptable to authorities having
 jurisdiction indicating, interpreting, and certifying test results for compliance of insulation
 materials, sealers, attachments, cements, and jackets, with requirements indicated. Include
 dates of tests and test methods employed.

 D. Field quality-control reports.

1.4 QUALITY ASSURANCE
 A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship
 program or another craft training program certified by the Department of Labor, Bureau of
 Apprenticeship and Training.
B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION
 A. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING
 A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
 B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS
 A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
 B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
 C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
 D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; All-Service Duct Wrap. Acoustic duct liner to be QuietR, type 200.

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Fibrex Insulations Inc.; FBX.
 c. Johns Manville; 800 Series Spin-Glas.
 d. Knauf Insulation; Insulation Board.
 e. Manson Insulation Inc.; AK Board.
 f. Owens Corning; Fiberglas 700 Series.

 a.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products, Division of ITW; CP-82.
 c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 d. Marathon Industries, Inc.; 225.
 e. Mon-Eco Industries, Inc.; 22-25.

 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 500 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products, Division of ITW; CP-35.
 b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 c. ITW TACC, Division of Illinois Tool Works; CB-50.
 d. Marathon Industries, Inc.; 590.
 e. Mon-Eco Industries, Inc.; 55-40.
 f. Vimasco Corporation; 749.
2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.

2.4 SEALANTS

A. Joint Sealants:
 1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products, Division of ITW; CP-76.
 b. Foster Products Corporation, H. B. Fuller Company; 30-45.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Pittsburgh Corning Corporation; Pittseal 444.
 f. Vimasco Corporation; 750.
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Permanently flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 100 to plus 300 deg F.
 5. Color: White or gray.
 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. FSK and Metal Jacket Flashing Sealants:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products, Division of ITW; CP-76-8.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Vimasco Corporation; 750.
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. Color: Aluminum.
 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
2.6 FIELD –APPLIED JACKETS

A. Aluminum Jacket: Stucco-embossed finished sheets manufactured from 0.016 inch thick aluminum alloy complying with ASTM B209 and having an integrally bonded 1-mil thick, heat-bonded polyethylene and kraft paper moisture barrier over entire surface in contact with insulation.

2.7 TAPES

A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 b. Compac Corp.; 110 and 111.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

B. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 b. Compac Corp.; 120.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 d. Venture Tape; 3520 CW.
2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

2.8 SECUREMENTS

A. Bands:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products; Bands.
 b. PABCO Metals Corporation; Bands.
 c. RPR Products, Inc.; Bands.
2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.

B. Insulation Pins and Hangers:
1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch diameter shank, length to suit depth of insulation indicated.
a. Products: Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; CD.
 3) Midwest Fasteners, Inc.; CD.
 4) Nelson Stud Welding; TPA, TPC, and TPS.

2.9 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.

C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation,
install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.

4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.

2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.

4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistant joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.

2. Pipe: Install insulation continuously through floor penetrations.

3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
3.6 QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.7 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return located in nonconditioned space.
 4. Indoor, exposed return located in nonconditioned space.
 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 7. Indoor, concealed oven and warewash exhaust.
 8. Indoor, exposed oven and warewash exhaust.
 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Items Not Insulated:
 1. Fibrous-glass ducts.
 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 3. Factory-insulated flexible ducts.
 5. Flexible connectors.
 7. Factory-insulated access panels and doors.
 8. Return air ductwork within the conditioned building envelope.

C. Items internally insulated for acoustical purposes: antimicrobial type insulation.
 1. Supply and return air ducts and plenums within 15 feet of air handling unit discharge.
 2. Supply ductwork downstream of terminal unit.
 3. Return air sound traps.

3.8 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, round and flat-oval, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

B. Concealed, round and flat-oval, return-air duct insulation shall be one of the following:
1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

C. Concealed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

D. Concealed, rectangular, supply-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

E. Concealed, rectangular, return-air duct not within the conditioned building envelope insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

F. Concealed, rectangular, outdoor-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

G. Concealed, rectangular, exhaust-air duct insulation between isolation damper and penetration of building exterior shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

H. Concealed, supply-air plenum insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

I. Concealed, return-air plenum insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

J. Concealed, outdoor-air plenum insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

K. Concealed, exhaust-air plenum insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

L. Exposed, round and flat-oval, exhaust-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

M. Exposed, rectangular, supply-air duct insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

N. Exposed, rectangular, return-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

O. Exposed, rectangular, outdoor-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

P. Exposed, rectangular, exhaust-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

3.9 EXTERIOR DUCT AND PLENUM INSULATION SCHEDULE

A. Supply ductwork exposed on the roof or exterior surface, minimum R-8 cellular glass board.
B. Return air and outdoor air plenum exposed on the roof shall have internal duct insulation of minimum of 1" thickness. The external surface shall have mineral fiber board of thickness that together with the internal liner has a minimum of R-8.

C. Install aluminum jacket over all exposed exterior insulated ductwork.

3.6 FIELD APPLIED JACKET APPLICATION

A. Exterior: Apply aluminum jacketing to all external ductwork that is insulated. Cover all fittings and specialties with aluminum jacketing.

B. Apply metal jacket where indicated, with 2-inch overlap at longitudinal seams and end joints. Secure jacket with stainless-steel sheet metal screws 6 inches o.c. and at end joints. Overlap longitudinal seams arranged to shed water and seal end joints with weatherproof mastic.

END OF SECTION 23 07 00
SECTION 23 07 19 - HVAC PIPING INSULATION

1.1 QUALITY ASSURANCE

A. Surface-Burning Characteristics: Flame-spread index of 25, and smoke-developed index of 50 for insulation installed indoors; according to ASTM E 84.

B. Mockup of each type of pipe insulation and finish.

1.2 FIELD QUALITY CONTROL

A. Field Inspections: By Contractor-engaged agency.

1.3 PIPING INSULATION SCHEDULE, GENERAL

A. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Underground piping.

1.4 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F: Flexible elastomeric.

B. Refrigerant Suction and Hot-Gas Piping: Flexible elastomeric.

C. Refrigerant Suction and Hot-Gas Flexible Tubing: Flexible elastomeric.

1.5 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping: Flexible elastomeric.

B. Refrigerant Suction and Hot-Gas Flexible Tubing: Flexible elastomeric.

1.6 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Piping, Exposed, Aluminum.

1.7 PART 2 - PRODUCTS

A. 2.1 GLASS FIBER

A. Manufacturers:

i. Owens Corning.

ii. Certain Teed Manson.
iii. Manville.
iv. Knauf.

b. Insulation: ASTM C547; rigid molded, noncombustible.
 i. 'K' value: ASTM C335, 0.23 at 75 degrees F.
 Minimum Service Temperature: 0 degrees F.
 ii. Maximum Service Temperature: 850 degrees F.
 iii. Maximum Moisture Absorption: 0.2 percent by volume.

C. Vapor Barrier Jacket

ASTM C921, White kraft paper reinforced with glass fiber yarn & bonded to aluminized
film. Moisture Vapor Transmission: ASTM E96; 0.02 perm inches. Secure all longitudi-
nal laps & butt strips. All laps to be sealed with lap adhesive. Butt strips to be sealed
with adhesive.

D. Tie Wire: 18 gage stainless steel with twisted ends on maximum 12" centers.

E. Vapor Barrier Lap Adhesive, Manufacturers: Foster 85-20, 85-75 or approved equal.
 Compatible with insulation.

F. Insulating Cement/Mastic
1. Manufacturers: Foster 30-36 or approved equal.

 G. Fibrous Glass Fabric: White, 20 x 20 mesh.

 H. Vapor Barrier Joint Sealant:

1. Manufacturers: Foster 95-44 or approved equal.

2.3 FLEXIBLE ELASTOMERIC

A. Manufacturer: Armstrong AP Armaflex Pipe Insulation.

B. Insulation: Flexible, expanded, closed cell structure, elastomeric.

 1. 'K' Valve: ASTM C177 or C518; 0.27 at 75 degrees F.
 2. Minimum Service Temperature: -40 degrees F.
 3. Maximum Service Temperature: 220 degrees F.
 5. Moisture Vapor Transmission: ASTM E96; 0.20 perm inches.

C. Elastomeric Adhesive: Armstrong 520 adhesive.

2.5 SHIELDS

A. Manufacturer: Grinnell figure 167 or approved equal. Shield length & thickness based on pipe size & insulation thickness according to manufacturer's recommendations.

2.6 ALUMINUM JACKET

A. Aluminum Jacket: ASTM B209.

 1. Thickness: Minimum 0.016 “ sheet.
 2. Finish: Smooth.
 4. Fittings: Minimum 0.016 “ thick die shaped fitting covers with factory attached protective liner.
 5. Metal Jacket Bands: 3/8 “ wide; minimum 0.015 “ thick aluminum.
A. Verify that piping has been tested before applying insulation materials.

B. Verify that surfaces are clean, foreign material removed, & dry. Rust shall be removed from piping and all piping primed with rust inhibiting paint prior to installing insulation.

3.2 INSTALLATION

A. Install materials in accordance with manufacturer's instructions.

B. On exposed piping, locate insulation & cover seams in least visible locations.

C. Insulated cold pipes conveying fluids below ambient temperature:

2. Insulate fittings, joints, & valves with molded insulation of like material & thickness as adjacent pipe. Wire in place. Fill all open joints with insulating cement.
3. Apply a skim coat of insulating cement. Finish with glass cloth imbedded between two uniform coats of insulating mastic.
4. Continue insulation through walls, sleeves, pipe hangers, & other pipe penetrations.
5. Where piping is interrupted by fittings, flanges, valves or hangers, & at intervals not to exceed 21 feet on continuous runs, provide an insulating vapor seal between the vapor barrier jacket & the pipe by liberal application of flexible vapor barrier joint sealant.
6. Insulate entire system including fittings, valves, unions, flanges, strainers, flexible connections, pump bodies, & expansion joints.

D. For insulated pipes conveying fluids above ambient temperature:
1. Insulate same as specified for cold pipes conveying fluids below ambient temperature.
2. For hot piping conveying fluids 140 degrees F or less, do not insulate flanges & unions at equipment, but bevel & seal ends of insulation.
3. For hot piping conveying fluids over 140 degrees F, or steam, insulate flanges & unions at equipment.
4. This applies to generator exhaust piping.

E. Condensate piping from cooling coils, gauge cocks, & coil drain valves (chilled water side only):
 1. Slip over piping prior to installation or slit lengthwise & snap over piping already connected.
 3. Apply adhesive to all seams & butt joints.
 4. Apply two coats of finish to all insulated pipe, valves & fittings.

F. Inserts & Shields:
 1. Application: All insulated piping at each support point.
 2. Shields: Galvanized steel between pipe hangers, supports or pipe hanger rolls & inserts.
 3. Insert Location: Between support shield & piping & under the finish jacket.
 4. Insert Configuration: Minimum 6 “ long, of same thickness & contour as adjoining insulation; may be factory fabricated.
 5. Insert Material: ASTM C533 hydrous calcium silicate insulation or other heavy density insulating material suitable for the planned temperature range.

G. Finish insulation at supports, protrusions, & interruptions.

H. For insulated pipe, fittings & valves exposed in mechanical rooms and other areas, finish with 8 ounce canvas jacket.

I. For exterior applications and for insulated pipe exposed inside the building in public areas: Provide vapor barrier jacket.

3.3 TOLERANCE
A. Substituted insulation materials shall provide thermal resistance within 10 percent at normal conditions, as materials indicated.

3.4 GLASS FIBER INSULATION SCHEDULE
A. Plumbing Systems
 1. Cold water in unheated areas; in outside walls; and outside the building - 1 “ thick.
 2. Domestic hot water - 1 “ thick, except use 1 ½” for hot water pipes 2 ½” and larger.
 3. Floor drain bodies & p-traps at drains receiving a/c condensate or drain lines from ice makers or machines - 1 “ thick.
 4. Drinking fountain drain lines to connection with vertical riser or 30 feet - 1 “ thick.
 5. Floor drain lines as noted above, to connection with vertical riser or 30 feet - 1 “ thick.
6. Roof drain bodies - 1 “ thick.
7. Roof drainage run horizontal including elbows where changing from horizontal to vertical - 1 “ thick.
8. Domestic chilled drinking water supply & return - 1 “ thick.

3.6 FLEXIBLE ELASTOMERIC INSULATION SCHEDULE

I. Cold Condensate Systems: From Chilled Water Coils, Gauge Cocks & Coil Drain Valves (Chilled Water Side Only) - 1” thick.

II. Refrigerant Suction Lines: 1” thick.

III. Refrigerant Liquid Lines at Wall & Roof Penetrations: ½” thick.

IV. Paint insulation exposed outside the building with one coat of white Armaflex paint.

END OF SECTION 23 07 19
SECTION 23 31 13 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Single-wall rectangular ducts and fittings.
2. Single-wall round and flat-oval ducts and fittings.
4. Duct liner.
5. Sealants and gaskets.
6. Hangers and supports.

B. Related Sections:

1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Division 23 Section "Nonmetal Ducts" for fibrous-glass ducts, thermoset fiber-reinforced plastic ducts, thermoplastic ducts, PVC ducts, and concrete ducts.
3. Division 23 Section "HVAC Casings" for factory- and field-fabricated casings for mechanical equipment.
4. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.
1.4 SUBMITTALS

A. Product Data: For each type of the following products:

1. Liners and adhesives.
2. Sealants and gaskets.

B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

D. Welding certificates.

E. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
a. Lindab Inc.
b. McGill AirFlow LLC.
c. SEMCO Incorporated.
d. Sheet Metal Connectors, Inc.
e. Spiral Manufacturing Co., Inc.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate according to SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Transverse Joints - Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

1. Galvanized Coating Designation: G60.
2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation; Insulation Group.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Owens Corning.

2. Maximum Thermal Conductivity:
 a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Insulation Pins and Washers:

1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-19, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or “Z” profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
2. Tape Width: 3 inches.
5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Water-Based Joint and Seam Sealant:
1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:
1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS
A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
D. Trapeze and Riser Supports:
PART 1 - SUPPORTS

3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round and flat-oval ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."
3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Test the following systems:
a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections totaling no less than 25 percent of total installed duct area for each designated pressure class.

b. Supply Ducts with a Pressure Class of 3-Inch wg or Higher: Test representative duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.

c. Return Ducts with a Pressure Class of 3-Inch wg or Higher: Test representative duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.

d. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.

e. Outdoor Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

4. Test for leaks before applying external insulation.

5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.

6. Give seven days’ advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.

2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to “Vacuum Test” in NADCA ACR, “Assessment, Cleaning and Restoration of HVAC Systems.”

 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.8 DUCT CLEANING

A. Clean new and existing duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.

 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

 3. Remove and reinstall ceiling to gain access during the cleaning process.
C. Particulate Collection and Odor Control:

1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).
2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes,shafts, baffles, dampers, and drive assemblies.
3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.9 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."
3.10 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 4-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 3.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

4. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

C. Return Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

3. Ducts Connected to Equipment Not Listed Above:
a. Pressure Class: Positive or negative 2-inch wg.
b. Minimum SMACNA Seal Class: B.
c. SMACNA Leakage Class for Rectangular: 12.
d. SMACNA Leakage Class for Round and Flat Oval: 12.

D. Exhaust Ducts:

1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.
 e.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:

1. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

F. Intermediate Reinforcement:

G. Liner:

1. Supply Air Ducts: Fibrous glass, Type I, 2 inches thick.
2. Return Air Ducts: Fibrous glass, Type I, 2 inches thick.
3. Supply Fan Plenums: Fibrous glass, Type II, 2 inches thick.
4. Return- and Exhaust-Fan Plenums: Fibrous glass, Type II, 2 inches thick.
5. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.

H. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.

b. Velocity 1000 to 1500 fpm:
 1) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 2) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."

 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-3, "Round Duct Elbows."

 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.

 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to-Diameter Ratio: 1.5.

 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

I. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-6, "Branch Connections."

 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.
2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.

 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 23 31 13
SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
2. Barometric relief dampers.
4. Control dampers.
5. Fire dampers.
6. Ceiling dampers.
7. Flange connectors.
8. Duct silencers.
10. Remote damper operators.
11. Duct-mounted access doors.
12. Flexible connectors.
13. Flexible ducts.
14. Duct accessory hardware.

B. Related Sections:

1. Division 23 Section "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
2. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
a. Special fittings.
c. Control damper installations.
d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
e. Duct security bars.
f. Wiring Diagrams: For power, signal, and control wiring.

C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

D. Source quality-control reports.

E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

1. Galvanized Coating Designation: G60.
2. Exposed-Surface Finish: Mill phosphatized.

C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
D. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. American Warming and Ventilating; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
4. Duro Dyne Inc.
5. Greenheck Fan Corporation.
6. Lloyd Industries, Inc.
7. Nailor Industries Inc.
8. NCA Manufacturing, Inc.
9. Pottorff; a division of PCI Industries, Inc.
10. Ruskin Company.
11. SEMCO Incorporated.

B. Description: Backdraft dampers to be gravity balanced. Pressure relief dampers to be motorized type.

D. Maximum System Pressure: 1-inch wg.

E. Frame: 0.052-inch thick, galvanized sheet steel or 0.063-inch thick extruded aluminum, with welded corners and mounting flange.

F. Blades: Multiple single-piece blades, center-pivoted, maximum 6-inch width, [0.025-inch-thick, roll-formed aluminum with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Extruded vinyl, mechanically locked.

I. Blade Axles:

1. Material: Galvanized steel
2. Diameter: 0.20 inch.

J. Tie Bars and Brackets: Galvanized steel.

K. Return Spring: Adjustable tension.

L. Bearings: Steel ball or synthetic pivot bushings.
M. Accessories:

1. Adjustment device to permit setting for varying differential static pressure.
2. Counterweights and spring-assist kits for vertical airflow installations.
3. Electric actuators.
4. Chain pulls.
5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20-gage minimum.
 b. Sleeve Length: 6 inches minimum.
6. Screen Mounting: Rear mounted.
7. Screen Material: Aluminum.
8. Screen Type: Insect.
9. 90-degree stops.

2.3 MOTORIZED RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. American Warming and Ventilating; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
4. Duro Dyne Inc.
5. Greenheck Fan Corporation.
6. Lloyd Industries, Inc.
7. Nailor Industries Inc.
8. NCA Manufacturing, Inc.
9. Pottorff; a division of PCI Industries, Inc.
10. Ruskin Company.
11. SEMCO Incorporated.

B. Suitable for horizontal or vertical mounting.

D. Maximum System Pressure: 2-inch wg.

E. Frame: [0.064-inch thick, galvanized sheet steel with welded corners and mounting flange.

F. Blades:

1. Multiple, [0.025-inch thick, roll-formed aluminum.
3. Action: Parallel.
5. Eccentrically pivoted.
G. Blade Seals: Neoprene.

H. Blade Axles: Galvanized steel.

I. Tie Bars and Brackets:
 1. Material: Galvanized steel.
 2. Rattle free with 90-degree stop.

J. Return Spring: Adjustable tension.

K. Bearings: Synthetic.

L. Accessories:
 1. Flange on intake.
 2. Adjustment device to permit setting for varying differential static pressures.

2.4 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:

 1. Manufacturers: Subject to compliance with requirements, [provide products by one of the following:

 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. Flexmaster U.S.A., Inc.
 d. McGill AirFlow LLC.
 e. METALAIRE, Inc.
 f. Nailor Industries Inc.
 g. Pottorff; a division of PCI Industries, Inc.
 h. Ruskin Company.
 i. Trox USA Inc.
 j. Vent Products Company, Inc.

 2. Standard leakage rating, with linkage outside airstream.
 3. Suitable for horizontal or vertical applications.
 4. Frames:
 a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

 5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.

7. **Bearings**:
 a. Oil-impregnated bronze.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. **Tie Bars and Brackets**: Galvanized steel.

B. Standard, Aluminum, Manual Volume Dampers:

1. **Manufacturers**: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. Flexmaster U.S.A., Inc.
 d. McGill AirFlow LLC.
 e. METALAIRE, Inc.
 f. Nailor Industries Inc.
 g. Pottorff; a division of PCI Industries, Inc.
 h. Ruskin Company.
 i. Trox USA Inc.
 j. Vent Products Company, Inc.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. **Frames**: Hat-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
5. **Blades**:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 e. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.

7. **Bearings**:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. **Tie Bars and Brackets**: Aluminum.

C. Low-Leakage, Steel, Manual Volume Dampers:

1. **Manufacturers**: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Low-leakage rating, with linkage outside airstream, and bearing AMCA’s Certified Ratings Seal for both air performance and air leakage.

3. Suitable for horizontal or vertical applications.

4. Frames:
 a. Hat shaped.
 b. Galvanized-steel channels, 0.064 inch thick.
 c. Mitered and welded corners.
 d. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized, roll-formed steel, 0.064 inch thick.

7. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

10. Tie Bars and Brackets: Galvanized steel.

11. Accessories:
 a. Include locking device to hold single-blade dampers in a fixed position without vibration.

2.5 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Arrow United Industries; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
5. McGill AirFlow LLC.
6. METALAIRE, Inc.
7. Nailor Industries Inc.
8. NCA Manufacturing, Inc.
9. PHL, Inc.
10. Pottorff; a division of PCI Industries, Inc.
11. Prefco; Perfect Air Control, Inc.
12. Ruskin Company.

B. Type: Static; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream, Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream]; fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.

1. Minimum Thickness: 0.052 or 0.138 inch thick, as indicated, and of length to suit application.
2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.6 CEILING DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Cesco Products; a division of Mestek, Inc.
3. McGill AirFlow LLC.
4. METALAIRE, Inc.
5. Nailor Industries Inc.
6. Prefco; Perfect Air Control, Inc.
7. Ruskin Company.
8. Vent Products Company, Inc.

B. General Requirements:

1. Labeled according to UL 555C by an NRTL.
2. Comply with construction details for tested floor- and roof-ceiling assemblies as indicated in UL's "Fire Resistance Directory."

C. Frame: Galvanized sheet steel, round or rectangular, style to suit ceiling construction.

D. Blades: Galvanized sheet steel with refractory insulation.

F. Fire Rating: 2 hours.

2.7 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ductmate Industries, Inc.
2. Nexus PDQ; Division of Shilco Holdings Inc.

B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.8 DUCT SILENCERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide comparable product by one of the following:

1. Industrial Noise Control, Inc.
2. McGill AirFlow LLC.
3. Ruskin Company.
5. Price

C. General Requirements:
1. Factory fabricated.
2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.
3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

D. Shape:
1. Rectangular straight with splitters or baffles.
2. Round straight with center bodies or pods.
3. Rectangular elbow with splitters or baffles.
4. Round elbow with center bodies or pods.
5. Rectangular transitional with splitters or baffles.

E. Rectangular Silencer Outer Casing: ASTM A 653/A 653M, G90, galvanized sheet steel, 0.034 inch thick.

1. Sheet Metal Thickness for Units up to 24 Inches in Diameter: 0.034 inch thick.
2. Sheet Metal Thickness for Units 26 through 40 Inches in Diameter: 0.040 inch thick.
3. Sheet Metal Thickness for Units 42 through 52 Inches in Diameter: 0.052 inch thick.
4. Sheet Metal Thickness for Units 54 through 60 Inches in Diameter: 0.064 inch thick.

G. Inner Casing and Baffles: ASTM A 653/A 653M G60 (Z180)] galvanized sheet metal, 0.034 inch thick, and with 1/8-inch- diameter perforations.

H. Connection Sizes: Match connecting ductwork unless otherwise indicated.

I. Principal Sound-Absorbing Mechanism:
1. Controlled impedance membranes and broadly tuned resonators without absorptive media.
2. Dissipative type with fill material.
 a. Fill Material: Inert and vermin-proof fibrous material, packed under not less than 5 percent compression.
 b. Erosion Barrier: Polymer bag enclosing fill, and heat sealed before assembly.
3. Lining: None.

J. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.

1. Lock form and seal or continuously weld joints.
2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.
3. Reinforcement: Cross or trapeze angles for rigid suspension.

K. Accessories:
1. Factory-installed end caps to prevent contamination during shipping.
2. Removable splitters.
3. Airflow measuring devices.

L. Source Quality Control: Test according to ASTM E 477.
 1. Testing of mockups to be witnessed by Architect.
 2. Record acoustic ratings, including dynamic insertion loss and generated-noise power levels with an airflow of at least 2000-fpm (10-m/s) face velocity.
 3. Leak Test: Test units for airtightness at 200 percent of associated fan static pressure or 6-inch wg (1500-Pa) static pressure, whichever is greater.

M. Capacities and Characteristics:
 2. Shape: Rectangular or Round.
 4. Maximum Pressure Drop: 0.35-inch wg.
 5. Casing:
 b. Outer Material: Galvanized steel.
 c. Inner Material: Galvanized steel.

2.9 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. METALAIRE, Inc.
 4. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-3, "Vanels and Vane Runners," and 2-4, "Vane Support in Elbows."

E. Vane Construction: Double wall.
F. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.10 REMOTE DAMPER OPERATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Pottorff; a division of PCI Industries, Inc.
2. Ventfabrics, Inc.
3. Young Regulator Company.

B. Description: Cable system designed for remote manual damper adjustment.

C. Tubing: Brass.

D. Cable: Stainless steel.

E. Wall-Box Mounting: Recessed, 3/4 inches deep.

F. Wall-Box Cover-Plate Material: Steel.

2.11 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a division of Mestek, Inc.
2. Cesco Products; a division of Mestek, Inc.
3. Ductmate Industries, Inc.
5. Greenheck Fan Corporation.
6. McGill AirFlow LLC.
7. Nailor Industries Inc.
8. Pottorff; a division of PCI Industries, Inc.
9. Ventfabrics, Inc.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.
2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.

2.12 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch wide, 0.028-inch thick, galvanized sheet steel or 0.032-inch thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

 1. Minimum Weight: 24 oz./sq. yd.
 3. Service Temperature: Minus 50 to plus 250 deg F.

 1. Minimum Weight: 16 oz./sq. yd.
 2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
 3. Service Temperature: Minus 67 to plus 500 deg F.

H. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.13 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flexmaster U.S.A., Inc.
2. McGill AirFlow LLC.

B. Noninsulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.

C. Noninsulated, Flexible Duct: UL 181, Class 0, interlocking spiral of aluminum foil.

1. Pressure Rating: 8-inch wg positive or negative.
3. Temperature Range: Minus 100 to plus 435 deg F.

D. Insulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.
4. Insulation R-value: Within a conditioned plenum the R value to be minimum of 6 and flex duct installed in a non-conditioned space shall be a minimum of R-8. Comply with ASHRAE/IESNA 90.1-2004.

E. Insulated, Flexible Duct: UL 181, Class 0, interlocking spiral of aluminum foil; fibrous-glass insulation; polyethylene vapor-barrier film.

1. Pressure Rating: 8-inch wg positive or negative.
3. Temperature Range: Minus 20 to plus 250 deg F.

F. Flexible Duct Connectors:

1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

2.14 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s “HVAC Duct Construction Standards - Metal and Flexible” for metal ducts and in NAIMA AH116, “Fibrous Glass Duct Construction Standards,” for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire dampers according to UL listing.

H. Install duct security bars. Construct duct security bars from 0.164-inch steel sleeve, continuously welded at all joints and 1/2-inch- diameter steel bars, 6 inches o.c. in each direction in center of sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-by-1/4-inch steel angle to 4 sides and both ends of sleeve. Connect duct
security bars to ducts with flexible connections. Provide 12-by-12-inch hinged access panel with cam lock in duct in each side of sleeve.

I. Connect ducts to duct silencers rigidly.

J. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 1. On both sides of duct coils.
 2. Upstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 7. Control devices requiring inspection.
 8. Elsewhere as indicated.

K. Install access doors with swing against duct static pressure.

L. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.

M. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

N. Install flexible connectors to connect ducts to equipment.

O. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

P. Connect terminal units to supply ducts with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

Q. Connect diffusers or light troffer boots to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.

R. Connect flexible ducts to metal ducts with stainless steel draw bands with .

S. Install duct test holes where required for testing and balancing purposes.
T. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 23 33 00
SECTION 23 34 00 – HVAC FANS

PART 1 - GENERAL

1.01 WORK INCLUDED

A. Centrifugal roof ventilators.
B. Ceiling and inline ventilators.
C. Roof supply fans.
D. Utility fans.

1.02 RELATED SECTIONS

A. Section 23 02 00 – Basic Materials and Methods
B. Section 23 05 13 – Common Motor Requirements for HVAC Equipment
C. Section 23 05 48 – Vibration and Seismic Controls for HVAC Piping and Equipment
D. Section 23 09 00 – Building Automation System
E. Section 23 05 93 – Testing, Adjusting and Balancing

1.03 QUALITY ASSURANCE

A. UL Compliance: Fans shall be designed, manufactured, and tested in accordance with UL 705 “Power Ventilators.”

UNITS ARE UL-LISTED AS “POWER VENTILATORS.” IF UL LABEL IS NOT REQUIRED, DELETE BELOW. RETAINING MAY INCREASE COST.
SELECT 1 OF 2 PARAGRAPHS BELOW. SECOND PARA IS USED FOR PUBLIC-FUNDED PROJECTS.

B. UL Compliance: Fans and components shall be UL listed and labeled.
C. Nationally Recognized Testing Laboratory Compliance (NRTL): Fans and components shall be NRTL listed and labeled. The term “NRTL” shall be as defined in OSHA Regulation 1910.7.
D. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.
E. Electrical Component Standard: Components and installation shall comply with NFPA 70 "National Electrical Code."
G. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings in accordance with AMCA Standard 210/ASHRAE Standard 51 - Laboratory Methods of Testing Fans for Rating.

1.04 SUBMITTALS
1. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections:

2. Product data for selected models, including specialties, accessories, and the following:

RETAIN THE FOLLOWING 2 PARAGRAPHS ONLY WHERE PERFORMANCE IS CRITICAL.

a. Certified fan performance curves with system operating conditions indicated.
b. Certified fan sound power ratings.
c. Motor ratings and electrical characteristics plus motor and fan accessories.
d. Materials gages and finishes, include color charts.
e. Dampers, including housings, linkages, and operators.
f. Full color paint samples.

3. Shop drawings from manufacturer detailing equipment assemblies and indicating dimensions, weights, required clearances, components, and location and size of field connections.

RETAIN BELOW FOR CEILING-MOUNTED UNITS WHERE DRAWINGS DO NOT INCLUDE DETAILED REFLECTIVE CEILING PLANS OR WHERE PROJECT INVOLVES UNUSUAL COORDINATION REQUIREMENTS.

4. Coordination drawings, in accordance with Division 23 Section "Basic Materials and Methods", for roof penetration requirements and for reflected ceiling plans drawn accurately to scale and coordinating penetrations and units mounted above ceiling. Show the following:

5. EDIT BELOW TO SUIT PROJECT.

a. Roof framing and support members relative to duct penetrations.
b. Ceiling suspension members.
c. Method of attaching hangers to building structure.
d. Size and location of initial access modules for acoustical tile.
e. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinkler heads, access panels, and special moldings.

5. Wiring diagrams that detail power, signal, and control wiring. Differentiate between manufacturer-installed wiring and field-installed wiring.

RETAIN BELOW IF PROCEDURES FOR PRODUCT CERTIFICATIONS RETAINED UNDER "QUALITY ASSURANCE" ARTICLE.

6. Product certificates, signed by manufacturer, certifying that their products comply with specified requirements.

7. Maintenance data for inclusion in Operating and Maintenance Manual specified in Division 1 and Division 23 Section "Basic Materials and Methods".

1.05 DELIVERY, STORAGE, AND HANDLING

A. Fans shall be stored and handled in accordance with the unit manufacturer's instructions.

B. Lift and support units with the manufacturer's designated lifting or supporting points.

C. Disassemble and reassemble units as required for movement into the final location following manufacturer's written instructions.
D. Deliver fan units as a factory-assembled unit to the extent allowable by shipping limitations, with protective crating and covering.

1.06 ENVIRONMENTAL REQUIREMENTS

A. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings lubricated, and fan has been test run under observation.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS
DELETE THIS ARTICLE IF OWNER-IMPOSED OR OTHER PROJECT REQUIREMENTS PROHIBIT MENTION OF MANUFACTURERS' NAMES.

A. PennBarry
B. Loren Cook Company
C. Greenheck Fan Corporation
D. ACME
E. Substitutions under provisions of Division 1.

SOUND POWER RATINGS INFORMATION MAY ONLY BE AVAILABLE FROM MANUFACTURERS UPON REQUEST. REFER TO DISCUSSION IN EVALUATIONS ON SOUND AND VIBRATION CONTROL.

2.02 GENERAL DESCRIPTION

A. Provide fans that are factory fabricated and assembled, factory tested, and factory finished with indicated capacities and characteristics.

B. Fans and Shafts shall be statically and dynamically balanced and designed for continuous operation at the maximum rated fan speed and motor horsepower.

C. Provide factory baked-enamel finish coat after assembly. Color shall be verified during the submittal process.

2.03 CENTRIFUGAL ROOF VENTILATORS

A. Fan shall be a spun aluminum, centrifugal, roof mounted, direct driven or belt driven as indicated.

B. Fan shall be listed by Underwriters Laboratories (UL 705). Fan shall bear the AMCA certified ratings seal for sound and air performance.

C. The fan shall be of bolted and welded construction utilizing corrosion resistant fasteners. The spun aluminum structural components shall be constructed of minimum 16 gauge marine alloy aluminum, bolted to a rigid aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. The discharge baffle conduit chase shall be provided through the curb cap and into the motor compartment to facilitate wiring connections. The motor, bearings and drives shall be mounted on a minimum 14 gauge steel power assembly, isolated from the unit structure with rubber vibration isolators. These components shall be enclosed in a weather-tight compartment, separated from the exhaust airstream. Unit shall bear an engraved aluminum nameplate and shall be shipped in transit tested packaging.

D. Wheel shall be centrifugal backward inclined, constructed of 100% aluminum, including a precision machined cast aluminum hub. Wheel inlet shall overlap an aerodynamic aluminum inlet cone to provide maximum performance and efficiency. Wheel shall be
balanced in accordance with AMCA standard 204-96, balance quality and vibration levels for fans.

E. Motor shall be heavy duty type with permanently lubricated sealed ball bearings.

F. Bearings shall be designed and individually tested specifically for use in air handling applications. Construction shall be heavy duty regreasable ball type in a cast iron housing selected for a minimum L50 life in excess of 200,000 hours at maximum cataloged operating speed.

G. Accessories: The following accessories are required.

1. Disconnect Switch: Nonfusible type, with thermal overload protection mounted inside fan housing, factory-wired through an internal aluminum conduit.

2. Bird Screens: Removable ½ inch mesh, 16 gauge, aluminum or brass wire.

3. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base, factory set to close when fan stops.

5. Roof Curbs: Prefabricated, 12 inch high, heavy-gauge, galvanized steel; mitered and welded corners; 2 inch thick, rigid, fiberglass insulation adhered to inside walls; built-in cant and mounting flange for flat roof decks; and 2 inch wood nailer. Size as required to suit roof opening and fan base.

2.04 CEILING AND INLINE VENTILATORS

A. Ceiling and inline ventilators shall be direct drive or belt drive as indicated, centrifugal blower type. Fan wheel shall be constructed of galvanized steel and shall be dynamically balanced. The housing shall be constructed of minimum 20 gauge corrosion resistant galvanized steel and acoustically insulated for quiet operation. Blower and motor assembly shall be easily removable from the housing without disturbing the ductwork. The motor shall be permanently lubricated with built-in thermal overload protection and shall be factory tested prior to shipment. The ceiling ventilators shall be furnished standard with a powder-painted white steel grille.

B. Ventilators shall be certified and licensed to bear the AMCA Seal for Air and Sound Performance. Ventilator performance shall be based on tests and procedures performed in accordance with AMCA publication 211 and comply with the requirements of the AMCA Certified Ratings Program. Fan sound power level ratings shall be based on tests and procedures performed in accordance with AMCA publication 311 and comply with the requirements of the AMCA Certified Ratings Program. Ventilators shall be UL listed and CSA certified.

C. Accessories: The following accessories are required.

1. Dampers:

 a. Aluminum backdraft damper.
b. Motor-operated volume control damper.

c. U.L. listed ceiling radiation damper for ceiling fans comply with NFPA Standard 90A rated for 3 hours.

2. Disconnect Switch: Nonfusible type with thermal overload protection.
3. Speed Controls: Fan mounted, solid state speed controller.

2.05 ROOF SUPPLY FANS

A. Roof-mounted, filtered air supply units are of the belt-driven, double width, double inlet (DWDI), forward curved centrifugal blower type. The unit’s blower assembly shall be mounted on vibration isolators. Motor drives shall be machine cast iron and variable pitch and shall be factory set to the specified RPM. Belts shall be non-static and oil resistant. Both motor and blower bearings shall be permanently lubricated with sealed ball bearings. The blower housing shall be fabricated of heavy gauge painted steel.

B. Fan shall be listed by Underwriters Laboratories (UL 705) and shall bear the AMCA certified rating seal for sound and air performance.

C. Units housing shall be minimum 18 gauge extruded aluminum with a removable aluminum cover. The insulated cover shall be held in place with bolts for easy access to fan components.

D. Filters shall be permanent, one inch, washable, aluminum type and shall be easily removed for cleaning. Units carry the AMCA Certified Ratings Seal for air performance with filters in place.

E. Accessories: The following items are required.

1. Disconnect Switch: Nonfusible type, with thermal overload protection mounted inside fan housing, factory-wired through an internal aluminum conduit.
2. Bird Screens: Removable ½ inch mesh, 16 gauge, aluminum or brass wire.
4. Roof Curb: Prefabricated, 12 inch high, heavy gauge, galvanized steel; mitered and welded corners; 2 inch thick, rigid, fiberglass insulation adhered to inside walls; built-in cant and mounting flange for flat roof decks; and 2 inch wood nailer. Size as required to suit roof opening and fan base.

2.06 UTILITY FANS

A. Fans shall be of the direct driven or belt driven utility fan type as indicated with a single width, single inlet housing in AMCA arrangement 10.

B. The housing shall be constructed of minimum 14 gauge steel with continuously welded or lock formed seams permitting no air leakage. The housing shall be field rotatable to any of the eight standard discharge positions. Housing and bearing supports shall be constructed of minimum 10 gauge welded steel members to prevent vibration and rigidly support the shaft and bearings. Side access inspection port shall be provided for access to the motor compartments.

C. The fan wheel shall be of the forward curved type C, centrifugal fan type and constructed of heavy gauge steel. Wheels shall be statically and dynamically balanced. The wheel cone and fan inlet cone shall be carefully matched for maximum performance and operating efficiency.

D. Motors shall be permanently lubricated, heavy duty, ball bearing type carefully matched to the fan load and furnished at the specified voltage, phase and enclosure. The fan
shaft shall be ground and polished solid steel mounted in heavy duty, permanently sealed, pillow block ball bearings. Bearings shall be selected for a minimum L50 life in excess of 200,000 hours at maximum cataloged operating speed. Drives shall be sized for a minimum of 150% of driven horsepower. Pulleys shall be of the fully machined cast iron type, keyed and securely attached to the wheel and motor shafts. The motor pulley shall be adjustable for final system balancing.

E. Fan performance shall be based on tests conducted in accordance with AMCA Standard 210 test code for air moving devices. Fans shall be licensed to bear the AMCA Certified Ratings Seal for air performance.

2.07 PROPELLER WALL AXIAL VENTILATORS AND ASSEMBLIES LOCATED IN POOL ROOMS

A. Unless noted otherwise, all materials shall be of noncorrosive aluminum or stainless steel.

B. Ventilator and assembly shall consist of propeller wall axial ventilator section, motorized damper section and accessories as scheduled.

C. Motorized Damper Section:
 1. Blades and frame shall be of aluminum construction with Air Dry Phenolic (Heresite VR-500) coating.
 2. Blade edge seals shall be Ruskiprene type or equivalent, mechanically locked in extruded blade slots.
 3. Linkage shall be stainless steel, mounted in frame.
 4. Axles shall be square or hexagonal, stainless steel construction.
 5. Bearings shall be non-corrosive molded synthetic.
 6. Shaft shall be stainless steel.
 7. Damper actuator shall be mounted inside NEMA 4 type enclosure, factory wired through an internal aluminum conduit.

D. Gravity Damper Section:
 1. Blades and frame shall be of aluminum construction with Air Dry Phenolic (Heresite VR-500) coating.

E. Propeller Wall Axial Ventilator Section:
 1. Fan motor shall be in TEFC type enclosure.
 2. All steel fan components shall be coated with Air Dry Phenolic (Heresite VR-500) coating.

F. Wall collar shall be of aluminum construction.

G. Accessories: The following items are required:
 1. Disconnect Switch: Nonfusible type, with thermal overload protection mounted inside NEMA 4 enclosure, factory-wired through an internal aluminum conduit.
 2. Bird Screens: Removable ½ inch mesh, 16 gauge, aluminum or brass wire.

PART 3 – EXECUTION

3.01 Install in accordance with manufacturer’s instructions.

3.02 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications.
SECTION 23 37 13 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Round ceiling diffusers.
 2. Rectangular and square ceiling diffusers.
 3. Perforated diffusers.
 4. Louver face diffusers.
 5. Linear bar diffusers.

B. Related Sections:
 1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Round Ceiling Diffuser:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
DIFFUSERS, REGISTERS, AND GRILLES

233713

a. Carnes.
b. METALAIRE, Inc.
c. Nailor Industries Inc.
d. Price Industries.
e. Titus.
f. Krueger.
g. Pottorff

2. Devices shall be specifically designed for variable-air-volume flows.
4. Finish: Baked enamel, white.
5. Face Style: Four cone.

B. Rectangular and Square Ceiling Diffusers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carnes.
 b. Hart & Cooley Inc.
 c. Krueger.
 d. METALAIRE, Inc.
 e. Nailor Industries Inc.
 f. Price Industries.
 g. Titus.
 h. Krueger.
 i. Pottorff

2. Devices shall be specifically designed for variable-air-volume flows.
4. Finish: Baked enamel, white.
5. Face Size: as specified.
6. Face Style: Four cone.
7. Mounting: to match ceiling.

C. Perforated Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carnes.
 b. Hart & Cooley Inc.
 c. Krueger.
 d. METALAIRE, Inc.
 e. Nailor Industries Inc.
 f. Price Industries.
 g. Titus.
 h. Krueger.
 i. Pottorff

2. Devices shall be specifically designed for variable-air-volume flows.
3. Material: Steel backpan and pattern controllers, with steel face.
4. Finish: Baked enamel, white.
5. Face Size: As specified.
6. Duct Inlet: Round.
7. Face Style: Drop extended.
8. Mounting: To match ceiling type.

D. Louver Face Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carnes.
 b. METALAIRE, Inc.
 c. Nailor Industries Inc.
 d. Price Industries.
 e. Titus.
 f. Krueger.
 g. Pottorff
2. Devices shall be specifically designed for variable-air-volume flows.
4. Finish: Baked enamel, white.
5. Face Size: As specified.
6. Mounting: To match ceiling.

2.2 CEILING LINEAR SLOT OUTLETS

A. Linear Bar Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carnes.
 b. Krueger.
 c. Metalaire, Inc.
 d. Nailor Industries Inc.
 e. Titus.
 f. Pottorff
2. Devices shall be specifically designed for variable-air-volume flows.
4. Narrow Core Spacing Arrangement: 1/8-inch thick blades spaced 1/4 inch apart, zero-degree deflection.
5. Wide Core Spacing Arrangement: 1/8-inch thick blades spaced 1/2 inch apart, zero-degree deflection.
2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13
SECTION 23 41 00 - PARTICULATE AIR FILTRATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Flat panel filters.
 2. Pleated panel filters.
 4. Filter gages.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include dimensions; operating characteristics; required clearances and access; rated flow capacity, including initial and final pressure drop at rated airflow; efficiency and test method; fire classification; furnished specialties; and accessories for each model indicated.

B. Operation and Maintenance Data: For each type of filter and rack to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:
 1. Comply with applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality"; Section 5 - "Systems and Equipment"; and Section 7 - "Construction and Startup."
 2. Comply with ASHRAE 52.1 for arrestance and ASHRAE 52.2 for MERV for methods of testing and rating air-filter units.

C. Comply with NFPA 90A and NFPA 90B.

1.5 COORDINATION

A. Coordinate sizes and locations of concrete bases. Cast anchor-bolt inserts into bases.
1.6 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Provide one complete set(s) of filters for each filter bank. If system includes prefilters, provide only prefilters.

PART 2 - PRODUCTS

2.1 FLAT PANEL FILTERS

A. Description: Factory-fabricated, self-supported, flat, nonpleated, panel-type, disposable air filters with holding frames.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. AAF International.
 b. Airguard.
 c. Camfil Farr.
 d. Columbus Industries, Inc.
 e. CRS Industries, Inc.; CosaTron Division.
 f. D-Mark.
 g. Filtration Group.
 h. Flanders-Precisionaire.
 i. Koch Filter Corporation.
 j. Purafil, Inc.
 k. Research Products Corp.
 l. Tri-Dim Filter Corporation.

B. Filter Unit Class: UL 900, Class 1.

C. Media: Interlaced glass or synthetic fibers coated with nonflammable adhesive.

1. Adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Media shall be coated with an antimicrobial agent.

D. Filter-Media Frame: Cardboard with perforated metal retainer sealed or bonded to the media.

E. Mounting Frames: Welded galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.
2.2 PLEATED PANEL FILTERS

A. Description: Factory-fabricated, self-supported, extended-surface, pleated, panel-type, disposable air filters with holding frames.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AAF International.
 b. Airguard.
 c. Camfil Farr.
 d. Columbus Industries, Inc.
 e. CRS Industries, Inc.; CosaTron Division.
 f. D-Mark.
 g. Filtration Group.
 h. Flanders-Precisionaire.
 i. Koch Filter Corporation.
 j. Purafil, Inc.
 k. Research Products Corp.
 l. Tri-Dim Filter Corporation.

B. Filter Unit Class: UL 900, Class 1.

C. Media: Interlaced glass or synthetic fibers coated with nonflammable adhesive.

1. Adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Media shall be coated with an antimicrobial agent.
3. Separators shall be bonded to the media to maintain pleat configuration.
4. Welded wire grid shall be on downstream side to maintain pleat.
5. Media shall be bonded to frame to prevent air bypass.
6. Support members on upstream and downstream sides to maintain pleat spacing.

D. Filter-Media Frame: Cardboard frame with perforated metal retainer sealed or bonded to the media.

E. Mounting Frames: Welded galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.

2.3 SIDE-SERVICE HOUSINGS

A. Description: Factory-assembled, side-service housings, constructed of galvanized steel with flanges to connect to duct or casing system.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AAF International.
 b. Airguard.
 c. Camfil Farr.
 d. Columbus Industries, Inc.
e. CRS Industries, Inc.; CosaTron Division.
f. D-Mark.
g. Filtration Group.
h. Flanders-Precisionaire.
i. Koch Filter Corporation.
j. Purafil, Inc.
k. Research Products Corp.

B. Access Doors: Hinged, with continuous gaskets on perimeter and positive-locking devices, and arranged so filter cartridges can be loaded from either access door.

C. Sealing: Incorporate positive-sealing gasket material on channels to seal top and bottom of filter cartridge frames and to prevent bypass of unfiltered air.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Position each filter unit with clearance for normal service and maintenance. Anchor filter holding frames to substrate.

B. Install filters in position to prevent passage of unfiltered air.

C. Install filter gage for each filter bank.

D. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.

E. Install filter-gage, static-pressure taps upstream and downstream from filters. Install filter gages on filter banks with separate static-pressure taps upstream and downstream from filters. Mount filter gages on outside of filter housing or filter plenum in an accessible position. Adjust and level inclined gages.

F. Coordinate filter installations with duct and air-handling-unit installations.

3.2 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
1. Operate automatic roll filters to demonstrate compliance with requirements.
2. Test for leakage of unfiltered air while system is operating.

D. Air filter will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.3 CLEANING

A. After completing system installation and testing, adjusting, and balancing of air-handling and air-distribution systems, clean filter housings and install new filter media.

END OF SECTION 23 41 00
SECTION 238130 – VARIABLE REFRIGERANT FLOW HVAC SYSTEM

Part 1 – General

1.01 System Description

The variable capacity, heat pump heat recovery air conditioning system shall be a Mitsubishi Electric CITY MULTI VRF (Variable Refrigerant Flow) zoning system.

The R2-Series system shall consist of a PURY outdoor unit, BC (Branch Circuit) Controller, multiple indoor units, and M-NET DDC (Direct Digital Controls). Each indoor unit or group of indoor units shall be capable of operating in any mode independently of other indoor units or groups. System shall be capable of changing mode (cooling to heating, heating to cooling) with no interruption to system operation. To ensure owner comfort, each indoor unit or group of indoor units shall be independently controlled and capable of changing mode automatically when zone temperature strays 1.8 degrees F from set point for ten minutes. The sum of connected capacity of all indoor air handlers shall range from 50% to 150% of outdoor rated capacity.

The PU*Y-P**KMU-U CITY MULTI system shall be capable of qualifying for the Buy American Act with a waiver under the non-availability exception based on the determination by the U.S. Customs and Border Protection that the key components, the ODUs, are a “product of the US” for the purposes of U.S. Government procurement. (Federal Register / Vol. 79, No. 220 / Friday, November 14, 2014 pages 68284-68246)

1.02 Quality Assurance

A. The units shall be listed by Electrical Testing Laboratories (ETL) and bear the ETL label.
B. All wiring shall be in accordance with the National Electrical Code (N.E.C.).
C. The units shall be manufactured in a facility registered to ISO 9001 and ISO14001 which is a set of standards applying to environmental protection set by the International Standard Organization (ISO).
D. All units must meet or exceed the 2010 Federal minimum efficiency requirements and the ASHRAE 90.1 efficiency requirements for VRF systems. Efficiency shall be published in accordance with the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 1230.
E. A full charge of R-410A for the condensing unit only shall be provided in the condensing unit.

1.03 Delivery, Storage and Handling

A. Unit shall be stored and handled according to the manufacturer’s recommendation.

1.04 Controls

A. The control system shall consist of a low voltage communication network of unitary built-in controllers with on-board communications and a web-based operator interface. A web controller with a network interface card shall gather data from this system and generate web pages accessible through a conventional web browser on each PC connected to the network. Operators shall be able to perform all normal operator functions through the web browser interface.
B. System controls and control components shall be installed in accordance with the manufacturer’s written installation instructions.
C. Furnish energy conservation features such as optimal start, night setback, request-based logic, and demand level adjustment of overall system capacity as specified in the sequence.
D. System shall provide direct and reverse-acting on and off algorithms based on an input condition or group conditions to cycle a binary output or multiple binary outputs.
E. Provide capability for future system expansion to include monitoring and use of occupant card access, lighting control and general equipment control.
F. System shall be capable of email generation for remote alarm annunciation.
G. Control system start-up shall be a required service to be completed by the manufacturer or a duly authorized, competent representative that has been factory trained in Mitsubishi Electric controls system configuration and operation. The representative shall provide proof of certification for Mitsubishi Electric Controls Applications Training indicating successful completion of no more than two (2) years prior to system installation. This certification shall be included as part of the
equipment and/or controls submittals. This service shall be equipment and system count dependent and shall be a minimum of one (1) eight (8) hour period to be completed during normal working hours.
Section 1.01 Part 2 – Warranty

2.01 The CITY MULTI units shall be covered by the manufacturer’s limited warranty for a period of one (1) year parts and seven (7) year compressor to the original owner from date of installation. If the systems are:
1) designed by a certified CITY MULTI Diamond Designer using Diamond System Builder,
2) installed by a contractor that has successfully completed the Mitsubishi Electric three day service course, AND
3) verified with required materials submitted to and approved by the Mitsubishi Electric Service Department, which include:
 - As built Diamond System Builder file,
 - A one (1) hour Maintenance Tool record with system information, in Ordinary Control Mode (not initial),
 - Outdoor and Indoor unit dip switch settings
 - Outdoor unit(s) function settings,
then the units shall be covered by an extended manufacturer’s limited warranty for a period of ten (10) years to the original owner from date of installation.
In addition the compressor shall have a manufacturer’s limited warranty for a period of ten (10) years to the original owner from date of installation.
If, during this period, any part should fail to function properly due to defects in workmanship or material, it shall be replaced or repaired at the discretion of the manufacturer. This warranty shall not include labor.

2.02 Manufacturer shall have a minimum of thirty-three (33) years of HVAC experience in the U.S. market.

2.03 All manufacturer technical and service manuals must be readily available for download by any local contractor should emergency service be required. Registering and sign-in requirements which may delay emergency service reference are not allowed.

2.04 The CITY MULTI VRF system shall be installed by a contractor with extensive CITY MULTI install and service training. The mandatory contractor service and install training should be performed by the manufacturer.

Section 1.02 Part 3 – Products

Section 1.03

3.01 R2-SERIES Outdoor Unit
A. General:
The R2-Series PURY outdoor unit shall be used specifically with CITY MULTI VRF components. The PURY outdoor units shall be equipped with multiple circuit boards that interface to the M-NET controls system and shall perform all functions necessary for operation. Each outdoor unit module shall be completely factory assembled, piped and wired and run tested at the factory.
1. The model nomenclature and unit requirements are shown below. All units requiring a factory supplied twinning kits shall be piped together in the field, without the need for equalizing line(s). If an alternate manufacturer is selected, any additional material, cost, and labor to install additional lines shall be incurred by the contractor.

<table>
<thead>
<tr>
<th>Outdoor Unit Model Nomenclature</th>
<th>208/230 Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number</td>
<td>Units</td>
</tr>
<tr>
<td>PURY-P144TKMU</td>
<td>(1) PURY-P144TKMU</td>
</tr>
</tbody>
</table>
2. Outdoor unit shall have a sound rating no higher than 60 dB(A) individually or 64 dB(A) twinned. Units shall have a sound rating no higher than 50 dB(A) individually or 53 dB(A) twinned while in night mode operation. If an alternate manufacturer is selected, any additional material, cost, and labor to meet published sound levels shall be incurred by the contractor.

3. Both refrigerant lines from the outdoor unit to the BC (Branch Circuit) Controller (Single or Main) shall be insulated in accordance with the installation manual.

4. There shall be no more than 3 branch circuit controllers connected to any one outdoor unit.

5. Outdoor unit shall be able to connect to up to 50 indoor units depending upon model.

6. The outdoor unit shall have an accumulator with refrigerant level sensors and controls.

7. The outdoor unit shall have a high pressure safety switch, over-current protection, crankcase heater and DC bus protection.

8. The outdoor unit shall have the ability to operate with a maximum height difference of 164 feet and have total refrigerant tubing length of 1804-2625 feet. The greatest length is not to exceed 541 feet between outdoor unit and the indoor units without the need for line size changes or traps.

9. The outdoor unit shall be capable of operating in heating mode down to -4°F ambient temperatures or cooling mode down to 23°F ambient temperatures, without additional low ambient controls. If an alternate manufacturer is selected, any additional material, cost, and labor to meet low ambient operating condition and performance shall be incurred by the contractor.

10. The outdoor unit shall be capable of operating in cooling mode down to -10°F with optional manufacturer supplied low ambient kit.

11. Manufacturer supplied low ambient kit shall be provided with predesigned control box rated for outdoor installation and capable of controlling kit operation automatically in all outdoor unit operation modes.

12. Manufacturer supplied low ambient kit shall be listed by Electrical Laboratories (ETL) and bear the ETL label.

13. Manufacturer supplied low ambient kit shall be factory tested in low ambient temperature chamber to ensure operation. Factory performance testing data shall be available when requested.

14. The outdoor unit shall have a high efficiency oil separator plus additional logic controls to ensure adequate oil volume in the compressor is maintained.

15. The outdoor unit shall be provided with a manufacturer supplied 20 gauge hot dipped galvanized snow/hail guard. The snow/hail guard protects the outdoor coil surfaces from hail damage and snow build-up in severe climates.

16. Unit must defrost all circuits simultaneously in order to resume full heating more quickly. Partial defrost which may extend “no or reduced heating” periods shall not be allowed.

17. Equipment must be labeled “Assembled in USA” on equipment nameplate. Manufacturer must provide documentation from U.S. Customs and Border Protection indicating the equipment is a product of the U.S.

B. Unit Cabinet:

1. The casing(s) shall be fabricated of galvanized steel, bonderized and finished. Units cabinets shall be able to withstand 960 hours per ASTM B117 criteria for seacoast protected models (BS models)

C. Fan:

1. Each outdoor unit module shall be furnished with one direct drive, variable speed propeller type fan. The fan shall be factory set for operation under 0 in. WG external static pressure, but capable of normal operation under a maximum of 0.24 in. WG external static pressure via dipswitch.

2. All fan motors shall have inherent protection, have permanently lubricated bearings, and be completely variable speed.

3. All fan motors shall be mounted for quiet operation.
4. All fans shall be provided with a raised guard to prevent contact with moving parts.
5. The outdoor unit shall have vertical discharge airflow.

D. Refrigerant
1. R410A refrigerant shall be required for PURY-P-T/Y(S)KMU-A outdoor unit systems.
2. Polyolester (POE) oil shall be required. Prior to bidding, manufacturers using alternate oil types shall submit material safety data sheets (MSDS) and comparison of hygroscopic properties for alternate oil with list of local suppliers stocking alternate oil for approval at least two weeks prior to bidding.

E. Coil:
1. The outdoor coil shall be of nonferrous construction with lanced or corrugated plate fins on copper tubing.
2. The coil fins shall have a factory applied corrosion resistant blue-fin finish.
3. The coil shall be protected with an integral metal guard.
4. Refrigerant flow from the outdoor unit shall be controlled by means of an inverter driven compressor.
5. The outdoor coil shall include 4 circuits with two position valves for each circuit, except for the last stage.

F. Compressor:
1. Each outdoor unit module shall be equipped with one inverter driven scroll hermetic compressor. Non inverter-driven compressors, which cause inrush current (demand charges) and require larger wire sizing, shall not be allowed.
2. A crankcase heater(s) shall be factory mounted on the compressor(s).
3. The outdoor unit compressor shall have an inverter to modulate capacity. The capacity shall be completely variable with a turndown of 19%-5% of rated capacity, depending upon unit size.
4. The compressor will be equipped with an internal thermal overload.
5. The compressor shall be mounted to avoid the transmission of vibration.
6. Field-installed oil equalization lines between modules are not allowed. Prior to bidding, manufacturers requiring equalization must submit oil line sizing calculations specific to each system and module placement for this project.

G. Controls:
1. The outdoor unit shall have the capability of up to 8 levels of demand control for each refrigerant system

H. Electrical:
1. The outdoor unit electrical power shall be 208/230 volts, 3-phase, 60 hertz.
2. The outdoor unit shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz), 207-253V (230V/60Hz).
3. The outdoor unit shall be controlled by integral microprocessors.
4. The control circuit between the indoor units, BC Controller and the outdoor unit shall be 24VDC completed using a 2-conductor, twisted pair shielded cable to provide total integration of the system.

3.02 Branch CIRCUIT (BC) controllers FOR R2-SERIES SYSTEMS
A. General
The BC (Branch Circuit) Controllers shall include multiple branches to allow simultaneous heating and cooling by allowing either hot gas refrigerant to flow to indoor unit(s) for heating or subcooled liquid refrigerant to flow to indoor unit(s) for cooling. Refrigerant used for cooling must always be subcooled for optimal indoor unit LEV performance; alternate branch devices with no subcooling risk bubbles in liquid supplied to LEV and are not allowed.
The BC (Branch Circuit) Controllers shall be specifically used with R410A R2-Series systems. These units shall be equipped with a circuit board that interfaces to the M-NET controls system and shall perform all functions necessary for operation. The unit shall have a galvanized steel finish. The BC Controller shall be completely factory assembled, piped and wired. Each unit shall be run tested at the factory. This unit shall be mounted indoors, with access and service clearance provided for each controller. The sum of connected capacity of all indoor air handlers shall range
from 50% to 150% of rated capacity. The BC Controller shall be suitable for use in plenums in accordance with UL1995 ed 4.

B. BC Unit Cabinet:
 1. The casing shall be fabricated of galvanized steel.
 2. Each cabinet shall house a liquid-gas separator and multiple refrigeration control valves.
 3. The unit shall house two tube-in-tube heat exchangers.

C. Refrigerant
 1. R410A refrigerant shall be required.

D. Refrigerant Branches
 1. All BC Controller refrigerant pipe connections shall be brazed or flared.

E. Refrigerant valves:
 1. The unit shall be furnished with multiple branch circuits which can individually accommodate up to 54,000 BTUH and up to three indoor units. Branches may be twinned to allow more than 54,000 BTUH.
 2. All branches shall have
 3. Each branch shall have multiple two-position valves to control refrigerant flow.
 4. Service shut-off valves shall be field-provided/installed for each branch to allow service to any indoor unit without field interruption to overall system operation.
 5. Linear electronic expansion valves shall be used to control the variable refrigerant flow.

F. Future Use
 1. Each VRF system shall include at least one (1) unused branches or branch devices for future use. Branches shall be fully installed & wired in central location with capped service shutoff valve & service port.

G. Integral Drain Pan:
 1. An Integral resin drain pan and drain shall be provided

H. Electrical:
 1. The unit electrical power shall be 208/230 volts, 1 phase, 60 Hertz.
 2. The unit shall be capable of satisfactory operation within voltage limits of 187-228 (208V/60Hz) or 207-253 (230/60Hz).
 3. The BC Controller shall be controlled by integral microprocessors
 4. The control circuit between the indoor units and outdoor units shall be 24VDC completed using a 2-conductor, twisted pair shielded cable to provide total integration of the system.
3.03 PKFY (Wall Mounted) INDOOR UNIT

A. General:
The PKFY shall be a wall-mounted indoor unit section and shall have a modulating linear expansion device and a flat front. The PKFY shall be used with the R2-Series outdoor unit and BC Controller, Y-Series outdoor unit, or S-Series outdoor unit. The PKFY shall support individual control using M-NET DDC controllers.

B. Indoor Unit
The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, and a test run switch. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.

C. Unit Cabinet:
1. All casings, regardless of model size, shall have the same white finish
2. Multi directional drain and refrigerant piping offering four (4) directions for refrigerant piping and two (2) directions for draining shall be standard.
3. There shall be a separate back plate which secures the unit firmly to the wall.

D. Fan:
1. The indoor fan shall be an assembly with one or two line-flow fan(s) direct driven by a single motor.
2. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings.
3. A manual adjustable guide vane shall be provided with the ability to change the airflow from side to side (left to right).
4. A motorized air sweep louver shall provide an automatic change in airflow by directing the air up and down to provide uniform air distribution.

E. Filter:
1. Return air shall be filtered by means of an easily removable, washable filter.

F. Coil:
1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing.
2. The tubing shall have inner grooves for high efficiency heat exchange.
3. All tube joints shall be brazed with phos-copper or silver alloy.
4. The coils shall be pressure tested at the factory.
5. A condensate pan and drain shall be provided under the coil.
6. Both refrigerant lines to the PKFY indoor units shall be insulated in accordance with the installation manual.

G. Electrical:
1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz)

H. Controls:
1. This unit shall use controls provided by Mitsubishi Electric Cooling & Heating to perform functions necessary to operate the system. Please refer to Part 4 of this guide specification for details on controllers and other control options.
2. The unit shall be able to control external backup heat.
3. The unit shall have a factory built in receiver for wireless remote control
4. Indoor unit shall compensate for the higher temperature sensed by the return air sensor compared to the temperature at level of the occupant when in HEAT mode. Disabling of compensation shall be possible for individual units to accommodate instances when compensation is not required.
5. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with 1.8°F – 9.0°F adjustable deadband from set point.
6. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.
7. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.

3.04 PMFY (1-WAY CEILING-RECESSED CASSETTE WITH GRILLE) INDOOR UNIT

A. General:
The PMFY shall be a one-way cassette indoor unit that recesses into the ceiling with a ceiling grille and shall have a modulating linear expansion device. The PMFY shall be used with the R2-Series outdoor unit and BC Controller, Y-Series outdoor unit, or S-Series outdoor unit. The PMFY shall support individual control using M-NET DDC controllers.

B. Indoor Unit.
The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, an emergency operation function and a test run switch. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.

C. Unit Cabinet:
1. The cabinet shall be space-saving ceiling recessed.
2. The cabinet panel shall have provisions for a field installed filtered outside air intake.
3. Branch ducting shall be allowed from cabinet.
4. The one-way grille shall be fixed to bottom of cabinet allowing for one-way airflow.

D. Fan:
1. The indoor fan shall be an assembly with one line-flow fan direct driven by a single motor.
2. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings.
3. The indoor fan shall consist of four (4) speeds, Low, Mid1, Mid2, and High.

E. Filter:
1. Return air shall be filtered by means of a long-life washable permanent filter.

F. Coil:
1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing.
2. The tubing shall have inner grooves for high efficiency heat exchange.
3. All tube joints shall be brazed with phos-copper or silver alloy.
4. The coils shall be pressure tested at the factory.
5. A condensate pan and drain shall be provided under the coil.
6. The unit shall be provided with an integral condensate lift mechanism able to raise drain water 23 inches above the condensate pan.
7. Both refrigerant lines to the PMFY indoor units shall be insulated in accordance with the installation manual.

G. Electrical:
1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz).

H. Controls:
1. This unit shall use controls provided by Mitsubishi Electric to perform functions necessary to operate the system. Please refer to Part 5 of this guide specification for details on controllers and other control options.
2. Indoor unit shall compensate for the higher temperature sensed by the return air sensor compared to the temperature at level of the occupant when in HEAT mode. Disabling of compensation shall be possible for individual units to accommodate instances when compensation is not required.
3. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with 1.8°F – 9.0°F adjustable deadband from set point.
4. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.
5. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.

3.05 PVFY VERTICAL AIR HANDLER

A. General
The PVFY shall be a multiposition indoor fan coil design with a fixed bottom return, a fixed vertical discharge supply, and a modulating linear expansion device. The unit shall have the capability to be mounted in either the vertical or horizontal (left or right) and have the capability to integrate into systems with various types of indoor units connected. The PVFY shall be used with the R2-Series outdoor unit and BC Controller, Y-Series outdoor unit, or S-Series outdoor unit. The PVFY shall support individual control using M-NET DDC controllers. Units shall have the ability to control supplemental heat or humidifier via a control board connector and a 12 VDC output. Units shall have ability to output fan speed via a relay kit. The PVFY shall be suitable for use in air handling spaces in accordance with Section 18.2 of UL 1995 4th Edition. The PVFY shall be tested in accordance with ANSI/ASHRAE 193 and have less than 2% air leakage at maximum airflow setting.

B. Indoor Unit.
The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, and an auto restart function. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.

C. Unit Cabinet:
1. The cabinet shall be pre-painted, pre-insultated, 22 gauge galvanized steel.

D. Fan:
1. The indoor unit fan shall be an assembly with a single direct drive fan with a high efficiency DC motor.
2. The indoor fan shall be statically and dynamically balanced and run on a motor with permanently lubricated bearings.
3. The indoor unit shall have a ducted air outlet system and ducted return air system.
4. The fan shall have 3-speeds with the capability to operate between 0.3-0.8 In.W.G. selectable.

E. Filter:
1. The unit shall have a 1" filter rack with a reusable filter.

F. Coil:
1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing.
2. The tubing shall have inner grooves for high efficiency heat exchange.
3. All tube joints shall be brazed with phos-copper or silver alloy.
4. The coils shall be pressure tested at the factory.
5. A condensate pan and drain shall be provided under the coil.
6. The condensate shall be gravity drained from the fan coil.
7. Both refrigerant lines to the PVFY indoor units shall be insulated in accordance with the installation manual.

G. Electrical:
1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz).

H. Controls:
1. This unit shall use controls provided by Mitsubishi Electric to perform functions necessary to operate the system. Please refer to Part 5 of this guide specification for details on controllers and other control options.
2. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with 1.8 degree F deadband from set point.

Part 4 – Controls
4.01 Overview
 A. General:
 The CITY MULTI Controls Network (CMCN) shall be capable of supporting remote controllers,
centralized controllers, an integrated web based interface, graphical user workstation, and system
integration to Building Management Systems via BACnet® and LonWorks®.

4.02 Electrical Characteristics
 A. General:
 The CMCN shall operate at 30VDC. Controller power and communications shall be via a common
non-polar communications bus.
 B. Wiring:
 1. Control wiring shall be installed in a daisy chain configuration from indoor unit to indoor unit, to
the BC controller (main and subs, if applicable) and to the outdoor unit. Control wiring to remote
controllers shall be run from the indoor unit terminal block to the controller associated with that
unit.
 2. Control wiring for the Smart ME remote controller shall be from the remote controller to the first
associated indoor unit (TB-5) M-NET connection. The Smart ME remote controller shall be
assigned an M-NET address.
 3. Control wiring for the Simple MA and Wireless MA remote controllers shall be from the remote
controller (receiver) to the first associated indoor unit (TB-15) then to the remaining associated
indoor units (TB-15) in a daisy chain configuration.
 4. Control wiring for centralized controllers shall be installed in a daisy chain configuration from
outdoor unit to outdoor unit, to the system controllers (centralized controllers and/or integrated
web based interface), to the power supply.
 5. The AE-200, AE-50, and EB-50GU centralized controller shall be capable of being networked
with other AE-200, AE-50, and EB-50GU centralized controllers for centralized control.
 C. Wiring type:
 1. Wiring shall be 2-conductor (16 AWG), twisted, stranded, shielded wire as defined by the
Diamond System Builder output.
 2. Network wiring shall be CAT-5 with RJ-45 connection.

4.03 CITY MULTI Controls Network
The CITY MULTI Controls Network (CMCN) consists of remote controllers, centralized controllers, and/or
integrated web based interface communicating over a high-speed communication bus. The CITY MULTI
Controls Network shall support operation monitoring, scheduling, occupancy, error email distribution, personal
web browsers, tenant billing, online maintenance support, and integration with Building Management Systems
(BMS) using either LonWorks® or BACnet® interfaces. The below figure illustrates a sample CMCN System
Configuration.
CMCN System Configuration

4.04 CMCN: Remote Controllers
 A. Smart ME Remote Controller (PAR-U01MEDU)
 The Smart ME Remote Controller (PAR-U01MEDU) shall be capable of controlling up to 16 indoor units (defined as 1 group). The Smart ME Remote Controller shall be approximately 5.5" x 5" in size and white in color with an auto-timeout touch screen LCD display. The Smart ME Remote Controller shall support a selection from multiple languages (English, Spanish or French) for display information. The Smart ME supports temperature display selection of Fahrenheit or Celsius. The Smart ME Remote Controller shall control the following grouped operations: On/Off, Operation Mode (cool, heat, auto*, dry, fan and setback* (*R2/WR2-Series Simultaneous Heating and Cooling only)), temperature set point, fan speed setting, and airflow direction setting. The Smart ME Remote Controller shall support timer settings of on/off/temperature up to 8 times in a day in 5-minute increments. The Smart ME Remote Controller shall support an Auto Off timer. The Smart ME Remote Controller shall be able to limit the set temperature range from the Smart ME Remote Controller, or via a PC through a licensed EB-50GU. Also, the temperature range can be set from a touch screen panel on the TC-24. The room temperature shall be sensed at either the Smart ME Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Smart ME Remote Controller shall display a four-digit error code in the event of system abnormality or error.
 The Smart ME Remote Controller shall only be used in the same group with other ME Remote Controllers with a maximum of two ME Remote Controllers per group.
 The ME Remote Controller shall require manual addressing using rotary dial switch to the M-NET communication bus. The ME Remote Controller shall connect using two-wire, stranded, non-polar control wire to TB5 connection terminal on the indoor unit.

<table>
<thead>
<tr>
<th>PAR-U01MEDU (Smart ME Remote Controller)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Description</td>
<td>Operation</td>
</tr>
<tr>
<td>ON/OFF</td>
<td>Run and stop operation for a single group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Backlight</td>
<td>Turns on when screen is touched. Timeout duration is adjustable.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Operation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Operation Mode</td>
<td>Switches between Cool/Dry/Auto/Fan/Heat/Setback. Operation modes vary depending on the air conditioner unit. Auto and Setback mode are available for the R2/WR2-Series only.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Temperature Setting</td>
<td>Sets the temperature from 40°F – 95°F depending on operation mode and indoor unit. Separate COOL and HEAT mode set points available depending on central controller and connected mechanical equipment.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Fan Speed Setting</td>
<td>Available fan speed settings depending on indoor unit.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Air Flow Direction Setting</td>
<td>Air flow direction settings vary depending on the indoor unit model.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Room Temp and Humidity Display</td>
<td>Displays the room temperature and humidity on the Home screen. Temperature and Humidity sensed can be calibrated using the sensor offset in 1 °F or 1% RH increments.</td>
<td>N/A</td>
</tr>
<tr>
<td>Occupancy Sensor</td>
<td>Detects occupancy using an infrared motion sensor. Occupancy status is indicated on the remote controller and through the web interface depending on connected equipment. Sensitivity is adjustable.</td>
<td>N/A</td>
</tr>
<tr>
<td>Brightness Sensor</td>
<td>Detects brightness in the space and indicates brightness on the remote controller and through the web browser interface depending on connected equipment. Sensitivity is adjustable.</td>
<td>N/A</td>
</tr>
<tr>
<td>Status Monitor</td>
<td>Displays the status of general equipment control points connected to the Advanced HVAC Controller (DC-A2IO)</td>
<td>N/A</td>
</tr>
<tr>
<td>Humidity Setting</td>
<td>Sets the relative humidity set point in 1% increments for any humidifier connected to the Advanced HVAC Controller (DC-A2IO)</td>
<td>Each Group</td>
</tr>
<tr>
<td>LED Indicator</td>
<td>Can be set to indicate the operation status by lighting and flashing with different colors and brightness or by turning off to signal operation mode, stopped unit, error, occupancy, or home screen button pushes. Color can be set to indicate the current mode selected or room temp range being sensed. *Available colors include blue, light blue, yellow, white, green, red, and lime.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Schedule</td>
<td>Set up to 8 operations per day, 7 days per week. Operations include time on/off, mode and room temperature set point.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Permit / Prohibit Local Operation</td>
<td>Individually prohibit operation of each local remote control function (Start/Stop, Change operation mode, Set temperature, Fan Speed, Air Direction, Reset filter). *1: Operation icon lights up on the remote controller for prohibited functions.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*1: Operation icon lights up on the remote controller for prohibited functions.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy-Save control during vacancy</td>
<td>When vacancy is detected by the occupancy sensor 5 control options are available for selection:</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td></td>
<td>Stop/Setback Mode/Set Temperature Offset/Low Fan Speed/Thermo-off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brightness sensor can be used in conjunction with the occupancy sensor to increase accuracy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>When an error is currently occurring on an air conditioner unit, the afflicted unit and the error code are displayed</td>
<td>N/A</td>
<td>Each Unit</td>
</tr>
<tr>
<td>Test Run</td>
<td>Operates air conditioner units in test run mode.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Ventilation Equipment</td>
<td>Up to 16 indoor units can be connected to an interlocked system that has one LOSSNAY unit. LOSSNAY items that can be set are “Hi”, “Low”, and “Stop”. Ventilation mode switching is not available.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Temperature Range Limit</td>
<td>Set temperature range limit for auto, cool (drying) and heat modes.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Operation Lock Out Function</td>
<td>Locking of ON/OFF, Mode, Set Temp, Hold button and Air Direction.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Password</td>
<td>User and Service password protections are available</td>
<td>Each Group</td>
<td>N/A</td>
</tr>
<tr>
<td>Hold</td>
<td>Hold Prohibits the scheduled operation from being executed a. ON/OFF timer, b. Auto-OFF timer, c. Weekly timer, d. Automatic return to the preset temperature.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td></td>
<td>* While an operation is prohibited by Hold function, the operation icon lights up.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Backlit Simple MA Remote Controller (PAC-YT53CRAU)

The Backlit Simple MA Remote Controller (PAC-YT53CRAU) shall be capable of controlling up to 16 indoor units (defined as 1 group). The Backlit Simple MA Remote Controller shall be compact in size, approximately 3" x 5" and have limited user functionality. The Backlit Simple MA supports temperature display selection of Fahrenheit or Celsius. The Backlit Simple MA Remote Controller shall allow the user to change on/off, mode (cool, heat, auto (R2/WR2-Series only), dry, setback (R2/WR2-Series only) and fan), temperature setting, and fan speed setting and airflow direction. The Backlit Simple MA Remote Controller shall be able to limit the set temperature range from the Backlit Simple MA. The Backlit Simple MA Remote controller shall be capable of night setback control with upper and lower set temperature settings. The room temperature shall be sensed at either the Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller shall display a four-digit error code in the event of system abnormality/error.

The Backlit Simple MA Remote Controller shall only be used in same group with Wireless MA Remote Controllers (PAR-FL32MA-E / PAR-FA32MA-E) or with other Backlit Simple MA Remote Controllers (PAC-YT53CRAU), with up to two remote controllers per group.
The Backlit Simple MA Remote Controller shall require no addressing. The Backlit Simple MA Remote Controller shall connect using two-wire, stranded, non-polar control wire to TB15 connection terminal on the indoor unit. The Simple MA Remote Controller shall require cross-over wiring for grouping across indoor units.

<table>
<thead>
<tr>
<th>PAC-YT53CRAU (Backlit Simple MA Remote Controller)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Description</td>
<td>Operation</td>
</tr>
<tr>
<td>ON/OFF</td>
<td>Run and stop operation for a single group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Operation Mode</td>
<td>Switches between Cool/Drying/Auto/Fan/Heat/Setback. Operation modes vary depending on the air conditioner unit. Auto and Setback mode are available for the R2/WR2-Series only.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Temperature Setting</td>
<td>Sets the temperature from 40°F – 95°F depending on operation mode and indoor unit. Separate COOL and HEAT mode set points available depending on central controller and connected mechanical equipment.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Fan Speed Setting</td>
<td>Available fan speed settings depending on indoor unit.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Air Flow Direction Setting</td>
<td>Air flow direction settings vary depending on the indoor unit model.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Permit / Prohibit Local Operation</td>
<td>Individually prohibit operation of each local remote control function (Start/Stop, Change operation mode, Set temperature, Reset filter). *1: Centrally Controlled is displayed on the remote controller for prohibited functions.</td>
<td>N/A</td>
</tr>
<tr>
<td>Display Indoor Unit Intake Temp</td>
<td>Measures and displays the intake temperature of the indoor unit when the indoor unit is operating.</td>
<td>N/A</td>
</tr>
<tr>
<td>Display Backlight</td>
<td>Pressing the button lights up a backlight. The light automatically turns off after a certain period of time. (The brightness settings can be selected from Bright, Dark, and Light off.)</td>
<td>N/A</td>
</tr>
<tr>
<td>Error</td>
<td>When an error is currently occurring on an air conditioner unit, the afflicted unit and the error code are displayed</td>
<td>N/A</td>
</tr>
<tr>
<td>Test Run</td>
<td>Operates air conditioner units in test run mode. *2 The display for test run mode will be the same as for normal start/stop (does not display "test run").</td>
<td>Each Group</td>
</tr>
<tr>
<td>Ventilation Equipment</td>
<td>Up to 16 indoor units can be connected to an interlocked system that has one LOSSNAY unit.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Set Temperature Range Limit</td>
<td>Set temperature range limit for cooling, heating, or auto mode.</td>
<td>Each Group</td>
</tr>
</tbody>
</table>

4.05 Centralized Controller (Web-enabled)
A. AE-200 Centralized Controller
The AE-200A Centralized Controller shall be capable of controlling a maximum of two hundred (200) indoor units across multiple CITY MULTI outdoor units with the use of three (3) AE-50A expansion controllers. The AE-200A Centralized Controller shall be approximately 11-5/32” x 7-55/64” x 2-17/32” in size and shall be powered with an integrated 100-240 VAC power supply. The AE-200A Centralized Controller shall support system configuration, daily/weekly scheduling, monitoring of operation status, night setback settings, free contact interlock configuration and malfunction monitoring. When being used alone without the expansion controllers, the AE-200A Centralized Controller shall have five basic operation controls which can be applied to an individual indoor unit, a collection of indoor units (up to 50 indoor units), or all indoor units (collective batch operation). This basic set of operation controls for the AE-200 Centralized Controller shall include on/off, operation mode selection (cool, heat, auto (R2/WR2-Series only), dry, setback (R2/WR2-Series only) and fan), temperature setting, fan speed setting, and airflow direction setting. Since the AE-200A provides centralized control it shall be able to enable or disable operation of local remote controllers. In terms of scheduling, the AE-200A Centralized Controller shall allow the user to define both daily and weekly schedules (up to 24 scheduled events per day) with operations consisting of ON/OFF, mode selection, temperature setting, air flow (vane) direction, fan speed, and permit/prohibit of remote controllers.

<table>
<thead>
<tr>
<th>AE-200 (Centralized Controller)</th>
<th>Item</th>
<th>Description</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON/OFF</td>
<td>Run and stop operation.</td>
<td>Each Block, Group or Collective</td>
<td>Each Group or Collective</td>
<td></td>
</tr>
<tr>
<td>Operation Mode</td>
<td>Switches between Cool/Dry/Auto/Fan/Heat. (Group of Lossnay unit: automatic ventilation/vent-heat/interchange/normal ventilation) Operation modes vary depending on the air conditioner unit. Auto mode is available for the R2/WR2-Series only.</td>
<td>Each Block, Group or Collective</td>
<td>Each Group</td>
<td></td>
</tr>
<tr>
<td>Temperature Setting</td>
<td>Sets the temperature from 57°F – 87°F depending on operation mode and indoor unit.</td>
<td>Each Block, Group or Collective</td>
<td>Each Group</td>
<td></td>
</tr>
<tr>
<td>Fan Speed Setting</td>
<td>Available fan speed settings depending on indoor unit.</td>
<td>Each Block, Group or Collective</td>
<td>Each Group</td>
<td></td>
</tr>
<tr>
<td>Air Flow Direction Setting</td>
<td>Air flow direction settings vary depending on the indoor unit model. *1 Louver cannot be set.</td>
<td>*1 Each Block, Group or Collective</td>
<td>Each Group</td>
<td></td>
</tr>
</tbody>
</table>
AE-200 (Centralized Controller)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
</table>
| **Schedule Operation** | Annual/weekly/today schedule can be set for each group of air conditioning units. Optimized start setting is also available.
*1. The system follows either the current day, annual schedule, or weekly, which are in the descending order of overriding priority.
Twenty-four events can scheduled per day, including ON/OFF, Mode, Temperature Setting, Air Direction, Fan Speed and Operation Prohibition.
Five types of weekly schedule (seasonal) can be set.
Settable items depend on the functions that a given air conditioning unit supports. | *2 Each Block, Group or Collective | Each Group |
| **Optimized Start** | Unit starts 5 - 60 minutes before the scheduled time based on the operation data history in order to reach the scheduled temperature at the scheduled time. | Each Block, Group or Collective | Each Group |
| **Night Setback Setting** | The function helps keep the indoor temperature in the temperature range while the units are stopped and during the time this function is effective. | Each Group | Each Group |
| **Permit / Prohibit Local Operation** | Individually prohibit operation of each local remote control function (Start/Stop, Change operation mode, Set temperature, Reset filter).
*3. Centrally Controlled is displayed on the remote controller for prohibited functions. | Each Block, Group or Collective | *3 Each Group |
| **Room Temp** | Displays the room temperature of the group. Space temperature displayed on the indoor unit icon on the touch screen interface. | N/A | Each Group |
| **Error** | When an error is currently occurring on an air conditioner unit, the afflicted unit and the error code are displayed
*4. When an error occurs, the LED flashes. The operation monitor screen shows the abnormal unit by flashing it. The error monitor screen shows the abnormal unit address, error code and source of detection. The error log monitor screen shows the time and date, the abnormal unit address, error code and source of detection | N/A | *4 Each Unit or Collective |
| **Outdoor Unit Status** | Compressor capacity percentage and system pressure (high and low) pressure (excludes S-Series) | Each ODU | Each ODU |
| **Connected Unit Information** | MNET addresses of all connected systems | Each IDU, ODU and BC | Each IDU, ODU and BC |
| **Ventilation Equipment** | This interlocked system settings can be performed by the master system controller.
When setting the interlocked system, use the ventilation switch the free plan LOSSNAY settings between “Hi”, “Low” and “Stop”.
When setting a group of only free plan LOSSNAY units, you can switch between “Normal ventilation”, “Interchange ventilation” and “Automatic ventilation”. | Each Group | Each Group |
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Language</td>
<td>Other than English, the following language can be chosen. Spanish, French, Japanese, Dutch, Italian, Russian, Chinese, and Portuguese are available.</td>
<td>N/A</td>
<td>Collective</td>
</tr>
</tbody>
</table>

All AE-200A Centralized Controllers shall be equipped with two RJ-45 Ethernet ports to support interconnection with a network PC via a closed/direct Local Area Network (LAN) or to a network switch for IP communication to up to three AE-50A expansion controllers for display of up to two hundred (200) indoor units on the main AE-200A interface. The AE-200A Centralized Controller shall be capable of performing initial settings via the high-resolution, backlit, color touch panel on the controller or via a PC browser using the initial settings. Standard software functions shall be available so that the building manager can securely log into each AE-200A via the PC’s web browser to support operation monitoring, scheduling, error email, interlocking and online maintenance diagnostics. Additional optional software functions of personal browser for PCs and MACs and Tenant Billing shall be available but are not included. The Tenant Billing function shall require TG-2000 Integrated System software in conjunction with the Centralized Controllers.

B. AE-50A Expansion Controller

The AE-50A Expansion Controller shall serve as a standalone centralized controller or as an expansion module to the AE-200A Centralized Controller for the purpose of adding up to 50 indoor units to either the main touch screen interface of the AE-200A. Up to three (3) AE-50A expansion controllers can be connected to the AE-200A via a local IP network (and their IP addresses assigned on the AE-200A) to the AE-200A to allow for up to two hundred (200) indoor units to be monitored and controlled from the AE-200A interface. The AE-50A expansion controllers have all of the same capabilities to monitor and control their associated indoor units as the features specified above. Even when connected to the AE-200A and configured to display their units on the main controller, the individual indoor units connected to the AE-50A can still be monitored and controlled from the interface of the AE-50. The last command entered will take precedence, whether at the wall controller, the AE-50A or the AE-200A Centralized Controller.

4.11 Power Supply (PAC-SC51KUA)

The power supply shall supply 24VDC (TB3) for the AE-200/AE-50/EB-50GU centralized controller and 30VDC (TB2) voltage for the central control transmission.
Energy Recovery Ventilator (ERV) Systems
Mitsubishi Electric Model: LGH – Lossnay® Energy Recovery Ventilator

Part 1 - General

1.01 System Description
The fresh air ventilation system(s) shall utilize the Mitsubishi Electric LOSSNAY total heat exchanger with outside air bypass damper and energy recovery ventilation. These units shall be selected in accordance with the building ventilation requirements.

The ventilation equipment shall be Energy Recovery Ventilator (s) (ERV) as manufactured by Mitsubishi Electric (From now on referred to as “Lossnay® ERV”).

Option: The Lossnay® ERV equipment shall form part of the Mitsubishi Electric CITY MULTI HVAC system and will supply ventilation air to all indicated indoor zones served by the CITY MULTI HVAC system.

The Lossnay® ERV shall be equipped with an M-Net data network control and will be directly connectable to the CITY MULTI M-Net Data communication control network and will be able to be electronically interlocked with CITY MULTI indoor units.

1.02 Quality Assurance
A. The units shall be tested by a Nationally Recognized Testing Laboratory (NRTL) and shall bear the UL label.
B. All wiring shall be in accordance with the National Electrical Code (N.E.C.).
C. The units shall be rated in accordance with Air-conditioning Refrigeration Institute's (ARI) Standard 1060 and bear the ARI Certification label.
D. The units shall be manufactured in a facility registered to ISO 9001 and ISO 14001, which is a set of standards applying to environmental protection set by the International Standard Organization (ISO).

1.03 Installation
a. The installation of all Lossnay® units, duct work, all interconnecting control and power wiring, commissioning and testing shall be carried out by licensed installers in accord with all Codes and requirements.

1.04 Delivery, Storage and Handling
A. Unit shall be stored and handled according to the manufacturer’s recommendations.
B. The unit will be able to withstand 105°F storage temperatures and 95% relative humidity without adverse effect.

Part 2 - Warranty
2.01 The Lossnay® units shall have a manufacturer’s parts and defects warranty for a period one (1) year from date of installation. If, during this period, any part should fail to function properly due to defects in workmanship or material, it shall be replaced or repaired at the discretion of the manufacturer. This warranty does not include labor.
2.02 The Lossnay® Energy Transfer Core shall have an additional nine (9) year warranty against defects in material or workmanship. The total warranty period shall be ten (10) years from date of installation.

Part 3 – Products
3.01

General:
The ERV unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, control circuit board and blowers with motors, filters, and insulated foam air guides. Each unit will have an automatic by-pass damper system for economic operation under certain conditions. The unit shall have factory installed control board with functions for local, remote, and optional control modes.

A. Unit Cabinet:
 1. The cabinet shall be fabricated of galvanized steel, and covered with polyurethane foam insulation as necessary with steel mounting points securely attached

B. Blowers:
 1. The unit shall be furnished with two (2) [LGH-F1200RX5-E = four (4)] direct drive centrifugal blowers running simultaneously supplying and extracting air at the same rate for balanced ventilation air flow.
 2. The blower motors shall be a directly connected to the blower wheels and have permanently lubricated bearings.

3. The blowers and motors shall be mounted for quiet operation.

C. Heat Exchanger
 1. The Lossnay® heat exchanger element shall be constructed of specially treated cellulosic fiber membrane separated by corrugated layers to allow total heat (sensible and latent) energy recovery from the exhaust air to the supply air or from the supply air to the exhaust air as determined by design conditions.

2. The Lossnay® element shall have protective filters installed at both the supply and exhaust sides with an access cover to allow easy maintenance.

D. Bypass Damper
 1. The ERV shall have an automatic supply side by-pass damper to allow inbound ventilation air to by-pass the Lossnay® energy transfer core when outside weather conditions warrant.

2. The mechanism for opening and closing the bypass damper shall be a 208V-230V synchronous electric motor through an actuator. The motor will drive a steel cable connected to an mechanical damper flap to allow fresh air to bypass the Lossnay® element.

3. Supply and return air thermistor shall control the damper and may be interlocked with a Mitsubishi Electric PZ Series LCD remote controller.

E. Filter
 1.
he ERV shall be equipped with factory installed air filters located at each intake face (both supply and exhaust sides) of the Lossnay® core to clean the air and prevent clogging.

F. Mounting
1.

Mounting of the Lossnay® ERV shall be as indicated in the plans and drawings. The ERV shall not require and condensate pan or receptacle nor condensate drain or piping. Mounting may be horizontal or vertical and the unit may be inverted as required by ductwork connection.

G. Electrical
1.

he units will require a 208-230Volt, 1 Phase, 60Hz power supply.

H. Control
1.

A 30vdc fuzzy logic signal generated by a CITY MULTI System via a 2 conductor non polar shielded, jacketed control wire to a PZ-60DR-E Mitsubishi Electric LCD remote controller or interlocked with a CITY MULTI indoor unit.

ALTERNATE:
The ERV unit may be interlocked with a Mr Slim A-control indoor unit via a 2 conductor non polar shielded, jacketed control wire.

ALTERNATE:
Independent control by contact closure from other sensor driven controllers, switch, or timers.

3.02

Performance:

A. The ERV units shall have the following nominal capacities:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Nominal Airflow</th>
<th>External Static Capacity (In. W.G.) at Nominal Airflow (208/230V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGH-F600RX5-E</td>
<td>600 CFM</td>
<td>0.56/0.80</td>
</tr>
<tr>
<td>LGH-F1200RX5-E</td>
<td>1200 CFM</td>
<td>0.43/0.75</td>
</tr>
</tbody>
</table>

C. The temperature recovery efficiency at extra low fan speed will be as follows:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Temperature Recovery (208/230V)</th>
<th>Enthalpic Recovery (208/230V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heating</td>
<td>Cooling</td>
</tr>
<tr>
<td>LGH-F600RX5-E</td>
<td>80/78%</td>
<td>79/77%</td>
</tr>
<tr>
<td>LGH-F1200RX5-E</td>
<td>73/75%</td>
<td>71/68%</td>
</tr>
</tbody>
</table>

Performance Certified to ARI Standard 1060

D. ERV operating sound level shall not exceed the following levels at maximum fan speed:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Sound Level dB(A) 59in Under Center of Unit (208/230V)</th>
</tr>
</thead>
</table>
3.03

Ductwork:
A. The installer shall supply, install, test and commission all interconnecting ductwork for the Lossnay® ERV units.

B. Ductwork sizing, layout, fittings, etc shall be in strict accordance with the design requirements.

C. The two outdoor ducts must be covered with heat insulating material in order to prevent condensation from forming.

D. The two outdoor ducts must be tilted at a gradient (1/30 or more) down toward the outdoor area from Lossnay® unit.

Execution

Part 1- Installation

A. General:
Rig and install in full accordance with manufacturer’s requirements, project drawings, and contract documents. Refer to the manufacturer’s installation manual for full requirements.

B. Location:
Locate indoor and outdoor units as indicated on drawings. Provide service clearance per manufacturer’s installation manual. Adjust and level outdoor units on support structure.

For climates that experience snowfall, mount the outdoor unit a minimum of 12” above the average snowfall line. In climates where this height requirement proves unfeasible, the outdoor units may be installed at the average snowfall line provided regular snow removal in the area surrounding the units keeps the snow line below the bottom of the units.

C. Components / Piping:
Installing contractor shall provide and install all accessories and piping for a fully operational system. Refer to manufacturer’s installation manual for full instructions.

Traps, filter driers, and sight glasses are NOT to be installed on the refrigerant piping or condensate lines.

Standard ACR fittings rated for use with R410A are to be used for all connections. Proprietary manufacturer-specific appurtenances are not allowed.

Refrigerant pipe for CITY MULTI shall be made of phosphorus deoxidized copper, and has two types.

A. ACR “Annealed”: Soft copper pipe, can be easily bent with human's hand.
B. ACR “Drawn Temper”: Hard copper pipe (Straight pipe), being stronger than Type-O pipe of the same radical thickness.

The maximum operation pressure of R410A air conditioner is 4.30 MPa [623psi]. The refrigerant piping should ensure the safety under the maximum operation pressure. Refer to recommend piping specifications in Mitsubishi Electric’s engineering manual. Pipes of radical thickness 0.7mm or less shall not be used.

Flare connection should follow dimensions provided in manufacturer’s installation manuals.

D. Insulation:
Refrigerant lines, as well as any valves, shall be insulated end to end with ½” closed-cell pipe insulation for piping up to 1”in diameter, or ¾” for piping 1-1/8” and larger, with a thermal conductivity no greater than 0.27 BTU-in/hr sq.ft °F. If state or local codes require insulation other than that specified above, the greater insulation shall be used.

E. Electrical:
Installing contractor shall coordinate electrical requirements and connections for all power feeds with electrical contractor. Refer to Division 26 (Master Format 2004) or Division Section 16 (Master Format 1995) for additional information.

F. Third Party Controls:
Installing contractor shall coordinate all BAS/BMS control requirements and connections with controls contractor.
Service
Part – 1 Maintenance Tool Software and MN-Converter (CMS-MNG-E)

A. The Maintenance Tool, via the MN-Converter (CMS-MNG-E), shall enable the user to monitor and record the following parameters in a centralized system.
 i. Outdoor Unit
 1. Operation Mode (Cooling Only, Heating Only, Cooling Main, Heating Main)
 2. Compressor Frequency, amperages, and voltages
 3. Compressor high- and low-side pressure
 4. System Temperatures
 5. Outdoor temperature
 6. Status of reversing valve

 ii. BC Controller
 1. Valve ON/OFF status
 2. Temperatures
 3. Pressures

 iii. Indoor Unit
 1. Entering Air Temperature
 2. Entering/Leaving Refrigerant Temperature
 3. Superheat/Subcool temperatures
 4. LEV position
 5. Room temperature setpoint
 6. Unit Mode and Status (Heat, Cool, Dry, Auto, Fan)

B. The Maintenance Tool shall have the additional feature of controlling the following system components manually:
 i. Indoor Unit
 1. Indoor Unit ON/OFF
 2. Mode (Heat, Cool, Dry, Auto, Fan)
 3. Room Temperature Setpoint
 4. Fan speed
 5. LEV Position

 ii. BC Controller
 1. Valve OPEN/CLOSE
 2. LEV Position

C. The Maintenance Tool shall be connectable to either the TB3 or TB7 communication bus lines on the MNET via alligator connectors.

D. The Maintenance Tool shall be connectable to a PC via a USB cable.

E. Trended data from Maintenance Tool shall be available to export to a data file for offline analysis.
PART 1 – VRF Project Supervision

1.01 General
 A. VRF Manufacturer shall provide on-site Project Supervision as outlined in this specification section, providing: onsite technical review of installed VRF systems, review of activities related to the installation of the VRF system, VRF system components and associated controls.

 B. All Project Supervision field activities shall be completed by an employee of the VRF manufacturer whose primary job responsibilities are to provide direct technical support of their product; sales staff or in-house support staff are not permitted to complete this scope of work.

 C. A factory certified representative may assist the VRF manufacturer’s personnel in the completion of certain elements of work contained within this specification. Activities completed by a Factory Certified Representative shall be supervised onsite by the VRF manufacturer. Certified representatives shall not be used in lieu of the manufacturer’s personnel.

 D. The installing contractor shall assist the VRF manufacturer, in their completion of the system review and have available onsite a technician with appropriate diagnostic tools, materials and equipment, as required, for the duration of the inspection process. The technician assisting the VRF manufacturer shall be fully licensed and insured to complete necessary duties as directed by the VRF manufacturer.

 E. The installing contractor shall have been certified by the manufacturer to install VRF systems, having attended and successfully completed a minimum 3-day VRF Service & Installation course at an approved training facility. A copy of this certificate shall be presented to the VRF manufacturer prior to the commencement of installation activity.

 F. VRF manufacturer shall provide 4 onsite visits during the course of the project’s completion. Additional site visits, if requested, shall require approval by the owner’s representative and will be billed accordingly.

 G. Onsite visits shall be conducted at installation milestones noted below. The installing contractor is responsible to coordinate each visit at the appropriate milestone, giving the VRF manufacturer a minimum 2-week notice prior to each visit.

 a. Project milestones
 i. Project Kick Off meeting
 ii. Site Visit at 25% project completion
 iii. Site Visit at 50% project completion
 iv. Final Inspection prior to Commissioning of the VRF System

1.02 Project Kick-Off

 A. A project kick off meeting will be conducted with the installing contractor and appropriate parties with the sole purpose to review the installation of VRF systems being installed.

 B. Kick off meeting shall consisting of a single [4] hour meeting with the installing contractor. This meeting shall be completed at the project site and be executed at the beginning stages of the installation of VRF systems.

 a. Items to be reviewed during the Project kick-off meeting are:
 i. Presentation of Best Practices & Installation Requirements specific to the VRF system(s) being installed under this scope of work.
 ii. Review of the project’s mechanical design drawings related to the VRF systems being installed. Documents to be provided by the mechanical contractor.
 iii. Review of VRF Manufacturers design selection software and system design schematic drawings for the system being installed Documents to be provided by the mechanical contractor.
 iv. Discuss project activity related to the installation of VRF system components
v. Establish clear path of communication and project support. Mechanical contractor shall designate an onsite point of contact for all field coordination activities.

C. The installing contractor shall obtain from the Engineer/Designer of the VRF system a copy of the most current electronic design file used in the design and engineering process of the VRF system being installed. This electronic design file shall have been completed on the VRF Manufacturers software and is the mechanical contractor’s responsibility to provide the most current as-built version of this file during the course of the projects installation.

D. The installing contractor shall provide the VRF manufacturer, for their use, a complete set of HVAC mechanical plans prior to the Kick off meeting. The mechanical contractor is responsible to updates these plans during the course of the project.

1.03 Site Visit

A. Each site visit shall consist of a single visit, not exceeding an [8] hour period. All visits shall occur during regular business hours of 8:30AM-4PM, Monday thru Friday.

B. Activates to be completed during each Site-Visit are as follows:
 a. Meet with designated representative from the VRF installation contractor to discuss field activities and provide technical support related to the VRF systems.
 b. Review installed VRF systems for compliance with manufacturer’s installation, service and engineering specifications.
 c. Assist the contractor in updating the VRF Design software for as-built purposes and for calculating the appropriate refrigerant charge.
 d. Provide a field report identifying any installation issues requiring attention. Report shall provide detailed information containing:
 i. Issue reference number
 ii. Priority Level of issue
 iii. Equipment M# & Reference TAG#
 iv. Status of issue
 v. Description of issue being identified
 vi. Recommendation for corrective action
 vii. Follow-up requirements, if required

1.04 Project Close Out Documents

A. Documents completed during the project Supervision process shall be compiled and presented to the owner’s representative at the completion of field activities.

B. Close out documentation shall include
 a. Project Supervision report outlining activities completed under this scope of work
 b. As-built VRF design file depicting Model numbers and BTU capacity ratings of equipment installed, refrigerant pipe size & connection lengths between each system component, calculated refrigerant charge.
 c. Issue report

1.05 Professional Solutions Contact information

A. Contact your regions Mitsubishi Electric Professional Solutions Manager for information and pricing related to services required under this projects scope of work.

Part 2 - VRF System Commissioning
2.01 General
A. The VRF Manufacturer shall oversee and assist the installing contractor with the start up and commissioning of VRF equipment as outlined below. This process will be completed in two phases. Phase one shall cover the Pre-Start-Up inspection process, Phase two will cover the Physical Start-Up & Commissioning of Equipment.
B. All VRF System Commissioning activities shall be completed by an employee of the VRF manufacturer whose primary job responsibilities are to provide start up and commissioning of their products; sales staff or in-house support staffs are not permitted to complete this scope of work.
C. A factory certified representative may assist the VRF manufacturer’s personnel in the completion of certain elements of work contained within this specification. Activities completed by a Factory Certified Representative shall be supervised onsite by the VRF manufacturer. Certified representatives shall not be used in lieu of the manufacturer’s personnel.
D. The installing contractor shall have been certified by the manufacturer to install VRF systems, having attended a minimum 3-day VRF Service & Installation course at an approved training center. A copy of this certificate shall be presented as part of the VRF equipment submittal process.
E. The installing contractor shall assist the VRF manufacturer in their completion of the system review and have available a technician with appropriate diagnostic tools, materials and equipment, as required, for the duration of the inspection process. The technician shall be fully licensed and insured to complete necessary duties as directed under the supervision of the VRF manufacturer.
F. Upon completion of the Equipment Start-Up & VRF Commissioning process, the VRF manufacturer shall provide a formal report outlining the status of the system, in electronic format only. Contained within this report shall be copies of all field inspection reports, required action items and status, Manufacturers design software As-Built, equipment model & serial numbers.
G. Completion of the Equipment Start-Up and VRF Commissioning process shall verify that the VRF system has been installed per the Engineer’s design intent and complies with the VRF manufacturers engineering and installation specifications related to their equipment.
H. Compliance with federal, state and local codes as well as other authorities having jurisdictions are not part of this process and are the responsibility of the installing contractor.
I. Contact your regions Mitsubishi Electric Professional Solutions Manager for information and pricing related to services required under this projects scope of work.

2.02 Pre Start-Up Inspection
A. Contractor shall employ the services of the VRF manufacturer to provide a comprehensive field review of the completed VRF system installation, prior to the physical start up and operation of equipment. Upon satisfaction that the system meets the VRF manufacturer’s installation requirements and
specifications, the contractor shall be allowed to proceed with the physical start up and operation of equipment.

B. Prior to the pre-start-up inspection, all systems components shall be in a final state of readiness having been fully installed and awaiting inspection.

C. The installing contractor shall provide the VRF manufacturer a copy of the electronic design file used in the design and engineering process of the system being inspected. This electronic design file shall have been completed on software approved by the specified VRF manufacturer and shall have been updated to reflect as-built conditions.

D. The installing contractor shall have prepared the refrigeration piping systems per equipment installation and service manuals. All refrigerant piping systems, upon completion of assembly, shall have been pressurized to a minimum 600 PSI, using dry nitrogen, and held for an uninterrupted 24HR period, with acceptable change due to atmospheric conditions.
 a. A record of the pressure check process shall be recorded and tagged at the outdoor unit. The tag shall contain the following information: date & time of pressure check start, fill pressure, outdoor temperature at start & stop, date & time of pressure check completion, and the person's full name & company information completing the pressure check.
 b. The installing contractor shall engage the General Contractor as a witness of the pressure check process, confirming that all steps and procedures related to the pressure check where properly followed and that the system held the holding pressure of 600PSI for a period of 24hr hours, with acceptable change due to atmospheric conditions. Witness information, including full name, company name, title, phone number and signature shall be recorded on same pressure tag used by installing contractor.

E. Upon completion of the 600 PSI pressure check, the system shall be evacuated to a level of 500 microns, where it will be held for a period of 1HR with no deflection. The installing contractor shall utilize the triple evacuation method per the equipment install and service manuals.
 a. Evacuation start & stop dates, times, and persons involved shall be recorded and tagged at the outdoor equipment.
 b. Installing contractor shall digitally capture a photo of the micron gauge reading, at the conclusion of the 1hr holding period, for each system and provide a copy to the VRF manufacturer. Each photo shall contain a tag providing the outdoor units Serial number.

F. Upon the completion of the 500-micron hold, the calculated additional refrigerant charge can be added. The calculated refrigerant charge shall have been calculated using the VRF manufacturers design software.
 a. Total refrigerant charge of the system shall be recorded and displayed at the outdoor unit by permanent means.

G. A review of the equipment settings shall be completed, with recommendations provided to improve system performance, if applicable. Physical changes of system settings will be completed by the contractor. Electronic recording of final DIP switches shall be provided as part of the commissioning report.

H. A comprehensive review and visual inspection shall be completed for each piece of equipment following a detailed check list, specific to the equipment being reviewed. A copy of the inspection report shall be provided as part of the manufacturers close out documentation. Any deficiencies found during the inspection process shall be brought to the attention of the installing contractor for corrective action. Any system components that are not accessible for proper inspection shall be noted as such.

I. Indoor Equipment report shall contain
 o Model & Serial Number
 o Equipment location
 o Equipment Tag/Identification number
 o Network Address & Port Assignment
 o Digital recording of equipment settings
 o Mounting/support method
 o Seismic restraints used
 o Proper service clearance provided
 o Wiring and connection points are correct
o High voltage reading(s) within acceptable range
o Low voltage reading(s) within acceptable range
o Type of Remote Controller used and its location
o Occupied space temperature sensing location
o Air temperature readings within acceptable range
o Condensate pump interlock method
o Fan E.S.P. setting
o Air Filter condition
o Height differential setting in heat mode
o Noise level acceptable
o Refrigerant pipe connected and insulated properly
o Condensate pipe connected and insulated properly
o Condition of connected ductwork
o Fresh air connected
o Humidifier connected and checked
o Review of air balance report complete
o Other interlocked systems, i.e. baseboard heat, booster fan etc.

J. Outdoor Air Cooled equipment report shall contain
o Model & Serial Number
o Equipment location
o Equipment Tag/Identification number
o Network Address & Port Assignment
o Digital recording of equipment settings
o Mounting/support method
o Seismic restraints used
o High Wind Tethering method
o Proper service clearance provided
o Defrost Condensate removal addressed
o Wiring and connection points are correct
o High voltage reading(s) within acceptable range
o Low voltage reading(s) within acceptable range
o Control Network settings
o Noise level setting
o Refrigerant pipe installed and insulated properly
o Low ambient operation settings

K. Lossnay/CFM/CFMR
o Model & Serial Number
o Equipment location
o Equipment Tag/Identification number
o Network Address & Port Assignment
o Digital recording of equipment settings
o Mounting/support method
o Seismic restraints used
o Proper service clearance provided
o Wiring and connection points are correct
o High voltage reading(s) within acceptable range
o Low voltage reading(s) within acceptable range
o Type of Remote Controller used and its location
o Occupied space temperature sensing location
o Air temperature readings @ Supply & Return of unit
o Condensate pump interlock method
2.03 Physical Start-Up & Commissioning of Equipment

A. Upon proper equipment start up by the contractor, following the manufacturers guidelines and specifications, an employee of the VRF manufacturer shall complete a review of the system performance and complete the following tasks:
 B. Check and confirm all communication addressing of system components.
 C. Check and confirm each indoor unit, individually, is properly piped and wired by commanding the indoor unit on, in either heat or cool mode and verifying proper response.
 a. This process shall be digitally recorded and included as part of the close out documentation.
 D. Electronically record a minimum of one-hour of operational data per refrigeration system.
 E. Electronically record selector switch positions on all indoor and outdoor equipment.
 F. The VRF manufacturer shall retain the electronically recorded data, collected during the start-up and equipment commissioning process, at a designated location within the US for future reference.

2.04 Close-Out Information

A. The VRF manufacturer shall issue a System Performance report at the completion of all fieldwork. Contained within this report shall be an overview of the system performance, recommendations, field reports, all electronic data, and as-built design file.

2.05 VRF Equipment Warranty

A. Having successfully completed the Pre-Inspection, Start-Up & Equipment Commissioning processes and fulfilling all requirements, as outlined in the VRF manufacturers Extended Warranty Process. Along with installing contractor being certified by the VRFR manufacturer to install VRF systems, having attended a minimum 3- day VRF Service & Installation course at an authorized training center.

B. The equipment shall be provided with the following warranty per the VRF manufacturer’s warranty policy:
 o Compressor: 7-year part only
 o Parts: 5-years part only
 o Labor: no labor coverage provided by VRF Manufacturer

Part 3 - Owner Training and Technical Support

3.01 GENERAL

A. The VRF manufacturer shall provide the owner’s representative a minimum [hour] VRF Operation and Maintenance training class covering systems installed under this scope of work.
B. Training program is to be provided at the time of owner occupancy.
C. Owner shall provide a suitable location, onsite, to conduct the VRF Operation and Maintenance class.
D. Training material shall be provided to participants in electronic format.
E. Contact your region’s Mitsubishi Electric Professional Solutions Manager for information and pricing related to services required under this projects scope of work.
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Electrical equipment coordination and installation.
 2. Sleeves for raceways and cables.
 3. Sleeve seals.
 5. Common electrical installation requirements.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For sleeve seals.

1.5 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."

COMMON WORK RESULTS FOR ELECTRICAL 260500
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.
 1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.
 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 3. Pressure Plates: Carbon steel. Include two for each sealing element.
 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.
PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable
penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 260500
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 3. Sleeves and sleeve seals for cables.

B. Related Sections include the following:
 1. Division 26 Section "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 2001 to 35,000 V.
 2. Division 26 Section "Undercarpet Electrical Power Cables" for flat cables for undercarpet installations.
 3. Division 27 Section "Communications Horizontal Cabling" for cabling used for voice and data circuits.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Qualification Data: For testing agency.

C. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
1. Testing Agency's Field Supervisor: Person currently certified by the International Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

1.6 COORDINATION

A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alcan Products Corporation; Alcan Cable Division.
 3. General Cable Corporation.
 4. Senator Wire & Cable Company.
 5. Southwire Company.

B. Copper Conductors: Comply with NEMA WC 70.

C. Conductor Insulation: Comply with NEMA WC 70 for Types THW THHN-THWN XHHW and SO.

D. Multiconductor Cable: Comply with NEMA WC 70 for metal-clad cable, Type MC with ground wire.

2.2 CONNECTORS AND SPLICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 3. O-Z/Gedney; EGS Electrical Group LLC.
 4. 3M; Electrical Products Division.
 5. Tyco Electronics Corp.
C. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.4 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Carbon steel. Include two for each sealing element.
 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlsaces: Type THHN-THWN, single conductors in raceway.

B. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

C. Feeders Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway.

D. Exposed Branch Circuits, Including in Crawlsaces: Type THHN-THWN, single conductors in raceway.

E. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway. MC Cable may be used where concealed in partitions and Walls only.

F. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

G. Branch Circuits Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."

F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.
C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both wall surfaces.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and cable unless sleeve seal is to be installed.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants."

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between cable and sleeve for installing mechanical sleeve seals.
3.6 SLEEVE-SEAL INSTALLATION

A. Install to seal underground exterior-wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Perform tests and inspections and prepare test reports.

C. Tests and Inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test for compliance with requirements.
 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.
 a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

D. Test Reports: Prepare a written report to record the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

E. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 260519
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes methods and materials for grounding systems and equipment.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Qualification Data: For testing agency and testing agency's field supervisor.
 C. Field quality-control test reports.
 D. Operation and Maintenance Data: For grounding to include the following in emergency, operation, and maintenance manuals:
 a. Tests shall be to determine if ground resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if they do not.
 b. Include recommended testing intervals.

1.4 QUALITY ASSURANCE
 A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the International Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 1. Testing Agency's Field Supervisor: Person currently certified by the International Electrical Testing Association to supervise on-site testing specified in Part 3.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 C. Comply with UL 467 for grounding and bonding materials and equipment.
PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:
 4. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 5. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 2 inches in cross section, unless otherwise indicated; with insulators.

2.2 CONNECTORS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by10 feet in diameter.
 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
 2. Backfill Material: Electrode manufacturer’s recommended material.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.

B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus on insulated spacers 1 inch, minimum, from wall 6 inches above finished floor, unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, down to specified height above floor, and connect to horizontal bus.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Lighting circuits.
 3. Receptacle circuits.
 5. Three-phase motor and appliance branch circuits.
 6. Flexible raceway runs.
 7. Armored and metal-clad cable runs.
 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway
fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

G. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Common Ground Bonding with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

D. Grounding and Bonding for Piping:
1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

E. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:

B. Perform the following tests and inspections and prepare test reports:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
 3. Prepare dimensioned drawings locating each test well, ground rod and ground rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

C. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).

D. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.
B. Related Sections include the following:
 1. Division 26 Section "Vibration And Seismic Controls For Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. IMC: Intermediate metal conduit.
C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 SUBMITTALS
A. Product Data: For the following:
1. Steel slotted support systems.
2. Nonmetallic slotted support systems.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Comply with NFPA 70.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.
 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 5. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 5) .
 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.
 6) .
 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.
PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1 EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Existing Concrete: Expansion anchor fasteners.
 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 6. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
 B. Related Sections include the following:
 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS
 A. EMT: Electrical metallic tubing.
 B. ENT: Electrical nonmetallic tubing.
 C. EPDM: Ethylene-propylene-diene terpolymer rubber.
 D. FMC: Flexible metal conduit.
 E. IMC: Intermediate metal conduit.
 F. LFMC: Liquidtight flexible metal conduit.
 G. LFNC: Liquidtight flexible nonmetallic conduit.
 H. NBR: Acrylonitrile-butadiene rubber.
 I. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS
 A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
 B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 1. Custom enclosures and cabinets.
 2. For handholes and boxes for underground wiring, including the following:
 a. Duct entry provisions, including locations and duct sizes.
b. Frame and cover design.
c. Grounding details.
d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
e. Joint details.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 2. Alflex Inc.
 3. Allied Tube & Conduit; a Tyco International Ltd. Co.
 4. Anamet Electrical, Inc.; Anaconda Metal Hose.
 5. Electri-Flex Co.
 7. Maverick Tube Corporation.

B. Rigid Steel Conduit: ANSI C80.1.

C. Aluminum Rigid Conduit: ANSI C80.5.

D. IMC: ANSI C80.6.

E. EMT: ANSI C80.3.

F. FMC: Zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket.

H. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 2. Fittings for EMT: Steel compression type.
 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch, with overlapping sleeves protecting threaded joints.
I. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 METAL WIREWAYS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper B-Line, Inc.
 2. Hoffman.
 3. Square D; Schneider Electric.

C. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.

D. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

E. Wireway Covers: Hinged type.

F. Finish: Manufacturer's standard enamel finish.

2.3 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 2. EGS/Appleton Electric.
 7. RACO; a Hubbell Company.
 10. Spring City Electrical Manufacturing Company.

B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: NEMA OS 2.

E. Metal Floor Boxes: Cast metal, , rectangular.
F. Nonmetallic Floor Boxes: Nonadjustable, round.

G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

H. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, galvanized, cast iron with gasketed cover.

I. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

J. Cabinets:
 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.

2.4 SLEEVES FOR RACEWAYS

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.5 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Carbon steel. Include two for each sealing element.
 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.6 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 1. Tests of materials shall be performed by an independent testing agency.
2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.

3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Comply with the following indoor applications, unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: RNC identified for such use.
 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 6. Damp or Wet Locations: Rigid steel conduit.

B. Minimum Raceway Size: 3/4-inch trade size.

C. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.

D. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

E. Do not install aluminum conduits in contact with concrete.

3.2 INSTALLATION

A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."

E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.

G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.

H. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor.

I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

L. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where otherwise required by NFPA 70.

M. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

N. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

O. Set metal floor boxes level and flush with finished floor surface.

P. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
1. For sleeve cross-section rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both surfaces of walls.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway unless sleeve seal is to be installed.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work.

M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between raceway and sleeve for installing mechanical sleeve seals.

3.4 SLEEVE-SEAL INSTALLATION

A. Install to seal underground, exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.5 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section “Penetration Firestopping.”

3.6 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 5. Warning labels and signs.
 6. Instruction signs.
 7. Equipment identification labels.
 8. Miscellaneous identification products.

1.3 SUBMITTALS

A. Product Data: For each electrical identification product indicated.

B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

A. Comply with ANSI A13.1.

B. Comply with NFPA 70.

C. Comply with ANSI Z535.4 for safety signs and labels.

D. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.2 ARMORED AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Colors for Raceways Carrying Circuits at 600 V and Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.5 FLOOR MARKING TAPE

A. 2-inch- wide, 5-mil pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

2.6 WARNING LABELS AND SIGNS

A. Comply with NFPA 70.

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 7 by 10 inches.

D. Warning label and sign shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.7 INSTRUCTION SIGNS

A. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

2.8 EQUIPMENT IDENTIFICATION LABELS

2.9 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self extinguishing, UV stabilized, one piece, self locking.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.10 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
F. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

G. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

H. Painted Identification: Comply with requirements in Division 09 painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
2. Power.
3. UPS.

C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

D. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.

2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.

1. Limit use of underground-line warning tape to direct-buried cables.

G. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

H. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.

2. Identify system voltage with black letters on an orange background.

3. Apply to exterior of door, cover, or other access.

4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

I. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

J. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchboards.
e. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
f. Motor-control centers.
g. Enclosed switches.
h. Enclosed circuit breakers.
i. Enclosed controllers.
j. Variable-speed controllers.
k. Push-button stations.
l. Contactors.
m. Remote-controlled switches, dimmer modules, and control devices.
n. Battery racks.
o. Power-generating units.
p. Monitoring and control equipment.

END OF SECTION 260553
SECTION 260573 - OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes computer-based, fault-current and overcurrent protective device coordination studies. Protective devices shall be set based on results of the protective device coordination study.
 1. Coordination of series-rated devices is permitted where indicated on Drawings.

1.3 SUBMITTALS
 A. Product Data: For computer software program to be used for studies.
 B. Product Certificates: For coordination-study and fault-current-study computer software programs, certifying compliance with IEEE 399.
 C. Qualification Data: For coordination-study specialist.
 D. Other Action Submittals: The following submittals shall be made after the approval process for system protective devices has been completed. Submittals shall be in digital form.
 1. Coordination-study input data, including completed computer program input data sheets.
 2. Study and Equipment Evaluation Reports.

1.4 QUALITY ASSURANCE
 A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.
 B. Coordination-Study Specialist Qualifications: An entity experienced in the application of computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
 1. Professional engineer, licensed in the state where Project is located, shall be responsible for the study. All elements of the study shall be performed under the direct supervision and control of engineer.
 C. Comply with IEEE 242 for short-circuit currents and coordination time intervals.
 D. Comply with IEEE 399 for general study procedures.
PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Computer Software Developers: Subject to compliance with requirements, provide products by one of the following:
 1. CGI CYME.
 2. EDSA Micro Corporation.
 3. ESA Inc.
 4. Operation Technology, Inc.
 5. SKM Systems Analysis, Inc.

2.2 COMPUTER SOFTWARE PROGRAM REQUIREMENTS

A. Comply with IEEE 399.

B. Analytical features of fault-current-study computer software program shall include "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
 1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.
 1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

A. Gather and tabulate the following input data to support coordination study:
 1. Product Data for overcurrent protective devices specified in other Division 26 Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Impedance of utility service entrance.

3. Electrical Distribution System Diagram: In hard-copy and electronic-copy formats, showing the following:
 a. Circuit-breaker and fuse-current ratings and types.
 b. Relays and associated power and current transformer ratings and ratios.
 c. Transformer kilovolt amperes, primary and secondary voltages, connection type, impedance, and X/R ratios.
 d. Generator kilovolt amperes, size, voltage, and source impedance.
 e. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length.
 f. Busway ampacity and impedance.
 g. Motor horsepower and code letter designation according to NEMA MG 1.

4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Generator thermal-damage curve.
 e. Ratings, types, and settings of utility company's overcurrent protective devices.
 f. Special overcurrent protective device settings or types stipulated by utility company.
 g. Time-current-characteristic curves of devices indicated to be coordinated.
 h. Manufacturer, frame size, interrupting rating in ampere rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 j. Panelboards, switchboards, motor-control center ampacity, and interrupting rating in ampere rms symmetrical.

3.3 FAULT-CURRENT STUDY

A. Calculate the maximum available short-circuit current in ampere rms symmetrical at circuit-breaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:
 1. Switchgear and switchboard bus.
 2. Medium-voltage controller.
 3. Motor-control center.
 4. Distribution panelboard.
 5. Branch circuit panelboard.

B. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.

C. Calculate momentary and interrupting duties on the basis of maximum available fault current.
D. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 141 and IEEE 242.
 1. Transformers:
 a. ANSI C57.12.10.
 b. ANSI C57.12.22.
 c. ANSI C57.12.40.
 d. IEEE C57.12.00.
 e. IEEE C57.96.
 4. Low-Voltage Fuses: IEEE C37.46.

E. Study Report:
 1. Show calculated X/R ratios and equipment interrupting rating (1/2-cycle) fault currents on electrical distribution system diagram.
 2. Show interrupting (5-cycle) and time-delayed currents (6 cycles and above) on medium-voltage breakers as needed to set relays and assess the sensitivity of overcurrent relays.

F. Equipment Evaluation Report:
 1. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 2. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
 3. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3.4 COORDINATION STUDY

 1. Calculate the maximum and minimum 1/2-cycle short-circuit currents.
 2. Calculate the maximum and minimum interrupting duty (5 cycles to 2 seconds) short-circuit currents.
 3. Calculate the maximum and minimum ground-fault currents.

B. Comply with IEEE 141 recommendations for fault currents and time intervals.

C. Transformer Primary Overcurrent Protective Devices:
 1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
 2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

D. Motors served by voltages more than 600 V shall be protected according to IEEE 620.

E. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242. Demonstrate that
equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

F. Coordination-Study Report: Prepare a written report indicating the following results of coordination study:

1. Tabular Format of Settings Selected for Overcurrent Protective Devices:
 a. Device tag.
 b. Relay-current transformer ratios; and tap, time-dial, and instantaneous-pickup values.
 c. Circuit-breaker sensor rating; and long-time, short-time, and instantaneous settings.
 d. Fuse-current rating and type.
 e. Ground-fault relay-pickup and time-delay settings.

2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company’s upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 a. Device tag.
 b. Voltage and current ratio for curves.
 c. Three-phase and single-phase damage points for each transformer.
 d. No damage, melting, and clearing curves for fuses.
 e. Cable damage curves.
 f. Transformer inrush points.
 g. Maximum fault-current cutoff point.

G. Completed data sheets for setting of overcurrent protective devices.
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Load centers.
 4. Electronic-grade panelboards.

1.3 DEFINITIONS

A. SVR: Suppressed voltage rating.

B. TVSS: Transient voltage surge suppressor.

1.4 PERFORMANCE REQUIREMENTS

1.5 SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Qualification Data: For qualified testing agency.

C. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Panelboard Schedules: For installation in panelboards.

E. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
E. Comply with NEMA PB 1.
F. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
B. Handle and prepare panelboards for installation according to NECA 407.

1.8 PROJECT CONDITIONS

A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.
B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.
C. **Interruption of Existing Electric Service**: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Architect no fewer than two days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without Owner's written permission.
 3. Comply with NFPA 70E.

1.9 **COORDINATION**

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.10 **WARRANTY**

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

1.11 **EXTRA MATERIALS**

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two spares for each type of panelboard cabinet lock.
 2. Circuit Breakers Including GFCI and Ground Fault Equipment Protection (GFEP) Types: Two spares for each panelboard.
 3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

PART 2 - PRODUCTS

2.1 **GENERAL REQUIREMENTS FOR PANELBOARDS**

A. Enclosures: Flush- and surface-mounted cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5.

2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.

3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

6. Finishes:
 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.

B. Incoming Mains Location: Top and bottom.

C. Phase, Neutral, and Ground Buses:
 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 4. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.

D. Conductor Connectors: Suitable for use with conductor material and sizes.
 2. Main and Neutral Lugs: Compression type.
 3. Ground Lugs and Bus-Configured Terminators: Compression type.
 4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 5. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 6. Gutter-Tap Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 7. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.

E. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices.

F. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

G. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, listed and labeled for series-connected short-circuit rating by an NRTL.

2.2 DISTRIBUTION PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches high, provide two latches, keyed alike.

D. Mains: Lugs only.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

G. Branch Overcurrent Protective Devices: Fused switches.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

F. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.
2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.
5. Insert manufacturer's name.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with series-connected rating interrupting capacity to meet available fault currents.
3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and \(I^2t \) response.
4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Shunt Trip: 24-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 f. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.
 g. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.
 h. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.
 i. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 j. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.
k. Multipole units enclosed in a single housing or factory assembled to operate as a single unit.

l. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.

m. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.5 PANELBOARD SUPPRESSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Current Technology; a subsidiary of Danahar Corporation.
 2. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Liebert Corporation.
 5. Siemens Energy & Automation, Inc.
 6. Square D; a brand of Schneider Electric.

B. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, solid-state, parallel-connected, non-modular type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories:
 1. Accessories:
 a. LED indicator lights for power and protection status.
 b. Audible alarm, with silencing switch, to indicate when protection has failed.
 c. One set of dry contacts rated at 5 A and 250-V ac, for remote monitoring of protection status.

C. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, wired-in, solid-state, parallel-connected, modular (with field-replaceable modules) type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories:
 1. Accessories:
 a. Fuses rated at 200-kA interrupting capacity.
 b. Fabrication using bolted compression lugs for internal wiring.
 c. Integral disconnect switch.
 d. Redundant suppression circuits.
 e. Redundant replaceable modules.
 f. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 g. LED indicator lights for power and protection status.
 h. Audible alarm, with silencing switch, to indicate when protection has failed.
 i. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
 j. Six-digit, transient-event counter set to totalize transient surges.
 a. Line to Neutral: 70,000 A.
 b. Line to Ground: 70,000 A.
 c. Neutral to Ground: 50,000 A.
4. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.

2.6 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NECA 407.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install panelboards and accessories according to NECA 407.

B. Equipment Mounting: Install panelboards on concrete bases, 4-inch nominal thickness. Comply with requirements for concrete base specified in Division 03 Section "Cast-in-Place Concrete."
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.
 2. For panelboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to panelboards.
 5. Attach panelboard to the vertical finished or structural surface behind the panelboard.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

D. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

E. Mount top of trim 90 inches above finished floor unless otherwise indicated.
F. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

G. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.

H. Install filler plates in unused spaces.

I. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

J. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

K. Comply with NECA 1.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

F. Panelboards will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section "Overcurrent Protective Device Coordination Study."

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 1. Measure as directed during period of normal system loading.
 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.6 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Twist-locking receptacles.
 3. Receptacles with integral surge suppression units.
 5. Isolated-ground receptacles.
 6. Hospital-grade receptacles.
 7. Snap switches and wall-box dimmers.
 8. Solid-state fan speed controls.
 9. Wall-switch and exterior occupancy sensors.
 10. Communications outlets.
 12. Cord and plug sets.
 13. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

B. Related Sections include the following:
 1. Division 27 Section "Communications Horizontal Cabling" for workstation outlets.

1.3 DEFINITIONS
A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing label warnings and instruction manuals that include labeling conditions.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

1.6 COORDINATION

A. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 1. Cord and Plug Sets: Match equipment requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers’ Names: Shortened versions (shown in parentheses) of the following manufacturers’ names are used in other Part 2 articles:
 1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper).
 2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
 4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

2.2 STRAIGHT BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

B. 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 5351 (single), 5352 (duplex).
 b. Hubbell; HBL5351 (single), CR5352 (duplex).
 c. Leviton; 5891 (single), 5352 (duplex).
d. Pass & Seymour; 5381 (single), 5352 (duplex).

C. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

D. 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; CR 52531G.
 b. Leviton; 5362-IG.
 c. Pass & Seymour; IG6300.

2. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

E. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; TR8300.
 b. Hubbell; HBL8300SG.
 c. Leviton; 8300-SGG.
 d. Pass & Seymour; 63H.

3. Description: Labeled to comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.3 GFCI RECEPTACLES

A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; GF20.
 b. Pass & Seymour; 2084.

C. Hospital-Grade, Duplex GFCI Convenience Receptacles, 125 V, 20 A: Comply with UL 498 Supplement SD.

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; HGF20.
 b. Hubbell; HGF8300.
 c. Leviton; 6898-HG.
 d. Pass & Seymour; 2091-SHG.
2.4 TVSS RECEPTACLES

A. General Description: Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 1449, with integral TVSS in line to ground, line to neutral, and neutral to ground.
1. TVSS Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 volts and minimum single transient pulse energy dissipation of 240 J, according to IEEE C62.41.2 and IEEE C62.45.
2. Active TVSS Indication: Visual and audible, with light visible in face of device to indicate device is "active" or "no longer in service."

B. Duplex TVSS Convenience Receptacles:

C. 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 5362BLS.
 b. Hubbell; HBL5362SA.
 c. Leviton; 5380.
2. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R.

D. Isolated-Ground, Duplex Convenience Receptacles:

E. 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; IG5362BLS.
 b. Hubbell; IG5362SA.
 c. Leviton; 5380-IG.
2. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

F. Hospital-Grade, Duplex Convenience Receptacles: Comply with UL 498 Supplement SD.

G. 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 8300BLS.
 b. Hubbell; HBL8362SA.
 c. Leviton; 8380.
2. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R.

2.5 SNAP SWITCHES

A. Comply with NEMA WD 1 and UL 20.

B. Switches, 120/277 V, 20 A:

C. 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221 (single pole), 2222 (two pole), 2223 (three way), 2224 (four way).
 b. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way).
c. Leviton; 1221-2 (single pole), 1222-2 (two pole), 1223-2 (three way), 1224-2 (four way).
d. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way), 20AC4 (four way).

D. Pilot Light Switches, 20 A:
 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221PL for 120 V and 277 V.
 b. Hubbell; HPL1221PL for 120 V and 277 V.
 c. Leviton; 1221-PLR for 120 V, 1221-7PLR for 277 V.
 d. Pass & Seymour; PS20AC1-PLR for 120 V.
 3. Description: Single pole, with neon-lighted handle, illuminated when switch is “ON.”

E. Key-Operated Switches, 120/277 V, 20 A:
 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221L.
 b. Hubbell; HBL1221L.
 c. Leviton; 1221-2L.
 d. Pass & Seymour; PS20AC1-L.
 3. Description: Single pole, with factory-supplied key in lieu of switch handle.

F. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.
 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 2. Products: Subject to compliance with requirements, provide one of the following:
 b. Hubbell; HBL1557.
 c. Leviton; 1257.
 d. Pass & Seymour; 1251.

G. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.
 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 1995L.
 b. Hubbell; HBL1557L.
 c. Leviton; 1257L.
 d. Pass & Seymour; 1251L.

2.6 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 1. 600 W; dimmers shall require no derating when ganged with other devices. Illuminated when "OFF."

D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.7 FAN SPEED CONTROLS

A. Modular, 120-V, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters. Comply with UL 1917.
 1. Continuously adjustable slider.
 2. Three-speed adjustable slider, 1.5 A.

2.8 OCCUPANCY SENSORS

A. Wall-Switch Sensors:
 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 6111 for 120 V, 6117 for 277 V.
 b. Hubbell; WS1277.
 c. Leviton; ODS 10-ID.
 d. Pass & Seymour; WS3000.
 e. Watt Stopper (The); WS-200.
 3. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft..

B. Wall-Switch Sensors:
 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 2. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; AT120 for 120 V, AT277 for 277 V.
 b. Leviton; ODS 15-ID.
 3. Description: Adaptive-technology type, 120/277 V, adjustable time delay up to 20 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft..

C. Long-Range Wall-Switch Sensors:
 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 2. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; ATP1600WRP.
 b. Leviton; ODWWWV-IRW.
 c. Pass & Seymour; WA1001.
 d. Watt Stopper (The); CX-100.
3. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, with a minimum coverage area of 1200 sq. ft..

D. Long-Range Wall-Switch Sensors:
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; ATD1600WRP.
 b. Leviton; ODW12-MRW.
 c. Watt Stopper (The); DT-200.
3. Description: Dual technology, with both passive-infrared- and ultrasonic-type sensing, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, and a minimum coverage area of 1200 sq. ft..

E. Wide-Range Wall-Switch Sensors:
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; ATP120HBRP.
 b. Leviton; ODWHB-IRW.
 c. Pass & Seymour; HS1001.
 d. Watt Stopper (The); CX-100-3.
3. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 150-degree field of view, with a minimum coverage area of 1200 sq. ft..

2.9 WALL PLATES

A. Single and combination types to match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: 0.035-inch thick, satin-finished stainless steel.
 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations."

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable cover.

2.10 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, dual-service units suitable for wiring method used.

B. Compartments: Barrier separates power from voice and data communication cabling.

C. Service Plate: Rectangular, with satin finish.

D. Power Receptacle: NEMA WD 6 configuration 5-20R, gray finish, unless otherwise indicated.

E. Voice and Data Communication Outlet: Blank cover with bushed cable opening.
2.11 POKE-THROUGH ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hubbell Incorporated; Wiring Device-Kellems.
 2. Pass & Seymour/Legrand; Wiring Devices & Accessories.
 3. Square D/ Schneider Electric.
 4. Thomas & Betts Corporation.
 5. Wiremold Company (The).

B. Description: Factory-fabricated and wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service outlet assembly.
 1. Service Outlet Assembly: Flush type with four simplex receptacles and space for four RJ-45 jacks.
 2. Size: Selected to fit nominal 3-inch cored holes in floor and matched to floor thickness.
 3. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
 4. Closure Plug: Arranged to close unused 3-inch cored openings and reestablish fire rating of floor.
 5. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, 4-pair, Category 5e voice and data communication cables.

2.12 MULTIOUTLET ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hubbell Incorporated; Wiring Device-Kellems.
 2. Wiremold Company (The).

B. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

C. Raceway Material: Metal, with manufacturer’s standard finish.

D. Wire: No. 12 AWG.

2.13 FINISHES

A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 1. Wiring Devices Connected to Normal Power System: As selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing.
 3. TVSS Devices: Blue.
 4. Isolated-Ground Receptacles: Orange.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

B. Coordination with Other Trades:
 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:
 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 8. Tighten unused terminal screws on the device.
 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
 1. Install dimmers within terms of their listing.
 2. Verify that dimmers used for fan speed control are listed for that application.
 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

A. Comply with Division 26 Section "Identification for Electrical Systems."
 1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 2. Test Instruments: Use instruments that comply with UL 1436.
 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

B. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Test straight blade for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz..

END OF SECTION 262726
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

B. 1. Nonfusible switches.
 2. Molded-case circuit breakers (MCCBs).
 4. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.

B. NO: Normally open.

C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

C. Manufacturer’s field service report.

D. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section “Operation and Maintenance Data,” include the following:
 1. Manufacturer’s written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency’s Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Owner’s written permission.
4. Comply with NFPA 70E.

1.8 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

1. powered; 24-V ac.

2.2 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 4. Lugs: Compression type, suitable for number, size, and conductor material.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I^2t response.

F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

J. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.

2.4 MOLDED-CASE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

C. Features and Accessories:
 1. Standard frame sizes and number of poles.
2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.

2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 2. Outdoor Locations: NEMA 250, Type 3R.
 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section “Overcurrent Protective Device Coordination Study”.
END OF SECTION 262816
SECTION 263213 - ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged engine-generator sets for standby power supply with the following features:
 1. Gas engine.
 2. Unit-mounted cooling system.
 4. Outdoor enclosure.

B. Related Sections include the following:
 1. Division 26 Section "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.3 DEFINITIONS

A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 SUBMITTALS

A. Product Data: For each type of packaged engine generator indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. In addition, include the following:
 1. Thermal damage curve for generator.
 2. Time-current characteristic curves for generator protective device.

B. Source quality-control test reports.
 1. Certified summary of prototype-unit test report.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.
E. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 200 miles of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.

B. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with ASME B15.1.

E. Comply with NFPA 37.

F. Comply with NFPA 70.

G. Comply with NFPA 99.

H. Comply with NFPA 110 requirements for Level 2 emergency power supply system.

I. Comply with UL 2200.

J. Engine Exhaust Emissions: Comply with applicable state and local government requirements.

K. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of electrical service.
 2. Do not proceed with interruption of electrical service without Owner's written permission.

B. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 1. Ambient Temperature: 5 to 40 deg C.
 2. Relative Humidity: 0 to 95 percent.
 3. Altitude: Sea level to 100 feet.
1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: 1 year from date of Substantial Completion.

1.8 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, provide 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include quarterly exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Provide parts and supplies same as those used in the manufacture and installation of original equipment.

1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
 2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
 3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Caterpillar; Engine Div.
 2. Generac Power Systems, Inc.
 3. Kohler Co.; Generator Division.
 4. Magnetek, Inc.

2.2 ENGINE-GENERATOR SET

A. Factory-assembled and -tested, engine-generator set.

B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.
 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and generator-set center of gravity.

C. Capacities and Characteristics:
1. Power Output Ratings: Nominal ratings as indicated, on drawings.
2. Output Connections: Three-phase, four wire.
3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.

D. Generator-Set Performance:
 1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
 6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
 7. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
 8. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.3 ENGINE

A. Fuel: Natural gas.

B. Rated Engine Speed: 1800 rpm.

C. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm.

D. Lubrication System: The following items are mounted on engine or skid:
 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.

E. Engine Fuel System:
 1. Dual Natural Gas with LP-Gas Backup (Vapor-Withdrawal) System:
 a. Carburetor.
 b. Secondary Gas Regulators: One for each fuel type.
 c. Fuel-Shutoff Solenoid Valves: One for each fuel source.
 d. Flexible Fuel Connectors: One for each fuel source.
F. Coolant Jacket Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity.

G. Governor: Adjustable isochronous, with speed sensing.

H. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine-generator-set mounting frame and integral engine-driven coolant pump.
 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 3. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.
 4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
 a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and noncollapsible under vacuum.
 b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.

I. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer’s engine backpressure requirements.
 1. Minimum sound attenuation of 25 dB at 500 Hz.
 2. Sound level measured at a distance of 10 feet from exhaust discharge after installation is complete shall be 85 dBA or less.

K. Starting System: 12-V electric, with negative ground.
 1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in Part 1 "Project Conditions" Article.
 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 4. Battery: Adequate capacity within ambient temperature range specified in Part 1 "Project Conditions" Article to provide specified cranking cycle at least three times without recharging.
 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 10 deg C regardless of external ambient temperature within range specified in Part 1 "Project Conditions" Article. Include accessories required to support and fasten batteries in place.
 8. Battery Charger: Current-limiting, automatic-equalizing and float-charging type. Unit shall comply with UL 1236 and include the following features:
a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.

b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 deg C to plus 60 deg C to prevent overcharging at high temperatures and undercharging at low temperatures.

c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.

e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.

f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.4 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.

B. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common wall-mounted control and monitoring panel.

C. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level 2 system, and the following:
1. AC voltmeter.
2. AC ammeter.
3. AC frequency meter.
4. DC voltmeter (alternator battery charging).
5. Engine-coolant temperature gage.
6. Engine lubricating-oil pressure gage.
7. Running-time meter.
9. Generator-voltage adjusting rheostat.

D. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.

E. Connection to Data Link: A separate terminal block, factory wired to Form C dry contacts, for each alarm and status indication is reserved for connections for data-link transmission of indications to remote data terminals.
F. Common Remote Audible Alarm: Comply with NFPA 110 requirements for Level 1 systems. Include necessary contacts and terminals in control and monitoring panel.
 1. Overcrank shutdown.
 2. Coolant low-temperature alarm.
 3. Control switch not in auto position.
 4. Battery-charger malfunction alarm.
 5. Battery low-voltage alarm.

G. Common Remote Audible Alarm: Signal the occurrence of any events listed below without differentiating between event types. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset.
 1. Engine high-temperature shutdown.
 2. Lube-oil, low-pressure shutdown.
 3. Overspeed shutdown.
 5. Engine high-temperature prealarm.
 6. Lube-oil, low-pressure prealarm.
 7. Fuel tank, low-fuel level.
 8. Low coolant level.

H. Remote Alarm Annunciator: Comply with NFPA 99. An LED labeled with proper alarm conditions shall identify each alarm event and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.

I. Remote Emergency-Stop Switch: Flush; wall mounted, unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.5 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Generator Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with NEMA AB 1 and UL 489.
 1. Tripping Characteristic: Designed specifically for generator protection.
 2. Trip Rating: Matched to generator rating.
 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 4. Mounting: Adjacent to or integrated with control and monitoring panel.

B. Generator Disconnect Switch: Molded-case type, 100 percent rated.
 1. Rating: Matched to generator output rating.

C. Ground-Fault Indication: Comply with NFPA 70, "Emergency System" signals for ground-fault. Integrate ground-fault alarm indication with other generator-set alarm indications.

2.6 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Comply with NEMA MG 1.
B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.

C. Electrical Insulation: Class H or Class F.

D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.

E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

F. Enclosure: Dripproof.

G. Instrument Transformers: Mounted within generator enclosure.

H. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 1. Adjusting rheostat on control and monitoring panel shall provide plus or minus 5 percent adjustment of output-voltage operating band.

I. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

J. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

K. Subtransient Reactance: 12 percent, maximum.

2.7 OUTDOOR GENERATOR-SET ENCLOSURE

A. Description: Vandal-resistant, weatherproof steel housing, wind resistant up to 100 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.

B. Description: Prefabricated or preengineered walk-in enclosure with the following features:
 2. Structural Design and Anchorage: Comply with ASCE 7 for wind loads.
 3. Space Heater: Thermostatically controlled and sized to prevent condensation.
 4. Louvers: Equipped with bird screen and filter arranged to permit air circulation when engine is not running while excluding exterior dust, birds, and rodents.
 6. Ventilation: Louvers equipped with bird screen and filter arranged to permit air circulation while excluding exterior dust, birds, and rodents.
 7. Thermal Insulation: Manufacturer's standard materials and thickness selected in coordination with space heater to maintain winter interior temperature within operating limits required by engine-generator-set components.
 8. Muffler Location: Within enclosure.

C. Convenience Outlets: Factory wired GFCI. Arrange for external electrical connection.
2.8 VIBRATION ISOLATION DEVICES

A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized-steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.
 3. Number of Layers: Three.

2.9 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.10 SOURCE QUALITY CONTROL

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine-generator performance.

B. Examine roughing-in of piping systems and electrical connections. Verify actual locations of connections before packaged engine-generator installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with packaged engine-generator manufacturers' written installation and alignment instructions and with NFPA 110.

B. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.

C. Install packaged engine generator with elastomeric isolator pads on 4-inch high concrete base. Secure sets to anchor bolts installed in concrete bases.

D. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.
3.3 CONNECTIONS

A. Piping installation requirements are specified in Division 23 Sections. Drawings indicate general arrangement of piping and specialties.

B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow service and maintenance.

C. Connect engine exhaust pipe to engine with flexible connector.

D. Connect fuel piping to engines with a gate valve and union and flexible connector.
 1. Natural-gas piping, valves, and specialties for gas distribution are specified in Division 23 Section "Facility Natural-Gas Piping."

E. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Perform tests recommended by manufacturer and each electrical test and visual and mechanical inspection for "AC Generators and for Emergency Systems" specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test.
 3. Battery Tests: Equalize charging of battery cells according to manufacturer’s written instructions. Record individual cell voltages.
 a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 c. Verify acceptance of charge for each element of the battery after discharge.
 d. Verify that measurements are within manufacturer's specifications.
 4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.
 5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.
6. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg. Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer’s written allowable limits for the engine.

7. Exhaust Emissions Test: Comply with applicable government test criteria.

8. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.

9. Harmonic-Content Tests: Measure harmonic content of output voltage under 25 percent and at 100 percent of rated linear load. Verify that harmonic content is within specified limits.

10. Noise Level Tests: Measure A-weighted level of noise emanating from generator-set installation, including engine exhaust and cooling-air intake and discharge, at four locations on the property line, and compare measured levels with required values.

D. Coordinate tests with tests for transfer switches and run them concurrently.

E. Test instruments shall have been calibrated within the last 12 months, traceable to standards of NIST, and adequate for making positive observation of test results. Make calibration records available for examination on request.

F. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

G. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

H. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

I. Remove and replace malfunctioning units and retest as specified above.

J. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

K. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators. Refer to Division 01 Section “Demonstration and Training.”

END OF SECTION 263213
SECTION 26 41 13 - LIGHTNING PROTECTION FOR STRUCTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes lightning protection for structure elements and the building site components.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Shop Drawings: For air terminals and mounting accessories.
 1. Layout of the lightning protection system, along with details of the components to be used
 in the installation.
 2. Include indications for use of raceway, data on how concealment requirements will be
 met, and calculations required by NFPA 780 for bonding of grounded and isolated metal
 bodies.
 C. Qualification Data: For qualified Installer and manufacturer. Include data on listing or
 certification by UL.
 D. Certification, signed by Contractor, that roof adhesive is approved by manufacturer of roofing
 material.
 E. Field quality-control reports.
 F. Comply with recommendations in NFPA 780, Annex D, "Inspection and Maintenance of
 Lightning Protection Systems," for maintenance of the lightning protection system.
 G. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding
 features, including the following:
 1. Ground rods.
 2. Ground loop conductor.

1.4 QUALITY ASSURANCE
 A. Installer Qualifications: Certified by NRTL or certified by LPI as a Master Installer/Designer,
 trained and approved for installation of units required for this Project.
 B. System Certificate:
 1. UL Master Label.
LIGHTNING PROTECTION FOR STRUCTURES

2. LPI System Certificate.
3. UL Master Label Recertification.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 780, "Definitions" Article.

1.5 COORDINATION

A. Coordinate installation of lightning protection with installation of other building systems and components, including electrical wiring, supporting structures and building materials, metal bodies requiring bonding to lightning protection components, and building finishes.

B. Coordinate installation of air terminals attached to roof systems with roofing manufacturer and Installer.

C. Flashings of through-roof assemblies shall comply with roofing manufacturers' specifications.

PART 2 - PRODUCTS

2.1 LIGHTNING PROTECTION SYSTEM COMPONENTS

A. Comply with UL 96 and NFPA 780.

B. Roof-Mounted Air Terminals: NFPA 780, Class I, aluminum unless otherwise indicated.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2.
 a. ERICO International Corporation.
 b. Harger.
 d. Independent Protection Co.
 e. Preferred Lightning Protection.
 f. Robbins Lightning, Inc.
 g. Thompson Lightning Protection, Inc.
 h. Automatic Lightning Protection.
 3. Air Terminals More than 24 Inches Long: With brace attached to the terminal at not less than half the height of the terminal.

C. Main and Bonding Conductors: Aluminum.

D. Ground Loop Conductor: The same size and type as the main conductor except tinned.

E. Ground Rods: Copper-clad, sectional type; 3/4 inch in diameter by 10 feet.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install lightning protection components and systems according to UL 96A and NFPA 780.

B. Install conductors with direct paths from air terminals to ground connections. Avoid sharp bends.

C. Conceal the following conductors:
 1. System conductors.
 2. Down conductors.
 3. Interior conductors.
 4. Conductors within normal view of exterior locations at grade within 200 feet of building.

D. Cable Connections: Use cramped or bolted connections for all conductor splices and connections between conductors and other components. Use exothermic-welded connections in underground portions of the system.

E. Cable Connections: Use exothermic-welded connections for all conductor splices and connections between conductors and other components.
 1. Exception: In single-ply membrane roofing, exothermic-welded connections may be used only below the roof level.

F. Air Terminals on Single-Ply Membrane Roofing: Comply with roofing membrane and adhesive manufacturer's written instructions.

G. Bond extremities of vertical metal bodies exceeding 60 feet in length to lightning protection components.

H. Ground Loop: Install ground-level, potential equalization conductor and extend around the perimeter of structure, area or item indicated.
 1. Bury ground ring not less than 24 inches from building foundation.
 2. Bond ground terminals to the ground loop.
 3. Bond grounded building systems to the ground loop conductor within 12 feet of grade level.

I. Bond lightning protection components with intermediate-level interconnection loop conductors to grounded metal bodies of building at 60-foot intervals.

3.2 CORROSION PROTECTION

A. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.

B. Use conductors with protective coatings where conditions cause deterioration or corrosion of conductors.
3.3 FIELD QUALITY CONTROL

A. Notify Architect at least 48 hours in advance of inspection before concealing lightning protection components.

B. UL Inspection: Meet requirements to obtain a UL Master Label for system.

C. LPI System Inspection: Meet requirements to obtain an LPI System Certificate.

END OF SECTION 26 41 13
SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Interior lighting fixtures, lamps, and ballasts.
 2. Emergency lighting units.
 3. Exit signs.
 4. Lighting fixture supports.
 B. BF: Ballast factor.
 C. CCT: Correlated color temperature.
 D. CRI: Color-rendering index.
 E. HID: High-intensity discharge.
 F. LER: Luminaire efficacy rating.
 G. Lumen: Measured output of lamp and luminaire, or both.
 H. Luminaire: Complete lighting fixture, including ballast housing if provided.

1.3 SUBMITTALS
 A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
 1. Physical description of lighting fixture including dimensions.
 2. Emergency lighting units including battery and charger.
 3. Ballast, including BF.
 5. Air and Thermal Performance Data: For air-handling lighting fixtures. Furnish data required in "Submittals" Article in Division 23 Section "Diffusers, Registers, and Grilles."
 6. Sound Performance Data: For air-handling lighting fixtures. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Division 23 Section "Diffusers, Registers, and Grilles."
 7. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
 8. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type.
The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.

a. Testing Agency Certified Data: For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by manufacturer.

b. Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Installation instructions.

C. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.

D. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, from manufacturer.

E. Field quality-control reports.

F. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.

1.4 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers’ laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910, complying with the IESNA Lighting Measurements Testing & Calculation Guides.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70.

E. FM Global Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

1.5 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.
1.6 WARRANTY

A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.

2. Warranty Period for Emergency Fluorescent Ballast and Self-Powered Exit Sign Batteries: Seven years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining six years.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide product indicated on Drawings.

2.2 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.

B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A.

C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.

D. HID Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5B.

E. Metal Parts: Free of burrs and sharp corners and edges.

F. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.

G. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

H. Diffusers and Globes:

1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 a. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
 b. UV stabilized.

2. Glass: Annealed crystal glass unless otherwise indicated.
I. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp and ballast characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter code (T-4, T-5, T-8, T-12, etc.), tube configuration (twin, quad, triple, etc.), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.
 c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
 d. Start type (preheat, rapid start, instant start, etc.) for fluorescent and compact fluorescent luminaires.
 e. ANSI ballast type (M98, M57, etc.) for HID luminaires.
 f. CCT and CRI for all luminaires.

J. Electromagnetic-Interference Filters: Factory installed to suppress conducted electromagnetic interference as required by MIL-STD-461E. Fabricate lighting fixtures with one filter on each ballast indicated to require a filter.

K. Air-Handling Fluorescent Fixtures: For use with plenum ceiling for air return and heat extraction and for attaching an air-diffuser-boot assembly specified in Division 23 Section “Diffusers, Registers, and Grilles.”
 1. Air-Supply Units: Slots in one or both side trims join with air-diffuser-boot assemblies.
 2. Heat-Removal Units: Air path leads through lamp cavity.
 3. Combination Heat-Removal and Air-Supply Unit: Heat is removed through lamp cavity at both ends of the fixture door with air supply same as for air-supply units.
 4. Dampers: Operable from outside fixture for control of return-air volume.
 5. Static Fixture: Air-supply slots are blanked off, and fixture appearance matches active units.

2.3 BALLASTS FOR LINEAR FLUORESCENT LAMPS

A. General Requirements for Electronic Ballasts:
 1. Comply with UL 935 and with ANSI C82.11.
 2. Designed for type and quantity of lamps served.
 3. Ballasts shall be designed for full light output unless another BF, dimmer, or bi-level control is indicated.
 4. Sound Rating: Class A.
 5. Total Harmonic Distortion Rating: Less than 10 percent.
 6. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 7. Operating Frequency: 42 kHz or higher.
 8. Lamp Current Crest Factor: 1.7 or less.
 9. BF: 0.88 or higher.
 10. Power Factor: 0.98 or higher.
 11. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail.

B. Luminaires controlled by occupancy sensors shall have programmed-start ballasts.

C. Electronic Programmed-Start Ballasts for T8 Lamps: Comply with ANSI C82.11 and the following:
 1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
2. Automatic lamp starting after lamp replacement.

D. Ballasts for Dimmer-Controlled Lighting Fixtures: Electronic type.
1. Dimming Range: 100 to 5 percent of rated lamp lumens.
2. Ballast Input Watts: Can be reduced to 20 percent of normal.
3. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.
4. Control: Coordinate wiring from ballast to control device to ensure that the ballast, controller, and connecting wiring are compatible.

E. Ballasts for Bi-Level Controlled Lighting Fixtures: Electronic type.
1. Operating Modes: Ballast circuit and leads provide for remote control of the light output of the associated lamp between high- and low-level and off.
 a. High-Level Operation: 100 percent of rated lamp lumens.
 b. Low-Level Operation: 30 percent of rated lamp lumens.
2. Ballast shall provide equal current to each lamp in each operating mode.
3. Compatibility: Certified by manufacturer for use with specific bi-level control system and lamp type indicated.

2.4 BALLASTS FOR COMPACT FLUORESCENT LAMPS

A. Description: Electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated:
1. Lamp end-of-life detection and shutdown circuit.
2. Automatic lamp starting after lamp replacement.
3. Sound Rating: Class A.
4. Total Harmonic Distortion Rating: Less than 20 percent.
5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
6. Operating Frequency: 20 kHz or higher.
7. Lamp Current Crest Factor: 1.7 or less.
8. BF: 0.95 or higher unless otherwise indicated.
9. Power Factor: 0.98 or higher.
10. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.

2.5 EMERGENCY FLUORESCENT POWER UNIT

A. Internal Type: Self-contained, modular, battery-inverter unit, factory mounted within lighting fixture body and compatible with ballast. Comply with UL 924.
1. Emergency Connection: Operate one fluorescent lamp(s) continuously at an output of 1100 lumens each. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
2. Nightlight Connection: Operate one fluorescent lamp continuously.
3. Test Push Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
5. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
6. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
7. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

B. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more fluorescent lamps, remote mounted from lighting fixture. Comply with UL 924.
 1. Emergency Connection: Operate one fluorescent lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 2. Nightlight Connection: Operate one fluorescent lamp in a remote fixture continuously.
 5. Housing: NEMA 250, Type 1 enclosure.
 6. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 7. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 8. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.6 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:
 1. Lamps for AC Operation: Fluorescent, two for each fixture, 20,000 hours of rated lamp life.
 2. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.
 3. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 a. Battery: Sealed, maintenance-free, nickel-cadmium type.
 b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 f. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared
receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.

g. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

4. Master/Remote Sign Configurations:

a. Master Unit: Comply with requirements above for self-powered exit signs, and provide additional capacity in LED power supply for power connection to remote unit.

b. Remote Unit: Comply with requirements above for self-powered exit signs, except omit power supply, battery, and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system.

C. **Self-Luminous Signs:** Powered by tritium gas, with universal bracket for flush-ceiling, wall, or end mounting. Signs shall be guaranteed by manufacturer to maintain the minimum brightness requirements in UL 924 for 10 years.

D. **Self-Luminous Signs:** Using strontium oxide aluminate compound to store ambient light and release the stored energy when the light is removed. Provide with universal bracket for flush-ceiling, wall, or end mounting.

2.7 EMERGENCY LIGHTING UNITS

A. General Requirements for Emergency Lighting Units: Self-contained units complying with UL 924.

1. **Battery:** Sealed, maintenance-free, lead-acid type.
2. **Charger:** Fully automatic, solid-state type with sealed transfer relay.
3. **Operation:** Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
4. **Test Push Button:** Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
5. **LED Indicator Light:** Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
6. **Wire Guard:** Heavy-chrome-plated wire guard protects lamp heads or fixtures.
7. **Integral Time-Delay Relay:** Holds unit on for fixed interval of 15 minutes when power is restored after an outage.
8. **Remote Test:** Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
9. **Integral Self-Test:** Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.
2.8 FLUORESCENT LAMPS

A. T8 rapid-start lamps, rated 32 W maximum, nominal length of 48 inches, 2800 initial lumens (minimum), CRI 75 (minimum), color temperature 3500 K, and average rated life 20,000 hours unless otherwise indicated.

B. T8 rapid-start lamps, rated 17 W maximum, nominal length of 24 inches, 1300 initial lumens (minimum), CRI 75 (minimum), color temperature 3500 K, and average rated life of 20,000 hours unless otherwise indicated.

C. Compact Fluorescent Lamps: 4-Pin, CRI 80 (minimum), color temperature 3500 K, average rated life of 10,000 hours at three hours operation per start, and suitable for use with dimming ballasts unless otherwise indicated.

1. 13 W: T4, double or triple tube, rated 900 initial lumens (minimum).
2. 18 W: T4, double or triple tube, rated 1200 initial lumens (minimum).
3. 26 W: T4, double or triple tube, rated 1800 initial lumens (minimum).
4. 32 W: T4, triple tube, rated 2400 initial lumens (minimum).
5. 42 W: T4, triple tube, rated 3200 initial lumens (minimum).
6. 57 W: T4, triple tube, rated 4300 initial lumens (minimum).
7. 70 W: T4, triple tube, rated 5200 initial lumens (minimum).

2.9 LIGHTING FIXTURE SUPPORT COMPONENTS

A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.

C. Twin-Stem Hangers: Two, 1/2-inch steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.

E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage.

F. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.

2.10 RETROFIT KITS FOR FLUORESCENT LIGHTING FIXTURES

A. Reflector Kit: UL 1598, Type I. Suitable for two- to four-lamp, surface-mounted or recessed lighting fixtures by improving reflectivity of fixture surfaces.

B. Ballast and Lamp Change Kit: UL 1598, Type II. Suitable for changing existing ballast, lamps, and sockets.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Lighting fixtures:
 1. Set level, plumb, and square with ceilings and walls unless otherwise indicated.
 2. Install lamps in each luminaire.

B. Temporary Lighting: If it is necessary, and approved by Architect, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall.

C. Remote Mounting of Ballasts: Distance between the ballast and fixture shall not exceed that recommended by ballast manufacturer. Verify, with ballast manufacturers, maximum distance between ballast and luminaire.

D. Lay-in Ceiling Lighting Fixtures Supports: Use grid as a support element.
 1. Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each fixture. Locate not more than 6 inches from lighting fixture corners.
 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch metal channels spanning and secured to ceiling tees.
 4. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.

E. Suspended Lighting Fixture Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
 4. Do not use grid as support for pendant luminaires. Connect support wires or rods to building structure.

F. Air-Handling Lighting Fixtures: Install with dampers closed and ready for adjustment.

G. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.2 IDENTIFICATION

A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
3.3 FIELD QUALITY CONTROL

A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.

B. Verify that self-luminous exit signs are installed according to their listing and the requirements in NFPA 101.

C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.4 STARTUP SERVICE

A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed, for at least 100 hours at full voltage.

3.5 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting aimable luminaires to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose. Some of this work may be required after dark.

1. Adjust aimable luminaires in the presence of Architect.

END OF SECTION 265100
SECTION 28 31 11 – DIGITAL, ADDRESSABLE FIRE ALARM SYSTEM

PART 1 - GENERAL

1.1 SCOPE

A. This specification document provides the requirements for the installation, programming and configuration of a complete Silent Knight 5820XL digital protocol addressable fire alarm system. This system shall include, but not be limited to, system cabinet, power supply, built in Signaling Line Circuit (SLC), 80 character LCD annunciator, six programmable “Flexput” circuits, built in dual line Digital Communicator associated peripheral devices, batteries, wiring, conduit and other relevant components and accessories required to furnish a complete and operational Life Safety System.

1.2 WORK INCLUDED

A. General Requirements

1. The contractor shall furnish and install a complete 24 VDC, electrically supervised, analog addressable fire alarm system as specified herein and indicated on the drawings. The system shall include but not be limited to all control panels, power supplies, initiating devices, audible and visual notification appliances, alarm devices, and all accessories required to provide a complete operating fire alarm system.

B. Labeling

1. All fire alarm system equipment shall be listed for it’s intended purpose and be compatibility listed to assure the integrity of the complete system.

C. Standards

1. The fire alarm equipment and installation shall comply with the current provisions of the following standards and shall be listed for it’s intended purpose and be compatibility listed to insure integrity of the complete system.

 a. National Electric Code, Article 760

 b. National Fire Protection Association Standards:

 (1) NFPA 72 National Fire Alarm Code

 (2) NFPA 101 Life Safety Code

 c. Local and State Building Codes

 d. Local Authorities Having Jurisdiction

 e. Underwriters Laboratories Inc.

 (1) All equipment shall be approved by Underwriters Laboratories, Inc. for its intended purpose, listed as power limited by Underwriters Laboratories, Inc., for the following standards as applicable:
1.3 MANUFACTURERS

A. General Requirements

1. The installing contractor shall be an authorized factory distributor of the manufacturer Silent Knight. All equipment shall be purchased directly from Silent Knight in lieu of a local distributor.

B. Acceptable Manufacturers:

1. Silent Knight by Convergint Technologies LLC contact Tony Stalter (832) 327-3700
2. Silent Knight by Texas Commercial Technology (TCT)
3. Silent Knight by Johnson Controls
4. Silent Knight by Wilson Fire, Contact Scott Tudor or Waylan Gandy, 713-896-4747

1.4 SUBMITTALS

A. The contractor shall submit three (10) complete sets of documentation within thirty (30) calendar days after award of the purchase order. Indicated in the document will be the type, size, rating, style, catalog number, manufacturers names, photos, and/or catalog data sheets for all items proposed to meet these specifications. The proposed equipment shall be subject to the approval of the Architect/Engineer and no equipment shall be ordered or installed on the premises without that approval.

B. NOTE: DOCUMENTATION - Submittal of shop drawings shall contain at least three (3) copies of original manufacturer specification and installation instruction sheets. Subsequent information
may be copies. All equipment and devices on the shop drawings to be furnished under this contract shall be clearly marked in the specification sheets.

C. Supplier’s qualifications shall be submitted indicating years in business, service policies, warranty definitions, NICET certification, completion of factory training program and a list of similar installations. Contractor qualifications shall be supplied indicating years in business and prior experience with installations that include the type of equipment that is to be supplied.

D. The contractor shall provide hourly Service Rates, performed by a factory certified technician for this installed Life Safety System with the submittal. Proof of training and authorization shall be included with the submittal. These hourly service rates shall be guaranteed for a 1-year period.

E. Contract Close-Out Submittals

1. Deliver two (2) copies of the following to the owner’s representative within Thirty (30) days of system acceptance. The closeout submittals shall include:

 a. Installation and Programming manuals for the installed Life Safety System.
 b. Point to point diagrams of the entire Life Safety System as installed. This shall include all connected Smoke Detectors and addressable field modules.
 c. All drawings must reflect device address as verified in the presence of the engineer and/or end user.

F. Warranty

1. Warranty all materials, installation and workmanship for a one (1) year period, unless otherwise specified. A copy of the manufacturer warranty shall be provided with the close out documentation.

1.5 PRODUCTS

A. This Life Safety System Specification must be conformed to in its entirety to ensure that the installed and programmed Life Safety System will accommodate all of the requirements and operations required by the building owner. Any specified item or operational feature not specifically addressed prior to the bid date will be required to be met without exception.

B. Submission of product purported to be equal to those specified herein will be considered as possible substitutes only when all of the following requirements have been met:

1. Any deviation from the equipment, operations, methods, design or other criteria specified herein must be submitted in detail to the specifying Architect or Engineer a minimum of ten (10) working days prior to the scheduled submission of bids. Each deviation from the operation detailed in these specifications must be documented in detail, including page number and section number, which lists the system function for which the substitution is being proposed.

2. A complete list of such substituted products with three (3) copies of working drawings thereof shall be submitted to the approved Architect and/or Consulting Engineer not less than ten (10) working days prior to the scheduled submission of bids.

3. The contractor or substitute bidder shall functionally demonstrate that the proposed substitute products are in fact equal in quality and performance to those specified herein.
C. General Equipment and Materials Requirements

1. All equipment furnished for this project shall be new and unused. All components shall be designed for uninterrupted duty. All equipment, materials, accessories, devices and other facilities covered by this specification or noted on the contract drawings and installation specification shall be best suited for the intended use and shall be provided by a single manufacturer. If any of the equipment provided under this specification is provided by different manufacturers, then that equipment shall be "Listed" as to its compatibility by Underwriters Laboratories (UL), if such compatibility is required by UL standards.

D. Satisfying the Entire Intent of These Specifications

1. It is the contractor’s responsibility to meet the entire intent of these specifications. Deviations from the specified items shall be at the risk of the contractor until the date of final acceptance by the architect, engineer, and owner’s representative. All costs for removal, relocation, or replacement of a substituted item shall be at the risk of the electrical contractor.

PART 2 - SPECIFICATIONS

2.1 GENERAL

A. Control Panel

1. The fire alarm control panel (FACP) shall be the Silent Knight 5820XL analog addressable control panel. The FACP must have a 5 amp power supply and be capable of expansion to a maximum of 45 total amps via bus connected expander modules that supervise low battery, loss of AC and loss of communication.

2. The FACP must have Day/Night sensitivity capabilities on detectors and be capable of supporting 127 addressable points and expandable to a maximum of 381 addressable points. This shall be accomplished via three signaling line circuits (SLC) capable of supporting a minimum of 127 devices each. The communication protocol on the SLC loop must be digital.

3. The FACP must support a minimum of six programmable "Flexput" circuits. The panel must have a built in 80 character LCD annunciator with the capability of having an additional eight supervised remote annunciators connected in the field.

4. The FACP must have a built in UL approved digital communicator. The communicator must allow local and remote up/downloading of system operating options, event history, and detector sensitivity data. The FACP must automatically test the smoke detectors in compliance with NFPA standards to ensure that they are within listed sensitivity parameters and be listed with Underwriters Laboratories for this purpose.

5. The FACP must compensate for the accumulation of contaminants that affect detector sensitivity. The FACP must have day/night sensitivity adjustments, maintenance alert feature (differentiated from trouble condition), detector sensitivity selection, auto-programming mode (Jumpstart) and the ability to upgrade the core operating software on site or over the telephone.

6. The FACP shall have a Jumpstart feature that can automatically enroll all properly connected accessories into a functional system within 60 seconds of powering up the panel. Panels that do not have these capabilities will not be accepted.
7. The main communication bus (S-Bus RS485) shall be capable of class A or class B configuration with a total Bus length of 6,000 feet.

B. System Wiring

1. The SLC and Data Communication Bus shall be wired with standard NEC 760 compliant wiring, no twisted, shielded or mid capacitance wiring is required for standard installations. All FACP screw terminals shall be capable of accepting 14-18 AWG wire.

C. Signaling Line Circuits

1. Each SLC shall be capable of a wiring distance of 10,000 feet from the SLC driver module and be capable of supporting 127 devices. The communication protocol to SLC devices must be digital. Any SLC loop device, which goes into alarm, must interrupt the polling cycle for priority response from the FACP. The FACP must respond consistently to a device that goes into alarm on an SLC in under 3 seconds. The auxiliary 5815XL SLC loop module must be capable of being located up to 6000 feet from the FACP on an RS-485 bus, which is separate from the SLC bus. The SLC shall be capable of functioning in a class A or class B configuration.

D. SLC loop devices: Devices supported must include analog photoelectric, ionization smoke detectors, analog heat detectors, contact monitoring modules and relay output modules. There is to be no limit to the number of any particular device type up to the maximum of 127 that can be connected to the SLC.

E. Addressable Detector Functions

1. The products of combustion detectors must communicate analog values using a digital protocol to the control panel for the following functions:

 a. Automatic compliance with NFPA 72 standards for detector sensitivity testing
 b. Drift compensation to assure detector is operating correctly
 c. Maintenance alert when a detector nears the trouble condition
 d. Trouble alert when a detector is out of tolerance
 e. Alert control panel of analog values that indicate fire.

F. Programmable Flexputs

1. The FACP shall support six programmable Flexput circuits that are capable of being programmed as supervised reverse polarity notification circuits or supervised auxiliary power circuits that can be programmed as continuous, reset able or door holder power. The circuits shall also be programmable as input circuits in class A or class B configurations to support dry contact or compatible two wire smoke detectors.

G. Annunciators

1. The main control must have built in annunciators with an 80 character LCD display and feature LED’s for General alarm, Supervisory, System trouble, System silence and Power. When in the normal condition the LCD shall display time and date based on a 200-year clock which is capable of automatic daylight savings time adjustments. All controls and program-
ming keys are silicone mechanical type with tactile and audible feedback. Keys have a travel of .040 in. No membrane style buttons will be permissible. The annunciator must be able to silence and reset alarms through the use of a keypad-entered code, or by using a firefighter key. The annunciators must have two levels of user codes that will allow the limitation of operating system programming to authorized individuals.

H. Remote Annunciators

1. The fire system shall be capable of supporting up to eight remote annunciators. LCD Remote annunciators shall have the same control and display layout so that they match identically the built in annunciator. LED Remote annunciators shall have individually mapped LED’s and reset and silence inputs. The reset and silence inputs must use the same firefighters key as the LCD annunciators. Remote annunciators shall be capable of operating at a distance of 6000 feet from the main control panel on unshielded non-twisted cable.

2. The fire system shall be able to support up to eight I/O modules on the SBUS that shall be used to drive remote LED graphic style displays and accommodate up to eight dry contact type switch inputs. The I/O modules shall each drive up to 40 LEDs without requiring external power connections. The I/O module inputs shall be supervised and shall be suitable for alarm and trouble circuits as well as reset and silence switches. The system shall also support up to 40 LED drivers that reside on the two-wire SLC loop. These driver boards shall contain 80 LED outputs that are powered by an external source.

I. Serial/Parallel Interface

1. The fire system shall be capable of supporting up to two serial/parallel interfaces that are capable of driving standard computer style printers. The interface shall be programmable as to what information is sent to it and shall include the ability to print out Detector Status, Event History and System Programming.

J. Distributed Power Module

1. The fire system shall be capable of supporting up to eight Power Modules that provide 5 additional amps of power each. The modules shall have 6 programmable Flexput circuits that shall have the same functionality as the Flexput circuits on the main panel. Each power supply shall have two- (2) programmable form “C” relays on board. The power supply shall be capable of being connected via and RS-485 style bus at a maximum distance of 6000 ft. from the main control panel. The power module will also act as a bus repeater so that additional RS-485 devices can be connected at a maximum distance of 6000 ft. from the power module. The notification circuits shall be programmable as described in earlier in this section.

K. Digital Communicator

1. The digital communicator must be an integral part of the control panel and be capable of reporting all zones of alarm, supervisory, and trouble as well as all system status information such as loss of AC, low battery, ground fault, loss of supervision to any remote devices with individual and distinct messages to a central station or remote station. The communicator must also be capable of up/downloading of all system programming options, Event history and Sensitivity compliance information to a PC on site or at a remote location. The communicator shall have an answering machine bypass feature that will allow the panel to respond to communication even on phone lines that have other communication equipment present.
The communicator must be capable of reporting via SIA and Contact ID formats. The communicator shall have a delayed AC loss report function which will provide a programmable report delay plus a 10-25 min random component to help ease traffic to the central station during a power outage.

L. Dry Contacts
1. The FACP shall have three form “C” dry contacts, one will be dedicated to trouble conditions, the other two will be programmable for alarm, trouble, supervisory, notification, pre-alarm, workflow, manual pull, aux. 1 or aux. 2 conditions. The trouble contact shall be normal in an electrically energized state so that any total power loss (AC and Backup) will cause a trouble condition. In the event that the Microprocessor on the FACP fails the trouble contacts shall also indicate a trouble condition.

M. Ground Fault Detection
1. A ground fault detection circuit, to detect positive and negative grounds on all field wiring. The ground fault detector shall operate the general trouble devices as specified but shall not cause an alarm to be sounded. Ground fault will not interfere with the normal operation, such as alarm, or other trouble conditions.

N. Over Current Protection
1. All low voltage circuits will be protected by microprocessor controlled power limiting or have self restoring polyswitches for the following: smoke detector power, main power supply, indicating appliance circuits, battery standby power and auxiliary output.

O. Test Functions
1. A "Lamp Test" mode shall be a standard feature of the fire alarm control panel and shall test all LED’s and the LCD display on the main panel and remote annunciators.
2. A “Walk Test” mode shall be a standard feature of the fire alarm control panel. The walk test feature shall function so that each alarm input tested will operate the associated notification appliance for two seconds. The FACP will then automatically perform a reset and confirm normal device operation. The event memory shall contain the information on the point tested, the zone tripped, the zone restore and the individual points return to normal.
3. A "Fire Drill" mode shall allow the manual testing of the fire alarm system notification circuits. The “Fire Drill” shall be capable of being controlled at the main annunciator, remote annunciators and via a remote contact input.
4. A "Bypass Mode" shall allow for any zone, point, group, or nac circuit to be bypassed without effecting the operation of the total fire system.

P. Remote Input Capabilities
1. The control panel shall have provisions for supervised switch inputs for the purpose of Alarm reset and Alarm and trouble restore.

Q. Notification Appliance Mapping Structure
1. All notification circuits and modules shall be programmable via a mapping structure that allows for a maximum of 250 output groups. Each of these groups shall have the ability to be triggered by any of the panels 125 Zones. A group may be triggered from zones individually, or may contain a global trigger for manual pull stations, fire drills and two different system alarms. Additionally each Zone will individually control the cadence pattern of each of the Groups that it is “Mapped” to so that sounders can indicate a variety of conditions. The Zone shall be capable of issuing a different cadence pattern for each of the Groups under its control. The mapping structure must also allow a group to be designated to “ignore cadence” for use with strobes and other continuous input devices. Zones shall have eight different output categories; Detector alarm, Trouble, Supervisory, Pre-alarm, Waterflow, Manual pull, Zone auxiliary one and Zone Auxiliary two. Each of the categories shall have the ability to control from 1 to 8 output groups with a cadence pattern. The patterns are; March code, ANSI 3.41, Single Stroke Bell Temporal, California code, Zone 1 coded, Zone 2 coded, Zone 3 coded, Zone 4 coded, Zone 5 coded, Zone 6 coded, Zone 7 coded, Zone 8 coded, Custom output pattern 1, Custom output pattern 2, Custom output pattern 3, Custom output pattern 4 and Constant. This mapping/cadence pattern shall be supported by all system power supplies and Notification Expander Modules.

R. On Board Programmer

1. The FACP shall have an on board programmer which will allow for all system functions and options to be programmed. Any panel that does not have this capability will not be accepted.

S. Downloading Software

1. The fire alarm control panel must support up/downloading of system programming from a PC under Windows 3.1 or Windows 95. The FACP must also be able to upload the detector sensitivity test results and a 1000 event system event buffer to the PC. Communication shall take place over a direct connection to the PC and/or via the same telephone lines as the built in digital communicator and shall not require an external modem to be connected to the panel. The downloading software shall contain a code that will block unauthorized persons from accessing the panel via direct connection or over the phone lines.

T. Facility Management Software

1. The FACP must support a facility management capable of providing off site access to FACP data that is necessary to manage fire system operation. A software package capable of uploading the detector sensitivity test results and the 1000 event system event buffer to the PC shall be required as part of the bid package. Communication shall take place over a direct connection to the PC and/or via the same telephone lines as the built in digital communicator. The facility management package must be separate from the down-loader package and must not be capable of affecting programmed system options.

U. English Language Descriptions

1. The FACP shall provide the ability to have a text description of each system device input zone and output group on the system. The use of individual lights to provide descriptions will not be acceptable.

2.2 SYSTEM OPERATION
A. Alarm

1. When a device indicates an alarm or supervisory condition the control panel must respond within 3 seconds. The General Alarm or Supervisory Alarm LED on the annunciator(s) shall light and the LCD shall prompt the user as to the number of current events. All notification circuits associated with the alarm or supervisory condition shall activate. If the digital dialer is being utilized it shall transmit a signal to the digital alarm receiving unit. The alarm shall also cause the appropriate door holders and air handlers to shut down. If employed all elevators shall return to the main level or an alternate level when required by the elevator specification or building code. The alarm information must be stored in event memory for later review. Event memory shall be available at the main and all remote annunciators. The alarm memory must be capable of storing up to 1000 events.

2. When the alarmed device is restored to normal, the control panel shall be required to be manually reset to clear the alarm condition, except that the alarms may be silenced as programmed.

Exception: When detectors are utilized in single station or multi-station applications they may be self-restoring.

3. An alarm shall be silenced by a code or Firefighter key at the main or remote annunciators. When silenced, this shall not prevent the resounding of subsequent events if another event should occur (subsequent alarm feature). When alarms are silenced the silenced LED on the control panel, and on any remote annunciators shall remain lit, until the alarmed device is returned to normal.

B. Troubles

1. When a device indicates a trouble condition, the control panel System Trouble LED should light and the LCD should prompt the user as to the number of current events. The trouble information must be stored in event memory for later review. Event memory must be available at the main and all remote annunciators.

2. When the device in trouble is restored to normal, the control panel shall be automatically reset, the trouble restore information must be stored in event memory for later review. Event memory must be available at the main and all remote annunciators. A trouble shall be silenced by a code or Firefighter key at the main or remote annunciators. When silenced, this shall not prevent the resounding of subsequent events if another event should occur.

C. Supervision Methods

1. Each SLC loop shall be electrically supervised for opens and ground faults in the circuit wiring, and shall be so arranged that a fault condition on any loop will not cause an alarm to sound. Additionally, every addressable device connected to the SLC will be supervised and individually identified if in a fault condition. The occurrence of any fault will light a trouble LED and sound the system trouble sounder, but will not interfere with the proper operation of any circuit which does not have a fault condition.

2.3 SYSTEM CABINET
A. Mounting

1. The system cabinet shall be red and can be either surface or flush mounted. The cabinet door shall be easily removable to facilitate installation and service.

B. Audible System Trouble Sounder

1. An audible system trouble sounder shall be an integral part of the control unit. Provisions shall also be provided for an optional supervised remote trouble signal.

2.4 POWER SUPPLY AND CHARGER:

A. The entire system shall operate on 24 VDC, filtered switch mode power supply with the rated current available of 5 Amps. The FACP must have a battery charging circuit capable of complying with the following requirements:

1. Sixty (60) hours of battery standby with five (5) minutes of alarm signaling at the end of this sixty (60) hour period (as required per NFPA 72 remote station signaling requirements) using rechargeable batteries with automatic charger to maintain standby gel-cell batteries in a fully charged condition.

OR

Twenty-four (24) hours of battery standby with five (5) minutes of alarm signaling at the end of this twenty-four (24) hour period (as required per NFPA 72 central station signaling requirements) using rechargeable batteries with automatic charger to maintain gel-cell batteries in a fully charged condition.

2. The power supply shall comply with UL Standard 864 for power limiting.

3. The FACP will indicate a trouble condition if there is a loss of AC power or if the batteries are missing or of insufficient capacity to support proper system operation in the event of AC failure. A “Battery Test” will be performed automatically every minute to check the integrity of the batteries. The test must disconnect the batteries from the charging circuit and place a load on the battery to verify the battery condition.

4. In the event that it is necessary to provide additional power one or more of the model 5395 or 5895 Distributed Power Modules shall be used to accomplish this purpose.

B. Connections and Circuits

1. Connections to the light and power service shall be on a dedicated branch circuit in accordance with the National Electrical Code (NEC) and the local authority having jurisdiction (AHJ). The circuit and connections shall be mechanically protected.

2. A circuit disconnecting means shall be accessible only to authorized personnel and shall be clearly marked “FIRE ALARM CIRCUIT CONTROL”.

2.5 THE FACP SHALL SUPPORT A THE FOLLOWING DEVICES ON THE RS-485 DATA BUS:

A. 5815XL Signaling Line Circuit Expander (SLC) Module
B. 5824 Printer Interface Module
2.6 THE FACP SHALL SUPPORT THE OPERATION OF 127 TOTAL DEVICES PER SLC LOOP WITHOUT REGARD TO DEVICE TYPE. THE FOLLOWING DEVICES SHALL BE SUPPORTED:

A. SD505-APS Analog Photoelectric Smoke detector
B. SD505-AIS Analog Ionization Sensor
C. SD505-AHS Analog Heat Sensor
D. SD505-ARM Addressable Relay Module
E. SD500-FRCM-4 Contact input Module
F. SD500-FRCM Mini Contact Input Module
G. SD505-ADH Duct Detector Enclosure
H. SD500-AIM Addressable Input Module (replaces the SD505-FRCM-4)
I. SD500-MIM Mini Input Module (replaces the SD505-FRCM)
J. SD500-ARM Addressable Relay Module (replaces the SD505-ARM)
K. SD500-ANM Addressable Notification Module
L. SD505-SDM Two Wire Smoke Detector Module
M. SD505-6IB Smoke Detector Isolation Base
N. SD505-6SB Smoke Detector Sounder Base
O. SD505-6RB Smoke Detector Relay Base
P. SD505-ADHR Duct Detector Housing with Built-In Relay
Q. SD505-RTS Remote Test Switch For Duct Housing
R. SD500-PS Addressable Pull Station
S. SD500-LED 80 Output LED Driver Board

T. The FACP shall support these other Silent Knight devises via addressable or conventional inputs.

1. PS-SATK Single Action Pull Station – Key Reset
2. PS-DATK Double Action Pull Station – Key Reset
3. HS or ST Series Combination Horn Strobe or Strobe only devices
4. 5883 Relay Interface Board

2.7 MANUAL FIRE ALARM STATIONS

A. Manual Fire Alarm Stations shall be non-coded, break glass, single or double action type, with a key operated test reset lock in order that they may be tested, and so designed that after actual emergency operation, they cannot be restored to normal except by use of a key. The reset key shall be so designed that it will reset the manual Pull Station and open the FACP cabinet without use of another key. An operated station shall automatically condition itself so as to visually detected, as operated, at a minimum distance of fifty feet, front or side. Manual stations shall be constructed of die cast metal with clearly visible operating instructions on the front of the station in raised letters. Stations shall be suitable for surface mounting on matching back box, or semi-flush mounting on a standard single gang box, and shall be installed within the limits defined by the Americans with Disabilities Act (ADA) dependent on Manual Station accessibility or per local re-
quirements. Manual Stations shall be Silent Knight Models SD500-PS (MIM included) and Underwriters Laboratories listed. Provide STI Stopper covers with horn for all Manual Pull Stations.

2.8 REMOTE POWER SUPPLIES

A. The Remote Power Supplies for Notification appliances shall be the Silent Knight Model 5895. The Model 5895XL Intelligent Power Supply shall hang on the main S-Bus and be programmed through the 5820XL control. It will support 5amps of 24 volt DC power, with 6 Flexput circuits, rated at 3 amps each. Two additional 5815XL SLC loop expanders shall be capable of being install in the cabinet to allow an additional 254 points. The power supply will also regenerate the S-Bus for an additional 6000’.

2.9 NOTIFICATION DEVICES

A. The visible and audible/visible signal shall be Silent Knight Model ST and HS series signal devises and be listed by Underwriters Laboratories Inc. per UL 1971 and/or 1638 for the ST and also UL464 for the HS. Each indicating appliance circuit shall be electrically supervised for opens, grounds and short circuit faults, on the circuit wiring, and shall be so arranged that a fault condition on any indicating appliance circuit or group of circuits will not cause an alarm to sound. The occurrence of any fault will light the trouble LED and sound the system trouble sounder, but will not interfere with the proper operation of any circuit which does not have a fault condition. The notification appliance (combination audible/visible units only) shall produce a peak sound output of 90dba or greater as measured in an anechoic chamber. The appliance shall have an operation current of 57ma or less at 24VDC for the 15/75Cd.

B. The appliance shall be polarized to allow for electrical supervision of the system wiring. The unit shall be provided with terminals with barriers for input/output wiring and be able to mount a single gang or double gang box or double workbox with the use of an adapter plate. The unit shall have an input voltage range of 20-30 volts with either direct current or full wave rectified power. Provide STI Stopper Covers on all Horn Strobes and Visual strobes in restrooms, corridors, meeting rooms, gymnasiums, cafeteria and any weather permitting areas.

2.10 SMOKE DETECTORS

A. All New detectors shall be the Silent Knight Model SD505-APS Addressable Photoelectric Smoke Detector or the SD505-AHS (heat) detector. The base shall be the Silent Knight model SD505-6AB. The Smoke detector shall have a flashing status LED for visual supervision. When the detector is actuated, the flashing LED will latch on steady at full brilliance. The sensitivity of the detector shall be capable of being measured by the control panel without the need for external test apparatus. The detector shall be a double EE-prom technology and be programmed using the internal programming loop located on the FACP.

2.11 DUCT DETECTORS

A. All Duct Detectors shall be Silent Knight Model SD505-ADHR housings with the Model SD505-APS smoke detectors. The optional SD505-RTS Remote Test Switch may be included with the SD505-ADHR unit.
PART 3 - EXECUTION

3.1 INSTALLER’S RESPONSIBILITIES

A. The installer shall coordinate the installation of the fire alarm equipment.

B. All conductors and wiring shall be installed according to the manufacturer’s recommendations. It shall be the installer’s responsibility to coordinate with the supplier, regarding the correct wiring procedures before installing any conduits or conductors.

3.2 INSTALLATION OF SYSTEM COMPONENTS

A. System components shall be installed in accordance with the latest revisions of the appropriate NFPA pamphlets, the requirements contained herein, National Electrical Code, local and state regulations, the requirements of the fire department and other applicable authorities having jurisdiction (AHJ).

B. All wire used on the fire alarm system shall be U.L. Listed as fire alarm protection signaling circuit cable per National Electrical Code, Articles 760. All interior wall mounted fire alarm devices shall be mounted in Wiremold, conduit EMT shall not be acceptable.

3.3 WARRANTY

A. The contractor shall warrant all equipment and wiring free from inherent mechanical and electrical defects for one year (365 days) from the date of final acceptance.

3.4 FINAL TEST

A. Before the installation shall be considered completed and acceptable by the awarding authority, a test of the system shall be performed as follows:

1. The contractor’s job foreman, a representative of the owner, and the fire department shall operate every building fire alarm device to ensure proper operation and correct annunciation at the control panel.
2. At least one half of all tests shall be performed on battery standby power.
3. Where application of heat would destroy any detector, it may be manually activated.
4. The communication loops and the indicating appliance circuits shall be opened in at least two (2) locations per circuit to check for the presence of correct supervision circuitry.
5. When the testing has been completed to the satisfaction of both the contractor’s job foreman and owner, a notarized letter cosigned by each attesting to the satisfactory completion of said testing shall be forwarded to the owner and the fire department.
6. The contractor shall leave the fire alarm system in proper working order, and, without additional expense to the owner, shall replace any defective materials or equipment provided by him under this contract within one year (365 days) from the date of final acceptance by the awarding authority.
7. Prior to final test the fire department must be notified in accordance with local requirements.
3.5 AS BUILT DRAWINGS, TESTING, AND MAINTENANCE INSTRUCTIONS

A. As Built Drawings

1. A complete set of reproducible “as-built” drawings showing installed wiring, color coding, and wire tag notations for exact locations of all installed equipment, specific interconnections between all equipment, and internal wiring of the equipment shall be delivered to the owner upon completion of system.

B. Operating and Instruction Manuals

1. Operating and instruction manuals shall be submitted prior to testing of the system. Three (3) complete sets of operating and instruction manuals shall be delivered to the owner upon completion. User operating instructions shall be provided prominently displayed on a separate sheet located next to the control unit in accordance with U.L. Standard 864.

END OF SECTION 28 31 11
SECTION 311000 - SITE CLEARING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Protecting existing vegetation to remain.
2. Removing existing vegetation.
3. Clearing and grubbing.
4. Stripping and stockpiling topsoil.
5. Stripping and stockpiling rock.
6. Removing above- and below-grade site improvements.
7. Disconnecting, capping or sealing, and **removing site utilities abandoning site utilities in place**.
8. Temporary erosion and sedimentation control.

B. Related Requirements:

1. Section 015000 "Temporary Facilities and Controls" for temporary erosion- and sedimentation-control measures.

C. Related Requirements:

1. Section 015000 "Temporary Facilities and Controls" for temporary erosion- and sedimentation-control measures.

1.3 DEFINITIONS

A. Subsoil: Soil beneath the level of subgrade; soil beneath the topsoil layers of a naturally occurring soil profile, typified by less than 1 percent organic matter and few soil organisms.

B. Surface Soil: Soil that is present at the top layer of the existing soil profile. In undisturbed areas, surface soil is typically called "topsoil," but in disturbed areas such as urban environments, the surface soil can be subsoil.

C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil; the zone where plant roots grow.

D. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil; the zone where plant roots grow. Its appearance is generally friable, pervious,
and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects larger than 2 inches in diameter; and free of weeds, roots, toxic materials, or other nonsoil materials.

E. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction and indicated on Drawings.

F. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction and indicated on Drawings.

G. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 MATERIAL OWNERSHIP

A. Except for materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.6 INFORMATIONAL SUBMITTALS

A. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.

1. Use sufficiently detailed photographs or video recordings.

2. Include plans and notations to indicate specific wounds and damage conditions of each tree or other plant designated to remain.

B. Topsoil stripping and stockpiling program.

C. Rock stockpiling program.

D. Record Drawings: Identifying and accurately showing locations of capped utilities and other subsurface structural, electrical, and mechanical conditions.

E. Burning: Documentation of compliance with burning requirements and permitting of authorities having jurisdiction. Identify location(s) and conditions under which burning will be performed.

1.7 QUALITY ASSURANCE

A. Topsoil Stripping and Stockpiling Program: Prepare a written program to systematically demonstrate the ability of personnel to properly follow procedures and handle materials and equipment during the Work. Include dimensioned diagrams for placement and protection of stockpiles.
B. Rock Stockpiling Program: Prepare a written program to systematically demonstrate the ability of personnel to properly follow procedures and handle materials and equipment during the Work. Include dimensioned diagrams for placement and protection of stockpiles.

1.8 FIELD CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 2. Provide alternate routes around closed or obstructed trafficways if required by Owner or authorities having jurisdiction.

B. Improvements on Adjoining Property: Authority for performing site clearing indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.
 1. Do not proceed with work on adjoining property until directed by Architect.

C. Salvageable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises where indicated.

D. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing.

E. Do not commence site clearing operations until temporary erosion- and sedimentation-control and plant-protection measures are in place.

F. Tree- and Plant-Protection Zones: Protect according to requirements in Section 015639 "Temporary Tree and Plant Protection."

G. Soil Stripping, Handling, and Stockpiling: Perform only when the soil is dry or slightly moist.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312000 "Earth Moving."
 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

B. Antirust Coating: Fast-curing, lead- and chromate-free, self-curing, universal modified-alkyd primer complying with MPI #23 (surface-tolerant, anticorrosive metal primer) or SSPC-Paint 20 or SSPC-Paint 29 zinc-rich coating.
PART 3 - EXECUTION

3.1 PREPARATION

A. Protect and maintain benchmarks and survey control points from disturbance during construction.

B. Verify that trees, shrubs, and other vegetation to remain or to be relocated have been flagged and that protection zones have been identified and enclosed according to requirements in Section 015639 "Temporary Tree and Plant Protection."

C. Protect existing site improvements to remain from damage during construction.
 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.

B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.

C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.

D. Remove erosion and sedimentation controls, and restore and stabilize areas disturbed during removal.

3.3 TREE AND PLANT PROTECTION

A. Protect trees and plants remaining on-site according to requirements in Section 015639 "Temporary Tree and Plant Protection."

B. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.4 EXISTING UTILITIES

A. Owner will arrange for disconnecting and sealing indicated utilities that serve existing structures before site clearing, when requested by Contractor.
 1. Verify that utilities have been disconnected and capped before proceeding with site clearing.
B. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.

1. Arrange with utility companies to shut off indicated utilities.
2. Owner will arrange to shut off indicated utilities when requested by Contractor.

C. Locate, identify, and disconnect utilities indicated to be abandoned in place.

D. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others, unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:

1. Notify Architect not less than two days in advance of proposed utility interruptions.
2. Do not proceed with utility interruptions without Architect's written permission.

E. Excavate for and remove underground utilities indicated to be removed.

F. Removal of underground utilities is included in earthwork sections; in applicable fire suppression, plumbing, HVAC, electrical, communications, electronic safety and security, and utilities sections; and in Section 024116 "Structure Demolition" and Section 024119 "Selective Demolition."

3.5 CLEARING AND GRUBBING

A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.

1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
2. Grind down stumps and remove roots larger than 2 inches in diameter, obstructions, and debris to a depth of 18 inches below exposed subgrade.
3. Use only hand methods or air spade for grubbing within protection zones.
4. Chip removed tree branches and dispose of off-site.

B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.

1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.6 TOPSOIL STRIPPING

A. Remove sod and grass before stripping topsoil.

B. Strip topsoil to depth of 6 inches in a manner to prevent intermingling with underlying subsoil or other waste materials.

1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects larger than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.
C. Stockpile topsoil away from edge of excavations without intermixing with subsoil or other materials. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.

1. Limit height of topsoil stockpiles to 72 inches.
2. Do not stockpile topsoil within protection zones.
3. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
4. Stockpile surplus topsoil to allow for respreading deeper topsoil.

3.7 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.

1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut along line of existing pavement to remain before removing adjacent existing pavement. Saw-cut faces vertically.
2. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer's written instructions. Keep paint off surfaces that will remain exposed.

3.8 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.

B. Burning tree, shrub, and other vegetation waste is permitted according to burning requirements and permitting of authorities having jurisdiction. Control such burning to produce the least smoke or air pollutants and minimum annoyance to surrounding properties. Burning of other waste and debris is prohibited.

C. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials, and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 311000
SECTION 312000 - EARTH MOVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Excavating and filling for rough grading the Site.
2. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses and plants.
3. Excavating and backfilling for buildings and structures.
4. Drainage course for concrete slabs-on-grade.
5. Subbase course for concrete walks and pavements.
6. Subbase course and base course for asphalt paving.
7. Subsurface drainage backfill for walls and trenches.
8. Excavating and backfilling trenches for utilities and pits for buried utility structures.

B. Related Requirements:

2. Section 311000 "Site Clearing" for site stripping, grubbing, stripping topsoil, and removal of above- and below-grade improvements and utilities.
3. Section 315000 "Excavation Support and Protection" for shoring, bracing, and sheet piling of excavations.
4. Section 316329 "Drilled Concrete Piers and Shafts" for excavation of shafts and disposal of surplus excavated material.
5. Section 329200 "Turf and Grasses" for finish grading in turf and grass areas, including preparing and placing planting soil for turf areas.
6. Section 329300 "Plants" for finish grading in planting areas and tree and shrub pit excavation and planting.

1.3 UNIT PRICES

A. Work of this Section is affected by unit prices for earth moving specified in Section 012200 "Unit Prices."

B. Quantity allowances for earth moving are included in Section 012100 "Allowances."
1.4 DEFINITIONS

A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 2. Final Backfill: Backfill placed over initial backfill to fill a trench.

B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.

C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.

D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.

E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.

F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect.
 2. Bulk Excavation: Excavation more than 10 feet in width and more than 30 feet in length.
 3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.

G. Fill: Soil materials used to raise existing grades.

H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

I. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.

J. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.

K. Utilities: On-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.

1.5 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct pre-excavation conference at Project site.
 1. Review methods and procedures related to earthmoving, including, but not limited to, the following:
EARTH MOVING

Station 11-1

March 2019

a. Personnel and equipment needed to make progress and avoid delays.
b. Coordination of Work with utility locator service.
c. Coordination of Work and equipment movement with the locations of tree- and plant-protection zones.
d. Extent of trenching by hand or with air spade.
e. Field quality control.
f. `<Insert agenda items>`.

1.6 ACTION SUBMITTALS

A. Product Data: For each type of the following manufactured products required:
 1. Geotextiles.
 2. Controlled low-strength material, including design mixture.
 3. Geofoam.
 4. Warning tapes.

B. Samples for Verification: For the following products, in sizes indicated below:
 2. Warning Tape: 12 inches long; of each color.

1.7 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Material Test Reports: For each on-site and borrow soil material proposed for fill and backfill as follows:
 1. Classification according to ASTM D2487.
 2. Laboratory compaction curve according to ASTM D698.

C. Preexcavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces that might be misconstrued as damage caused by earth-moving operations. Submit before earth moving begins.

1.8 QUALITY ASSURANCE

A. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E329 and ASTM D3740 for testing indicated.

1.9 FIELD CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth-moving operations.
 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.

B. Improvements on Adjoining Property: Authority for performing earth moving indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.

1. Do not proceed with work on adjoining property until directed by Architect.

C. Utility Locator Service: Notify utility locator service for area where Project is located before beginning earth-moving operations.

D. Do not commence earth-moving operations until temporary site fencing and erosion- and sedimentation-control measures specified in Section 015000 "Temporary Facilities and Controls" and Section 311000 "Site Clearing" are in place.

E. Do not commence earth-moving operations until plant-protection measures specified in Section 015639 "Temporary Tree and Plant Protection" are in place.

F. The following practices are prohibited within protection zones:

1. Storage of construction materials, debris, or excavated material.
2. Parking vehicles or equipment.
3. Foot traffic.
4. Erection of sheds or structures.
5. Impoundment of water.
6. Excavation or other digging unless otherwise indicated.
7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.

G. Do not direct vehicle or equipment exhaust towards protection zones.

H. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D2487, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

1. Liquid Limit: less than 40.
2. Plasticity Index: less than 20.

C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D2487, or a combination of these groups.
1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.

E. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 95 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 sieve.

F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.

G. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.

H. Drainage Course: Narrowly graded mixture of washed crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and zero to 5 percent passing a No. 8 sieve.

I. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch sieve and zero to 5 percent passing a No. 4 sieve.

J. Sand: ASTM C33/C33M; fine aggregate.

K. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.2 GEOTEXTILES

A. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Survivability: As follows:
 a. Grab Tensile Strength: 157 lbf; ASTM D4632.
 b. Sewn Seam Strength: 142 lbf; ASTM D4632.
 c. Tear Strength: 56 lbf; ASTM D4533.
 d. Puncture Strength: 56 lbf; ASTM D4833.
3. Apparent Opening Size: No. 60 sieve, maximum; ASTM D4751.
4. Permittivity: 0.2 per second, minimum; ASTM D4491.
5. UV Stability: 50 percent after 500 hours' exposure; ASTM D4355.
B. Separation Geotextile: Woven geotextile fabric, manufactured for separation applications, made from polyolefins or polyesters; with elongation less than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Survivability: As follows:
 a. Grab Tensile Strength: 247 lbf; ASTM D4632.
 b. Sewn Seam Strength: 222 lbf; ASTM D4632.
 c. Tear Strength: 90 lbf; ASTM D4533.
 d. Puncture Strength: 90 lbf; ASTM D4833.
3. Apparent Opening Size: No. 60 sieve, maximum; ASTM D4751.
4. Permittivity: 0.02 per second, minimum; ASTM D4491.
5. UV Stability: 50 percent after 500 hours' exposure; ASTM D4355.

2.3 CONTROLLED LOW-STRENGTH MATERIAL

A. Controlled Low-Strength Material: Self-compacting, low-density, flowable concrete material produced from the following:

1. Portland Cement: ASTM C150/C150M, Type I.
2. Fly Ash: ASTM C618, Class C or F.
4. Foaming Agent: ASTM C869/C869M.
5. Water: ASTM C94/C94M.

B. Produce low-density, controlled low-strength material with the following physical properties:

1. As-Cast Unit Weight: 30 to 36 lb/cu. ft. at point of placement, when tested according to ASTM C138/C138M.
2. Compressive Strength: 100 psi, when tested according to ASTM C495/C495M.

2.4 ACCESSORIES

A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility; colored as follows:

2. Yellow: Gas, oil, steam, and dangerous materials.
3. Orange: Telephone and other communications.
4. Blue: Water systems.
5. Green: Sewer systems.

B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide.
and 4 mils thick, continuously inscribed with a description of the utility, with metallic core
encased in a protective jacket for corrosion protection, detectable by metal detector when tape is
buried up to 30 inches deep; colored as follows:

2. Yellow: Gas, oil, steam, and dangerous materials.
3. Orange: Telephone and other communications.
4. Blue: Water systems.
5. Green: Sewer systems.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by
settlement, lateral movement, undermining, washout, and other hazards created by earth-moving
operations.

B. Protect and maintain erosion and sedimentation controls during earth-moving operations.

C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary
protection before placing subsequent materials.

3.2 DEWATERING

A. Provide dewatering system of sufficient scope, size, and capacity to control hydrostatic
pressures and to lower, control, remove, and dispose of ground water and permit excavation and
construction to proceed on dry, stable subgrades.

B. Prevent surface water and ground water from entering excavations, from ponding on prepared
subgrades, and from flooding Project site and surrounding area.

C. Protect subgrades from softening, undermining, washout, and damage by rain or water
accumulation.

1. Reroute surface water runoff away from excavated areas. Do not allow water to
accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

D. Dispose of water removed by dewatering in a manner that avoids endangering public health,
property, and portions of work under construction or completed. Dispose of water and sediment
in a manner that avoids inconvenience to others.

3.3 EXPLOSIVES

A. Explosives: Do not use explosives.
3.4 EXCAVATION, GENERAL

A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.

1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.5 EXCAVATION FOR STRUCTURES

A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.

1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
2. Pile Foundations: Stop excavations 6 to 12 inches above bottom of pile cap before piles are placed. After piles have been driven, remove loose and displaced material. Excavate to final grade, leaving solid base to receive concrete pile caps.
3. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.

B. Excavations at Edges of Tree- and Plant-Protection Zones:

1. Excavate by hand or with an air spade to indicated lines, cross sections, elevations, and subgrades. If excavating by hand, use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
2. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.6 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.7 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.

1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.
B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.

1. **Clearance:** As indicated.

C. Trench bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

1. For pipes and conduit less than 6 inches in nominal diameter, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
2. For pipes and conduit 6 inches or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe or conduit circumference. Fill depressions with tamped sand backfill.
3. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit on an undisturbed subgrade.

D. Trench bottoms: Excavate trenches 4 inches deeper than bottom of pipe and conduit elevations to allow for bedding course. Hand-excavate deeper for bells of pipe.

E. Trenches in Tree- and Plant-Protection Zones:

1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
2. Do not cut main lateral roots or tap roots; cut only smaller roots that interfere with installation of utilities.
3. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.8 SUBGRADE INSPECTION

A. Notify Architect when excavations have reached required subgrade.

B. If Architect determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.

C. Proof-roll subgrade below the building slabs and pavements with a pneumatic-tired loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

D. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.9 UNAUTHORIZED EXCAVATION

A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi, may be used when approved by Architect.

1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Architect.

3.10 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.11 BACKFILL

A. Place and compact backfill in excavations promptly, but not before completing the following:

1. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
2. Surveying locations of underground utilities for Record Documents.
3. Testing and inspecting underground utilities.
4. Removing concrete formwork.
5. Removing trash and debris.
6. Removing temporary shoring, bracing, and sheeting.
7. Installing permanent or temporary horizontal bracing on horizontally supported walls.

B. Place backfill on subgrades free of mud, frost, snow, or ice.

3.12 UTILITY TRENCH BACKFILL

A. Place backfill on subgrades free of mud, frost, snow, or ice.

B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 033000 "Cast-in-Place Concrete."
D. Trenches under Roadways: Provide 4-inch-thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase course. Concrete is specified in Section 033000 "Cast-in-Place Concrete."

E. Backfill voids with satisfactory soil while removing shoring and bracing.

F. Initial Backfill:
 1. Soil Backfill: Place and compact initial backfill of satisfactory soil, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.
 a. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
 2. Controlled Low-Strength Material: Place initial backfill of controlled low-strength material to a height of 12 inches over the pipe or conduit. Coordinate backfilling with utilities testing.

G. Final Backfill:
 1. Soil Backfill: Place and compact final backfill of satisfactory soil to final subgrade elevation.
 2. Controlled Low-Strength Material: Place final backfill of controlled low-strength material to final subgrade elevation.

H. Warning Tape: Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.13 SOIL FILL

A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.

B. Place and compact fill material in layers to required elevations as follows:
 1. Under grass and planted areas, use satisfactory soil material.
 2. Under walks and pavements, use satisfactory soil material.
 3. Under steps and ramps, use engineered fill.
 4. Under building slabs, use engineered fill.
 5. Under footings and foundations, use engineered fill.

C. Place soil fill on subgrades free of mud, frost, snow, or ice.

3.14 SOIL MOISTURE CONTROL

A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.15 COMPACATION OF SOIL BACKFILLS AND FILLS

A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment and not more than 4 inches in loose depth for material compacted by hand-operated tampers.

B. Place backfill and fill soil materials evenly on all sides of structures to required elevations and uniformly along the full length of each structure.

C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D698:

1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill soil material at 95 percent.
2. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 95 percent.
3. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
4. For utility trenches, compact each layer of initial and final backfill soil material at 90 percent.

3.16 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.

1. Provide a smooth transition between adjacent existing grades and new grades.
2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.

B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to elevations required to achieve indicated finish elevations, within the following subgrade tolerances:

1. Turf or Unpaved Areas: Plus or minus 1 inch.
2. Walks: Plus or minus 1 inch.
3. Pavements: Plus or minus 1/2 inch.

C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.
3.17 SUBSURFACE DRAINAGE

A. Subsurface Drain: Place subsurface drainage geotextile around perimeter of subdrainage trench. Place a 6-inch course of filter material on subsurface drainage geotextile to support subdrainage pipe. Encase subdrainage pipe in a minimum of 12 inches of filter material, placed in compacted layers 6 inches thick, and wrap in subsurface drainage geotextile, overlapping sides and ends at least 6 inches.

1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D698 with a minimum of two passes of a plate-type vibratory compactor.

B. Drainage Backfill: Place and compact filter material over subsurface drain, in width indicated, to within 12 inches of final subgrade, in compacted layers 6 inches thick. Overlay drainage backfill with one layer of subsurface drainage geotextile, overlapping sides and ends at least 6 inches.

1. Compact each filter material layer [to 85 percent of maximum dry unit weight according to ASTM D698] [with a minimum of two passes of a plate-type vibratory compactor].
2. Place and compact impervious fill over drainage backfill in 6-inch-thick compacted layers to final subgrade.

3.18 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:

1. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
2. Place base course material over subbase course under hot-mix asphalt pavement.
3. Shape subbase course and base course to required crown elevations and cross-slope grades.
4. Place subbase course and base course 6 inches or less in compacted thickness in a single layer.
5. Place subbase course and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
6. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D698.

C. Pavement Shoulders: Place shoulders along edges of subbase course and base course to prevent lateral movement. Construct shoulders, at least 12 inches wide, of satisfactory soil materials and compact simultaneously with each subbase and base layer to not less than 95 percent of maximum dry unit weight according to ASTM D698.
3.19 DRAINAGE COURSE UNDER CONCRETE SLABS-ON-GRADE

A. Place drainage course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:

1. Install subdrainage geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
2. Place drainage course 6 inches or less in compacted thickness in a single layer.
3. Place drainage course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches (75 mm) thick.
4. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D698.

3.20 FIELD QUALITY CONTROL

A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:

1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
2. Determine that fill material classification and maximum lift thickness comply with requirements.
3. Determine, during placement and compaction, that in-place density of compacted fill complies with requirements.

B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.

C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.

D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect.

E. Testing agency will test compaction of soils in place according to ASTM D1556, ASTM D2167, ASTM D2937, and ASTM D6938, as applicable. Tests will be performed at the following locations and frequencies:

1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. or less of paved area or building slab but in no case fewer than three tests.
2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet or less of wall length but no fewer than two tests.
3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 150 feet or less of trench length but no fewer than two tests.

F. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.21 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.

 1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.

C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.

 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.22 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

B. Transport surplus satisfactory soil to designated storage areas on Owner's property. Stockpile or spread soil as directed by Architect.

 1. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 312000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes construction dewatering.

B. Related Requirements:

1. Section 013233 "Photographic Documentation" for recording preexisting conditions and dewatering system progress.
2. Section 312000 "Earth Moving" for excavating, backfilling, site grading, and controlling surface-water runoff and ponding.
3. Section 334600 "Subdrainage" for permanent foundation wall, underfloor, and footing drainage.

1.3 ALLOWANCES

A. None.

1.4 PRE-INSTALLATION MEETINGS

A. Pre-installation Conference: Conduct conference at Project site.

1. Verify availability of Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
2. Review condition of site to be dewatered including coordination with temporary erosion-control measures and temporary controls and protections.
3. Review geotechnical report.
4. Review proposed site clearing and excavations.
5. Review existing utilities and subsurface conditions.
6. Review observation and monitoring of dewatering system.
1.5 ACTION SUBMITTALS

A. Shop Drawings: For dewatering system, prepared by or under the supervision of a qualified professional engineer.

1. Include plans, elevations, sections, and details.
2. Show arrangement, locations, and details of wells and well points; locations of risers, headers, filters, pumps, power units, and discharge lines; and means of discharge, control of sediment, and disposal of water.
3. Include layouts of piezometers and flow-measuring devices for monitoring performance of dewatering system.
4. Include written plan for dewatering operations including sequence of well and well-point placement coordinated with excavation shoring and bracings and control procedures to be adopted if dewatering problems arise.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Field quality-control reports.

C. Existing Conditions: Using photographs, show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by dewatering operations. Submit before Work begins.

D. Record Drawings: Identify locations and depths of capped wells and well points and other abandoned-in-place dewatering equipment.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer that has specialized in design of dewatering systems and dewatering work.

1.8 FIELD CONDITIONS

A. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from this data.

1. Make additional test borings and conduct other exploratory operations necessary for dewatering according to the performance requirements.
2. The geotechnical report is included elsewhere in Project Manual.
B. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.

1. Design dewatering system, including comprehensive engineering analysis by a qualified professional engineer.
2. Continuously monitor and maintain dewatering operations to ensure erosion control, stability of excavations and constructed slopes, prevention of flooding in excavation, and prevention of damage to subgrades and permanent structures.
3. Prevent surface water from entering excavations by grading, dikes, or other means.
4. Accomplish dewatering without damaging existing buildings, structures, and site improvements adjacent to excavation.
5. Remove dewatering system when no longer required for construction.

B. Regulatory Requirements: Comply with governing EPA notification regulations before beginning dewatering. Comply with water- and debris-disposal regulations of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by dewatering operations.

1. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding site or surrounding area.
2. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.

B. Install dewatering system to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate
routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

C. Provide temporary grading to facilitate dewatering and control of surface water.

D. Protect and maintain temporary erosion and sedimentation controls, which are specified in Section 015000 "Temporary Facilities and Controls," and/or Section 311000 "Site Clearing," and as shown on Drawings during dewatering operations.

3.2 INSTALLATION

A. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, water disposal, and surface-water controls.

1. Space well points or wells at intervals required to provide sufficient dewatering.
2. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.

B. Place dewatering system into operation to lower water to specified levels before excavating below ground-water level.

C. Provide sumps, sedimentation tanks, and other flow-control devices as required by authorities having jurisdiction.

D. Provide standby equipment on-site, installed and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails.

3.3 OPERATION

A. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.

B. Operate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.

1. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.
2. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.
3. Maintain piezometric water level a minimum of 24 inches (600 mm) below bottom of excavation.

C. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.
D. Remove dewatering system from Project site on completion of dewatering. Plug or fill well holes with sand or cut off and cap wells a minimum of 36 inches (900 mm) below overlying construction.

3.4 FIELD QUALITY CONTROL

A. Observation Wells: Provide observation wells or piezometers, take measurements, and maintain at least the minimum number indicated; additional observation wells may be required by authorities having jurisdiction.
 1. Observe and record daily elevation of ground water and piezometric water levels in observation wells.
 2. Repair or replace, within 24 hours, observation wells that become inactive, damaged, or destroyed. In areas where observation wells are not functioning properly, suspend construction activities until reliable observations can be made. Add or remove water from observation-well risers to demonstrate that observation wells are functioning properly.
 3. Fill observation wells, remove piezometers, and fill holes when dewatering is completed.

B. Survey-Work Benchmarks: Resurvey benchmarks regularly during dewatering and maintain an accurate log of surveyed elevations for comparison with original elevations. Promptly notify Architect if changes in elevations occur or if cracks, sags, or other damage is evident in adjacent construction.

C. Provide continual observation to ensure that subsurface soils are not being removed by the dewatering operation.

D. Prepare reports of observations.

3.5 PROTECTION

A. Protect and maintain dewatering system during dewatering operations.

B. Promptly repair damages to adjacent facilities caused by dewatering.
SECTION 313116 - TERMITE CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Soil treatment with termiticide.

1.3 SUBMITTALS

A. Product Data: For each type of termite control product.

1. Include the EPA-Registered Label for termiticide products.

B. Qualification Data: For qualified Installer.

C. Product Certificates: For termite control products, from manufacturer.

D. Soil Treatment Application Report: After application of termiticide is completed, submit report for Owner's records and include the following:

1. Date and time of application.
2. Moisture content of soil before application.
3. Termiticide brand name and manufacturer.
4. Quantity of undiluted termiticide used.
5. Dilutions, methods, volumes used, and rates of application.
6. Areas of application.
7. Water source for application.

E. Warranties: Sample of special warranties.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: A specialist who is licensed according to regulations of authorities having jurisdiction to apply termite control treatment and products in jurisdiction where Project is located, and who employs workers trained and approved by manufacturer to install manufacturer's products.
B. Regulatory Requirements: Formulate and apply termiticides and termiticide devices according to the EPA-Registered Label.

C. Source Limitations: Obtain termite control products from single source from single manufacturer.

D. Preinstallation Conference: Conduct conference at Project site.

1.5 PROJECT CONDITIONS

A. Environmental Limitations: To ensure penetration, do not treat soil that is water saturated or frozen. Do not treat soil while precipitation is occurring. Comply with requirements of the EPA-Registered Label and requirements of authorities having jurisdiction.

B. Coordinate soil treatment application with excavating, filling, grading, and concreting operations. Treat soil under footings, grade beams, and ground-supported slabs before construction.

1.6 WARRANTY

A. Soil Treatment Special Warranty: Manufacturer's standard form, signed by Applicator and Contractor, certifying that termite control work, consisting of applied soil termiticide treatment, will prevent infestation of subterranean termites. If subterranean termite activity or damage is discovered during warranty period, re-treat soil and repair or replace damage caused by termite infestation.

1. Warranty Period: Five years from date of Substantial Completion.

1.7 MAINTENANCE SERVICE

A. Continuing Service: Beginning at Substantial Completion, provide 12 months' continuing service including monitoring, inspection, and re-treatment for occurrences of termite activity. Provide a standard continuing service agreement. State services, obligations, conditions, terms for agreement period, and terms for future renewal options.

PART 2 - PRODUCTS

2.1 SOIL TREATMENT

A. Termiticide: Provide an EPA-Registered termiticide, complying with requirements of authorities having jurisdiction, in an aqueous solution formulated to prevent termite infestation. Provide quantity required for application at the label volume and rate for the maximum termiticide concentration allowed for each specific use, according to product's EPA-Registered Label.

1. Products: Subject to compliance with requirements, provide one of the following:

 a. BASF Corporation, Agricultural Products; Termidor.
 b. Bayer Environmental Science; Premise 75.
c. FMC Corporation, Agricultural Products Group; **Dragnet FT**.
d. Syngenta; **Demon TC**.

2. Service Life of Treatment: Soil treatment termiticide that is effective for not less than **five** years against infestation of subterranean termites.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for **moisture content of soil per termiticide label requirements**, interfaces with earthwork, slab and foundation work, landscaping, utility installation, and other conditions affecting performance of termite control.

B. Proceed with application only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. General: Comply with the most stringent requirements of authorities having jurisdiction and with manufacturer's written instructions for preparation before beginning application of termite control treatment. Remove all extraneous sources of wood cellulose and other edible materials such as wood debris, tree stumps and roots, stakes, formwork, and construction waste wood from soil within and around foundations.

B. Soil Treatment Preparation: Remove foreign matter and impermeable soil materials that could decrease treatment effectiveness on areas to be treated. Loosen, rake, and level soil to be treated except previously compacted areas under slabs and footings. Termiticides may be applied before placing compacted fill under slabs if recommended in writing by termiticide manufacturer.

1. Fit filling hose connected to water source at the site with a backflow preventer, complying with requirements of authorities having jurisdiction.

3.3 APPLICATION, GENERAL

A. General: Comply with the most stringent requirements of authorities having jurisdiction and with manufacturer's EPA-Registered Label for products.

3.4 APPLYING SOIL TREATMENT

A. Application: Mix soil treatment termiticide solution to a uniform consistency. Provide quantity required for application at the label volume and rate for the maximum specified concentration of termiticide, according to manufacturer's EPA-Registered Label, to the following so that a continuous horizontal and vertical termiticidal barrier or treated zone is established around and under building construction. Distribute treatment evenly.
1. Slabs-on-Grade: Under ground-supported slab construction, including footings, building slabs, and attached slabs as an overall treatment. Treat soil materials before concrete footings and slabs are placed.

2. Foundations: Adjacent soil, including soil along the entire inside perimeter of foundation walls; along both sides of interior partition walls; around plumbing pipes and electric conduit penetrating the slab; around interior column footers, piers, and chimney bases; and along the entire outside perimeter, from grade to bottom of footing. Avoid soil washout around footings.

3. Penetrations: At expansion joints, control joints, and areas where slabs will be penetrated.

B. Avoid disturbance of treated soil after application. Keep off treated areas until completely dry.

C. Protect termiticide solution, dispersed in treated soils and fills, from being diluted until ground-supported slabs are installed. Use waterproof barrier according to EPA-Registered Label instructions.

D. Post warning signs in areas of application.

E. Reapply soil treatment solution to areas disturbed by subsequent excavation, grading, landscaping, or other construction activities following application.

END OF SECTION 313116
SECTION 321216 - ASPHALT PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Hot-mix asphalt paving.

B. Related Requirements:
 1. Section 312000 "Earth Moving" for subgrade preparation, fill material, separation geotextiles, unbound-aggregate subbase and base courses, and aggregate pavement shoulders.
 2. Section 321313 "Concrete Paving" for concrete pavement and for separate concrete curbs, gutters, and driveway aprons.
 3. Section 321373 "Concrete Paving Joint Sealants" for joint sealants and fillers at pavement terminations.
 4. Section 321400 "Unit Paving" for bituminous setting bed for pavers and for stone and precast concrete curbs.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include technical data and tested physical and performance properties.
 2. Job-Mix Designs: Certification, by authorities having jurisdiction, of approval of each job mix proposed for the Work.

B. Sustainable Design Submittals:

C. Samples for Verification: For the following product, in manufacturer's standard sizes unless otherwise indicated:
 1. Paving Fabric: 12 by 12 inches minimum.

1.4 INFORMATIONAL SUBMITTALS

A. Material Test Reports: For each paving material, by a qualified testing agency.

B. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM D3666 for testing indicated.

B. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of TxDOT for asphalt paving work.

1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.6 FIELD CONDITIONS

A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:

1. Prime Coat: Minimum surface temperature of 60 deg F.
2. Tack Coat: Minimum surface temperature of 60 deg F.
4. Asphalt Base Course: Minimum surface temperature of 40 deg F and rising at time of placement.
5. Asphalt Surface Course: Minimum surface temperature of 60 deg F at time of placement.

PART 2 - PRODUCTS

2.1 AGGREGATES

A. General: Use materials and gradations that have performed satisfactorily in previous installations.

B. Coarse Aggregate: ASTM D692/D692M, sound; angular crushed stone, crushed gravel, or cured, crushed blast-furnace slag.

C. Fine Aggregate: ASTM D1073 or AASHTO M 29, sharp-edged natural sand or sand prepared from stone, gravel, cured blast-furnace slag, or combinations thereof.

1. For hot-mix asphalt, limit natural sand to a maximum of 20 percent by weight of the total aggregate mass.

D. Mineral Filler: ASTM D242/D242M or AASHTO M 17, rock or slag dust, hydraulic cement, or other inert material.

2.2 ASPHALT MATERIALS

ASPHALT PAVING

2.1 ASPHALT PAVING

B. Asphalt Cement: [ASTM D3381/D3381M for viscosity-graded material] [ASTM D946/D946M for penetration-graded material].

C. Cutback Prime Coat: ASTM D2027/D2027M, medium-curing cutback asphalt, [MC-30 or MC-70] [MC-250].

D. Emulsified Asphalt Prime Coat: [ASTM D977] [or] [AASHTO M 140] emulsified asphalt, or [ASTM D2397/D2397M] [or] [AASHTO M 208] cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.

E. Tack Coat: [ASTM D977] [or] [AASHTO M 140] emulsified asphalt, or [ASTM D2397/D2397M] [or] [AASHTO M 208] cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.

F. Fog Seal: [ASTM D977] [or] [AASHTO M 140] emulsified asphalt, or [ASTM D2397/D2397M] [or] [AASHTO M 208] cationic emulsified asphalt, slow setting, factory diluted in water, of suitable grade and consistency for application.

G. Water: Potable.

2.3 AUXILIARY MATERIALS

A. Recycled Materials for Hot-Mix Asphalt Mixes: Reclaimed asphalt pavement; reclaimed, unbound-aggregate base material; and recycled [tires] [asphalt shingles] [or] [glass] from sources and gradations that have performed satisfactorily in previous installations, equal to performance of required hot-mix asphalt paving produced from all new materials.

B. Herbicide: Commercial chemical for weed control, registered by the EPA, and not classified as "restricted use" for locations and conditions of application. Provide in granular, liquid, or wettable powder form.

C. Sand: [ASTM D1073] [or] [AASHTO M 29], Grade No. 2 or No. 3.

D. Paving Geotextile: AASHTO M 288 paving fabric; nonwoven polypropylene; resistant to chemical attack, rot, and mildew; and specifically designed for paving applications.

E. Joint Sealant: ASTM D6690, [Type I] [Type II or III] [Type IV], hot-applied, single-component, polymer-modified bituminous sealant.

2.4 MIXES

A. <Double click to insert sustainable design text for recycled content.>

1. Surface Course Limit: Recycled content no more than [10] <Insert number> percent by weight.
B. Hot-Mix Asphalt: Dense-graded, hot-laid, hot-mix asphalt plant mixes [approved by authorities having jurisdiction]; designed according to procedures in AI MS-2, "Asphalt Mix Design Methods"; and complying with the following requirements:

1. Provide mixes with a history of satisfactory performance in geographical area where Project is located.
2. Base Course: <Insert mix designation>.
3. Surface Course: <Insert mix designation>.

C. Emulsified-Asphalt Slurry: ASTM D3910, [Type 1] [Type 2] [Type 3].

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that subgrade is dry and in suitable condition to begin paving.
B. Proceed with paving only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Protection: Provide protective materials, procedures, and worker training to prevent asphalt materials from spilling, coating, or building up on curbs, driveway aprons, manholes, and other surfaces adjacent to the Work.
B. Proof-roll subgrade below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph (5 km/h).
2. Proof roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons (13.6 tonnes).
3. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

3.3 SURFACE PREPARATION

A. Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.
B. Herbicide Treatment: Apply herbicide according to manufacturer's recommended rates and written application instructions. Apply to dry, prepared subgrade or surface of compacted-aggregate base before applying paving materials.

1. Mix herbicide with prime coat if formulated by manufacturer for that purpose.
C. Cutback Prime Coat: Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.15 to 0.50 gal./sq. yd. (0.7 to 2.3 L/sq. m). Apply enough material to penetrate and seal, but not flood, surface. Allow prime coat to cure.

1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
2. Protect primed substrate from damage until ready to receive paving.

D. Emulsified Asphalt Prime Coat: Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.10 to 0.30 gal./sq. yd. per inch depth (0.5 to 1.40 L/sq. m per 25 mm depth). Apply enough material to penetrate and seal, but not flood, surface. Allow prime coat to cure.

1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
2. Protect primed substrate from damage until ready to receive paving.

E. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd. (0.2 to 0.7 L/sq. m).

1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.4 PLACING HOT-MIX ASPHALT

A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand in areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.

1. Place hot-mix asphalt base course in number of lifts and thicknesses indicated.
2. Place hot-mix asphalt surface course in single lift.
3. Spread mix at a minimum temperature of 250 deg F (121 deg C).
4. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.
5. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.

B. Place paving in consecutive strips not less than 10 feet (3 m) wide unless infill edge strips of a lesser width are required.

1. After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Overlap mix placement about 1 to 1-1/2 inches (25 to 38 mm) from strip to strip to ensure proper compaction of mix along longitudinal joints.
2. Complete a section of asphalt base course before placing asphalt surface course.
C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

3.5 JOINTS

A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.

1. Clean contact surfaces and apply tack coat to joints.
2. Offset longitudinal joints, in successive courses, a minimum of 6 inches (150 mm).
3. Offset transverse joints, in successive courses, a minimum of 24 inches (600 mm).
4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method according to AI MS-22, for both "Ending a Lane" and "Resumption of Paving Operations." [as shown on Drawings.] <Insert joint requirement.>
5. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.
6. Compact asphalt at joints to a density within 2 percent of specified course density.

3.6 COMPACTION

A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.

1. Complete compaction before mix temperature cools to 185 deg F (85 deg C).

B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.

C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:

1. Average Density: 96 percent of reference laboratory density according to ASTM D6927 [or] [AASHTO T 245], but not less than 94 percent or greater than 100 percent.
2. Average Density: 92 percent of reference maximum theoretical density according to ASTM D2041/D2041M, but not less than 90 percent or greater than 96 percent.

D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.

E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.
F. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.

G. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.

H. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.7 INSTALLATION TOLERANCES

A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:

1. Base Course: Plus or minus 1/2 inch (13 mm).
2. Surface Course: Plus 1/4 inch (6 mm), no minus.

B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot (3-m) straightedge applied transversely or longitudinally to paved areas:

1. Base Course: [1/4 inch (6 mm)] <Insert dimension>.
2. Surface Course: [1/8 inch (3 mm)] <Insert dimension>.
3. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch (6 mm).

C. Asphalt Traffic-Calming Devices: Compact and form asphalt to produce the contour indicated and within a tolerance of plus or minus 1/8 inch (3 mm) of height indicated above pavement surface.

3.8 SURFACE TREATMENTS

A. Fog Seals: Apply fog seal at a rate of 0.10 to 0.15 gal./sq. yd. (0.45 to 0.7 L/sq. m) to existing asphalt pavement and allow to cure. With fine sand, lightly dust areas receiving excess fog seal.

B. Slurry Seals: Apply slurry coat in a uniform thickness according to ASTM D3910 and allow to cure.

1. Roll slurry seal to remove ridges and provide a uniform, smooth surface.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: [Owner will engage] [Engage] a qualified testing agency to perform tests and inspections.

B. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D3549/D3549M.
C. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances.

D. Asphalt Traffic-Calming Devices: Finished height of traffic-calming devices above pavement will be measured for compliance with tolerances.

E. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to [ASTM D979/D979M] [or] [AASHTO T 168].

 1. Reference maximum theoretical density will be determined by averaging results from four samples of hot-mix asphalt-paving mixture delivered daily to site, prepared according to ASTM D2041/D2041M, and compacted according to job-mix specifications.
 2. In-place density of compacted pavement will be determined by testing core samples according to ASTM D1188 or ASTM D2726/D2726M.

 a. One core sample will be taken for every 1000 sq. yd. (836 sq. m) or less of installed pavement, with no fewer than three cores taken.
 b. Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D2950 and correlated with ASTM D1188 or ASTM D2726/D2726M.

F. Replace and compact hot-mix asphalt where core tests were taken.

G. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

3.10 WASTE HANDLING

A. General: Handle asphalt-paving waste according to approved waste management plan required in Section 017419 "Construction Waste Management and Disposal."

END OF SECTION 321216
SECTION 321313 - CONCRETE PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes Concrete Paving Including the Following:
 1. Driveways.
 2. Roadways.
 3. Parking lots.
 4. Curbs and gutters.
 5. Walks.

B. Related Requirements:
 1. Section 033053 "Miscellaneous Cast-in-Place Concrete" for general building applications of concrete.
 2. Section 321316 "Decorative Concrete Paving" for stamped concrete other than stamped detectable warnings.
 3. Section 321373 "Concrete Paving Joint Sealants" for joint sealants in expansion and contraction joints within concrete paving and in joints between concrete paving and asphalt paving or adjacent construction.
 4. Section 321723 "Pavement Markings."
 5. Section 321726 "Tactile Warning Surfacing" for detectable warning tiles.

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash, slag cement, and other pozzolans.

B. W/C Ratio: The ratio by weight of water to cementitious materials.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

 1. Review methods and procedures related to concrete paving, including but not limited to, the following:

 a. Concrete mixture design.
b. Quality control of concrete materials and concrete paving construction practices.

2. Require representatives of each entity directly concerned with concrete paving to attend, including the following:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Concrete paving Subcontractor.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Initial Selection: For each type of product, ingredient, or admixture requiring color selection.

C. Samples for Verification: For each type of product or exposed finish, prepared as Samples of size indicated below:
 1. Exposed Aggregate: 10-lb Sample of each mix.

D. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer of stamped detectable warnings and testing agency.

B. Material Certificates: For the following, from manufacturer:
 1. Cementitious materials.
 2. Steel reinforcement and reinforcement accessories.
 3. Fiber reinforcement.
 4. Admixtures.
 5. Curing compounds.
 7. Bonding agent or epoxy adhesive.
 8. Joint fillers.

C. Material Test Reports: For each of the following:
 1. Aggregates: Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.

D. Field quality-control reports.
1.7 QUALITY ASSURANCE

A. Stamped Detectable Warning Installer Qualifications: An employer of workers trained and approved by manufacturer of stamped concrete paving systems.

1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual - Section 3, "Plant Certification Checklist").

B. Testing Agency Qualifications: Qualified according to ASTM C1077 and ASTM E329 for testing indicated.

1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.

1.8 FIELD CONDITIONS

A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

B. Cold-Weather Concrete Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:

1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
2. Do not use frozen materials or materials containing ice or snow.
3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.

C. Hot-Weather Concrete Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:

1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
2. Cover steel reinforcement with water-soaked burlap, so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 unless otherwise indicated.
2.2 FORMS

A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.

 1. Use flexible or uniformly curved forms for curves with a radius of 100 feet or less.

B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.3 STEEL REINFORCEMENT

A. Plain-Steel Welded-Wire Reinforcement: ASTM A1064/A1064M, fabricated from steel wire into flat sheets.

C. Reinforcing Bars: ASTM A615/A615M, Grade 60; deformed.

D. Steel Bar Mats: ASTM A184/A184M; with ASTM A615/A615M, Grade 60 deformed bars; assembled with clips.

E. Plain-Steel Wire: ASTM A1064/A1064M.

F. Deformed-Steel Wire: ASTM A1064/A1064M.

G. Joint Dowel Bars: ASTM A615/A615M, Grade 60 plain-steel bars. Cut bars true to length with ends square and free of burrs.

H. Tie Bars: ASTM A615/A615M, Grade 60; deformed.

I. Hook Bolts: ASTM A307, Grade A, internally and externally threaded. Design hook-bolt joint assembly to hold coupling against paving form and in position during concreting operations, and to permit removal without damage to concrete or hook bolt.

J. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded-wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:

 1. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.

2.4 CONCRETE MATERIALS

A. Cementitious Materials: Use the following cementitious materials, of same type, brand, and source throughout Project:

 1. Portland Cement: ASTM C150/C150M, portland cement Type I.
B. Normal-Weight Aggregates: ASTM C33/C33M, uniformly graded. Provide aggregates from a single source with documented service-record data of at least 10 years' satisfactory service in similar paving applications and service conditions using similar aggregates and cementitious materials.

2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

C. Air-Entraining Admixture: ASTM C260/C260M.

D. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.

1. Water-Reducing Admixture: ASTM C494/C494M, Type A.
2. Retarding Admixture: ASTM C494/C494M, Type B.
3. Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type D.
4. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
5. High-Range, Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type G.
6. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II.

E. Water: Potable and complying with ASTM C94/C94M.

2.5 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd.

B. Water: Potable.

2.6 RELATED MATERIALS

A. Joint Fillers: ASTM D1751, asphalt-saturated cellulosic fiber in preformed strips.

B. Slip-Resistive Aggregate Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of fused aluminum-oxide granules or crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials.

C. Bonding Agent: ASTM C1059/C1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

D. Chemical Surface Retarder: Water-soluble, liquid, set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to a depth of 1/8 to 1/4 inch.
2.7 STAMPED DETECTABLE WARNING MATERIALS

A. Detectable Warning Stamp: Semirigid polyurethane mats with formed underside capable of imprinting detectable warning pattern on plastic concrete; perforated with a vent hole at each dome.
 1. Size of Stamp: One piece, matching detectable warning area shown on Drawings.

B. Liquid Release Agent: Manufacturer's standard, clear, evaporating formulation designed to facilitate release of stamp mats.

2.8 CONCRETE MIXTURES

A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.
 1. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
 2. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that comply with or exceed requirements.

B. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 1. Air Content: 4-1/2 percent plus or minus 1-1/2 percent for 1-1/2-inch nominal maximum aggregate size.

C. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
 1. Use water-reducing admixture, high-range, water-reducing admixture, high-range, water-reducing and retarding admixture or plasticizing and retarding admixture in concrete as required for placement and workability.
 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.

D. Concrete Mixtures: Normal-weight concrete.
 2. Maximum W/C Ratio at Point of Placement: 0.45.
 3. Slump Limit: 4 inches, plus or minus 1 inch.

2.9 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C94/C94M. Furnish batch certificates for each batch discharged and used in the Work.
 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.
B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C94/C94M. Mix concrete materials in appropriate drum-type batch machine mixer.

1. For concrete batches of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
2. For concrete batches larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd.
3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.

B. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.

1. Completely proof-roll subbase in one direction and repeat in perpendicular direction. Limit vehicle speed to 3 mph.
2. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 15 tons.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.

B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT INSTALLATION

A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.

C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.

D. Install welded-wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

E. Zinc-Coated Reinforcement: Use galvanized-steel wire ties to fasten zinc-coated reinforcement. Repair cut and damaged zinc coatings with zinc repair material.

F. Epoxy-Coated Reinforcement: Use epoxy-coated steel wire ties to fasten epoxy-coated reinforcement. Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D3963/D3963M.

G. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch overlap of adjacent mats.

3.5 JOINTS

A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.

1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.

B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.

1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
2. Provide tie bars at sides of paving strips where indicated.
3. Butt Joints: Use bonding agent at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete.
5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.

1. Locate expansion joints at intervals of 50 feet unless otherwise indicated.
2. Extend joint fillers full width and depth of joint.
3. Terminate joint filler not less than 1/2 inch or more than 1 inch below finished surface if joint sealant is indicated.
4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
6. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.

D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows, to match jointing of existing adjacent concrete paving:

1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/4-inch radius. Repeat grooving of contraction joints after applying surface finishes. Eliminate grooving-tool marks on concrete surfaces.
 a. Tolerance: Ensure that grooved joints are within 3 inches either way from centers of dowels.

2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
 a. Tolerance: Ensure that sawed joints are within 3 inches either way from centers of dowels.

3. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 3/8-inch radius. Repeat tooling of edges after applying surface finishes.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.

B. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.

C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.

D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.
E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.

F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

G. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.

1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels and joint devices.

H. Screed paving surface with a straightedge and strike off.

I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleedwater appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

J. Curbs and Gutters: Use design mixture for automatic machine placement. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing.

K. Slip-Form Paving: Use design mixture for automatic machine placement. Produce paving to required thickness, lines, grades, finish, and jointing.

1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of slip-form paving machine during operations.

3.7 FLOAT FINISHING

A. General: Do not add water to concrete surfaces during finishing operations.

B. Float Finish: Begin the second floating operation when bleedwater sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

1. Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture.

3. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch deep with a stiff-bristled broom, perpendicular to line of traffic.
3.8 DETECTABLE WARNING INSTALLATION

A. Blockouts: Form blockouts in concrete for installation of detectable paving units specified in Section 321726 "Tactile Warning Surfacing."

1. Tolerance for Opening Size: **Plus 1/4 inch, no minus.**

3.9 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

B. Comply with ACI 306.1 for cold-weather protection.

C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.

D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

E. Curing Methods: Cure concrete by **moisture curing, moisture-retaining-cover curing, curing compound or a combination of these** as follows:

1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period, using cover material and waterproof tape.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.10 PAVING TOLERANCES

A. Comply with tolerances in ACI 117 and as follows:

1. Elevation: 3/4 inch.
3. Surface: Gap below 10-feet-long; unleveled straightedge not to exceed 1/2 inch.
4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches of tie bar.
5. Lateral Alignment and Spacing of Dowels: 1 inch.
7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches of dowel.
8. Joint Spacing: 3 inches.

3.11 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Services: Testing and inspecting of composite samples of fresh concrete obtained according to ASTM C172/C172M shall be performed according to the following requirements:
 1. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd., 5000 sq. ft. or fraction thereof of each concrete mixture placed each day.
 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 2. Slump: ASTM C143/C143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 3. Air Content: ASTM C231/C231M, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 4. Concrete Temperature: ASTM C1064/C1064M; one test hourly when air temperature is 40 deg F and below and when it is 80 deg F and above, and one test for each composite sample.
 5. Compression Test Specimens: ASTM C31/C31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.
 6. Compressive-Strength Tests: ASTM C39/C39M; test one specimen at seven days and two specimens at 28 days.
 a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.

C. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

D. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days,
concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

F. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.

G. Concrete paving will be considered defective if it does not pass tests and inspections.

H. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

I. Prepare test and inspection reports.

3.12 REPAIR AND PROTECTION

A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.

B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.

C. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.

D. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 321313
SECTION 321373 - CONCRETE PAVING JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cold-applied joint sealants.
2. Hot-applied joint sealants.
3. Cold-applied, fuel-resistant joint sealants.
5. Joint-sealant backer materials.
6. Primers.

B. Related Requirements:

1. Section 079200 "Joint Sealants" for sealing nontraffic and traffic joints in locations not specified in this Section.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch-wide joints formed between two 6-inch-long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.

C. Paving-Joint-Sealant Schedule: Include the following information:

1. Joint-sealant application, joint location, and designation.
2. Joint-sealant manufacturer and product name.
1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of joint sealant and accessory.

1.6 QUALITY ASSURANCE

A. Product Testing: Test joint sealants using a qualified testing agency.

1.7 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:
 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer.
 2. When joint substrates are wet.
 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

2.2 COLD-APPLIED JOINT SEALANTS

A. Single-Component, Nonsag, Silicone Joint Sealant: ASTM D5893/D5893M, Type NS.

B. Single-Component, Self-Leveling, Silicone Joint Sealant: ASTM D5893/D5893M, Type SL.

C. Multicomponent, Nonsag, Urethane, Elastomeric Joint Sealant: ASTM C920, Type M, Grade NS, Class 25, for Use T.

D. Single Component, Pourable, Urethane, Elastomeric Joint Sealant: ASTM C920, Type S, Grade P, Class 25, for Use T.

E. Multicomponent, Pourable, Urethane, Elastomeric Joint Sealant: ASTM C920, Type M, Grade P, Class 25, for Use T.
2.3 HOT-APPLIED JOINT SEALANTS
 B. Hot-Applied, Single-Component Joint Sealant: ASTM D6690, Type I or Type II.
 C. Hot-Applied, Single-Component Joint Sealant: ASTM D6690, Type I, II, or III.
 D. Hot-Applied, Single-Component Joint Sealant: ASTM D6690, Type IV.

2.4 COLD-APPLIED, FUEL-RESISTANT JOINT SEALANTS
 A. Fuel-Resistant, Single-Component, Pourable, Modified-Urethane, Elastomeric Joint Sealant: ASTM C920, Type S, Grade P, Class 25, for Use T.
 B. Fuel-Resistant, Multicomponent, Pourable, Modified-Urethane, Elastomeric Joint Sealant: ASTM C920, Type M, Grade P, Class 12-1/2 or 25, for Use T.

2.5 HOT-APPLIED, FUEL-RESISTANT JOINT SEALANTS
 A. Hot-Applied, Fuel-Resistant, Single-Component Joint Sealants: ASTM D7116, Type I or Type II.

2.6 JOINT-SEALANT BACKER MATERIALS
 A. Joint-Sealant Backer Materials: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by joint-sealant manufacturer, based on field experience and laboratory testing.
 B. Round Backer Rods for Cold- and Hot-Applied Joint Sealants: ASTM D5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.
 C. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D5249, Type 3, of diameter and density required to control joint-sealant depth and prevent bottom-side adhesion of sealant.
 D. Backer Strips for Cold- and Hot-Applied Joint Sealants: ASTM D5249; Type 2; of thickness and width required to control joint-sealant depth, prevent bottom-side adhesion of sealant, and fill remainder of joint opening under sealant.

2.7 PRIMERS
 A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Before installing joint sealants, clean out joints immediately to comply with joint-sealant manufacturer's written instructions.

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

3.3 INSTALLATION OF JOINT SEALANTS

A. Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.

B. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C1193 for use of joint sealants as applicable to materials, applications, and conditions.

C. Install joint-sealant backings to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

1. Do not leave gaps between ends of joint-sealant backings.
2. Do not stretch, twist, puncture, or tear joint-sealant backings.
3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install joint sealants immediately following backing installation, using proven techniques that comply with the following:

1. Place joint sealants so they fully contact joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

E. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:

1. Remove excess joint sealant from surfaces adjacent to joints.
2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.

F. Provide joint configuration to comply with joint-sealant manufacturer's written instructions unless otherwise indicated.

3.4 CLEANING AND PROTECTION

A. Clean off excess joint sealant as the Work progresses, by methods and with cleaning materials approved in writing by joint-sealant manufacturers.

B. Protect joint sealants, during and after curing period, from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations in repaired areas are indistinguishable from the original work.

3.5 PAVING-JOINT-SEALANT SCHEDULE

A. Joint-Sealant Application: Joints within concrete paving.

1. Joint Location:
 a. Expansion and isolation joints in concrete paving.
 b. Contraction joints in concrete paving.
 c. Other joints as indicated.

2. Joint Sealant: Single-component, nonsag, silicone joint sealant; Single-component, self-leveling, silicone joint sealant; Multicomponent, nonsag, urethane, elastomeric joint sealant; Single component, pourable, urethane, elastomeric joint sealant; Multicomponent, pourable, urethane, elastomeric joint sealant; Hot-applied, single-component joint sealant.

B. Joint-Sealant Application: Joints within concrete paving and between concrete and asphalt paving.

1. Joint Location:
a. Joints between concrete and asphalt paving.
b. Joints between concrete curbs and asphalt paving.
c. Other joints as indicated.

2. Joint Sealant: **Hot-applied, single-component joint sealant.**
3. Joint-Sealant Color: **Manufacturer's standard.**

C. Joint-Sealant Application: Fuel-resistant joints within concrete paving.

1. Joint Location:
 a. Expansion and isolation joints in concrete paving.
 b. Contraction joints in concrete paving.
 c. Other joints as indicated.

2. Joint Sealant: **Fuel-resistant, single-component, pourable, modified-urethane, elastomeric joint sealant; Fuel-resistant, multicomponent, pourable, modified-urethane, elastomeric joint sealant; Hot-applied, fuel-resistant, single-component joint sealant.**
3. Joint-Sealant Color: **Manufacturer's standard.**

END OF SECTION 321373
SECTION 321400 - UNIT PAVING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Brick pavers set in aggregate setting beds.

1.2 ACTION SUBMITTALS

A. Product Data: For materials other than water and aggregates.

B. Samples for unit pavers.

1.3 PROJECT CONDITIONS

A. Cold-Weather Protection: Do not use frozen materials or build on frozen subgrade or setting beds.

B. Weather Limitations for Bituminous Setting Bed: Install bituminous setting bed only when ambient temperature is above 40 deg F (4 deg C) and when base is dry.

C. Weather Limitations for Mortar and Grout:

2. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602. Do not apply mortar to substrates with temperatures of 100 deg F (38 deg C) and higher.

PART 2 - PRODUCTS

2.1 BRICK PAVERS

A. Brick Pavers: Light-traffic paving brick; ASTM C 902, Class SX, Type I. Provide brick without frogs or cores in surfaces exposed to view in the completed Work.

1. Manufacturers: Subject to compliance with requirements, provide products that existing match City standard.

2. Thickness: 2-1/4 inches (57 mm).

3. Face Size: 4 by 8 inches (102 by 203 mm) and 8 by 8 inches (203 by 203 mm).

B. Temporary Protective Coating: Precoat exposed surfaces of brick pavers with a continuous film of a temporary protective coating that is compatible with brick, mortar, and grout products.

2.2 ACCESSORIES
A. Cork Joint Filler: Preformed strips complying with ASTM D 1752, Type II.

2.3 AGGREGATE SETTING-BED MATERIALS
A. Sand for Leveling Course: Sound, sharp, washed, natural sand or crushed stone complying with gradation requirements in ASTM C 33 for fine aggregate.
B. Sand for Joints: Fine, sharp, washed, natural sand or crushed stone with 100 percent passing No. 16 (1.18-mm) sieve and no more than 10 percent passing No. 200 (0.075-mm) sieve.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL
A. Mix pavers from several pallets or cubes, as they are placed, to produce uniform blend of colors and textures.
B. Cut unit pavers with motor-driven masonry saw equipment to provide pattern indicated and to fit adjoining work neatly. Use full units without cutting where possible.
C. Joint Pattern: See Drawings.
D. Tolerances: Do not exceed 1/16-inch (1.6-mm) unit-to-unit offset from flush (lippage) nor 1/8 inch in 24 inches (3 mm in 600 mm) and 1/4 inch in 10 feet (6 mm in 3 m) from level, or indicated slope, for finished surface of paving.
SECTION 321713 - PARKING BUMPERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes wheel stops.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 PARKING BUMPERS
A. Concrete Wheel Stops: Precast, steel-reinforced, air-entrained concrete, 4000-psi (27.6-MPa) minimum compressive strength, 4-1/2 inches (115 mm) high by 9 inches (225 mm) wide by 72 inches (1800 mm) long. Provide chamfered corners, transverse drainage slots on underside, and a minimum of two factory-formed or -drilled vertical holes through wheel stop for anchoring to substrate.

1. Surface Appearance: Free of pockets, sand streaks, honeycombs, and other obvious defects. Corners shall be uniform, straight, and sharp.
2. Mounting Hardware: Galvanized-steel spike or dowel, 1/2-inch (13-mm) diameter, 10-inch (254-mm) minimum length

PART 3 - EXECUTION

3.1 EXAMINATION
A. Verify that pavement is in suitable condition to begin installation according to manufacturer's written instructions.
B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. General: Install wheel stops according to manufacturer's written instructions unless otherwise indicated.

B. Install wheel stops in bed of adhesive before anchoring.

C. Securely anchor wheel stops to pavement with hardware in each preformed vertical hole in wheel stop as recommended in writing by manufacturer. Recess head of hardware beneath top of wheel stop.

END OF SECTION 321713
SECTION 321723 - PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes painted markings applied to asphalt and concrete pavement.

B. Related Requirements:

1. Section 071800 "Traffic Coatings" for painting whole areas of building floors and pavements with coatings having an integral wearing surface.
2. Section 099113 "Exterior Painting" for painting exterior concrete surfaces other than pavement.
3. Section 099123 "Interior Painting" for painting interior concrete surfaces other than pavement

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include technical data and tested physical and performance properties.

B. Shop Drawings: For pavement markings.

1. Indicate pavement markings, colors, lane separations, defined parking spaces, and dimensions to adjacent work.
2. Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.

C. Samples: For each exposed product and for each color and texture specified; on rigid backing, 8 inches square.

1.4 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of TxDOT for pavement-marking work.

1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.
1.5 FIELD CONDITIONS

A. Environmental Limitations: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F for alkyd materials, 55 deg F for water-based materials, and not exceeding 95 deg F.

PART 2 - PRODUCTS

2.1 PAVEMENT-MARKING PAINT

A. Pavement-Marking Paint: Alkyd-resin type, lead and chromate free, ready mixed, complying with AASHTO M 248, Type N; colors complying with FS TT-P-1952.

1. Color: As indicated.

B. Pavement-Marking Paint: MPI #32, solvent-borne traffic-marking paint.

1. Color: As indicated.

C. Pavement-Marking Paint: Latex, waterborne emulsion, lead and chromate free, ready mixed, complying with FS TT-P-1952, Type II, with drying time of less than 45 minutes.

1. Color: As indicated.

D. Pavement-Marking Paint: MPI #97, latex traffic-marking paint.

1. Color: As indicated.

E. Glass Beads: AASHTO M 247, Type 1 made of 100 percent recycled glass.

1. Roundness: Minimum 75 percent true spheres by weight.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that pavement is dry and in suitable condition to begin pavement marking according to manufacturer's written instructions.

B. Proceed with pavement marking only after unsatisfactory conditions have been corrected.

3.2 PAVEMENT MARKING

A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect.

B. Allow paving to age for a minimum of 30 days before starting pavement marking.
C. Sweep and clean surface to eliminate loose material and dust.

D. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.

1. Apply graphic symbols and lettering with paint-resistant, die-cut stencils, firmly secured to pavement. Mask an extended area beyond edges of each stencil to prevent paint application beyond stencil. Apply paint so that it cannot run beneath stencil.

2. Broadcast glass beads uniformly into wet markings at a rate of 6 lb/gal.

3.3 PROTECTING AND CLEANING

A. Protect pavement markings from damage and wear during remainder of construction period.

B. Clean spillage and soiling from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 321723
SECTION 323113 - CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Chain-link fences (hot-dipped galvanized).
 2. Gates: Motor operated horizontal slide, and manually operated swing.

B. Related Sections:
 1. Section 033000 "Cast-in-Place Concrete" for cast-in-place concrete, for equipment bases/pads for gate operators and controls, and post footings.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design chain-link fences and gates, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Chain-link fence and gate framework shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated according to ASCE/SEI 7:
 1. Minimum Post Size: Determine according to ASTM F 1043 for framework up to 12 feet (3.66 m) high, and post spacing not to exceed 10 feet (3 m) for Industrial Fence, Group IA.

C. Lightning Protection System: Maximum grounding-resistance value of 25 ohms under normal dry conditions.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for chain-link fences and gates.
 1. Fence and gate posts, rails, and fittings.
2. Chain-link fabric, reinforcements, and attachments.
3. Accessories: Barbed wire.
4. Gates and hardware.
5. Gate operators, including operating instructions.
6. Motors: Show nameplate data, ratings, characteristics, and mounting arrangements.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Show accessories, hardware, gate operation, and operational clearances.
 1. Gate Operator: Show locations and details for installing operator components, switches, and controls. Indicate motor size, electrical characteristics, drive arrangement, mounting, and grounding provisions.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Samples for Initial Selection: For components with factory-applied color finishes.

D. Samples for Verification: Prepared on Samples of size indicated below:
 1. Polymer-Coated Components: In 6-inch (150-mm) lengths for components and on full-sized units for accessories.

E. Delegated-Design Submittal: For chain-link fences and gate framework indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified factory-authorized service representative.

B. Product Certificates: For each type of chain-link fence, operator, and gate, from manufacturer.

C. Product Test Reports: For framing strength according to ASTM F 1043.

D. Field quality-control reports.

E. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For the following to include in emergency, operation, and maintenance manuals:
 1. Gate hardware.
 2. Gate operator.
1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing fence grounding. Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Emergency Access Requirements: Comply with requirements of authorities having jurisdiction for gates with automatic gate operators serving as a required means of access.

D. Pre-installation Conference: Conduct conference at Project site.
 1. Inspect and discuss electrical roughing-in, equipment bases, and other preparatory work specified elsewhere.
 2. Review sequence of operation for each type of gate operator.
 3. Review coordination of interlocked equipment specified in this Section and elsewhere.
 4. Review required testing, inspecting, and certifying procedures.

1.8 PROJECT CONDITIONS

A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which Installer agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Faulty operation of gate operators and controls.
 b. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 2. Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 CHAIN-LINK FENCE FABRIC

A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist. Comply with CLFMI Product Manual and with requirements indicated below:

1. Fabric Height: As indicated on Drawings.
2. Steel Wire Fabric: Wire with a diameter of 0.148 inch (3.76 mm).
 a. Mesh Size: 2 inches (50 mm).
 b. Zinc-Coated Fabric: ASTM A 392, Type II, Class 1, 1.2 oz./sq. ft. (366 g/sq. m) with zinc coating applied after weaving.
3. Selvage: Twisted top and knuckled bottom.

2.2 FENCE FRAMING

A. Posts and Rails: Comply with ASTM F 1043 for framing, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F 1043 based on the following:

1. Fence Height: As indicated on Drawings.
2. Heavy Industrial Strength: Material Group IA, round steel pipe, Schedule 40.
5. Metallic Coating for Steel Framing:
 a. Type A, consisting of not less than minimum 2.0-oz./sq. ft. (0.61-kg/sq. m) average zinc coating per ASTM A 123/A 123M or 4.0-oz./sq. ft. (1.22-kg/sq. m) zinc coating per ASTM A 653/A 653M.
 b. Type C, Zn-5-Al-MM alloy, consisting of not less than 1.8-oz./sq. ft. (0.55-kg/sq. m) coating.
 c. Coatings: Any coating above.

2.3 TENSION WIRE

A. Metallic-Coated Steel Wire: 0.177-inch- (4.5-mm-) diameter, marcelled tension wire complying with ASTM A 817 and ASTM A 824, with the following metallic coating:

1. Type II, zinc coated (galvanized) by hot-dip or electrolytic process, with the following minimum coating weight:
 a. Class 4: Not less than 1.2 oz./sq. ft. (366 g/sq. m) of uncoated wire surface.
2.4 SWING GATES

A. General: Comply with ASTM F 900 for gate posts and single swing gate types

1. Gate Leaf Width: As indicated on Drawings.
2. Gate Fabric Height: To match adjacent fence height as indicated on Drawings.

B. Pipe and Tubing:

1. Zinc-Coated Steel: Comply with ASTM F 1043 and ASTM F 1083; protective coating and finish to match fence framing.
2. Gate Posts: Round tubular steel.
3. Gate Frames and Bracing: Round tubular steel.

C. Frame Corner Construction: Welded.

D. Extended Gate Posts and Frame Members: Extend gate posts and frame end members above top of chain-link fabric at both ends of gate frame 12 inches (300 mm) to attach barbed wire assemblies.

E. Hardware:

2. Latches permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate.
3. Padlock and Chain: Furnished by Owner.
4. Lock: Manufacturer's standard.
5. Closer: Manufacturer's standard.

2.5 HORIZONTAL-SLIDE GATES

A. General: Comply with ASTM F 1184 for gate posts and single sliding gate types. Provide automated vehicular gates that comply with ASTM F 2200.

1. Classification: Type II Cantilever Slide, Class 2 with internal roller assemblies.

 a. Gate Frame Width and Height: Height to match adjacent fence and width as required to for clear opening width as indicated on Drawings.

B. Pipe and Tubing:

1. Zinc-Coated Steel: Protective coating and finish to match fence framing.
2. Gate Posts: Comply with ASTM F 1184. Provide round tubular steel posts.
3. Gate Frames and Bracing: Round tubular steel.

C. Frame Corner Construction: Welded.
D. Extended Gate Posts and Frame Members: Extend gate posts and frame end members above top of chain-link fabric at both ends of gate frame 12 inches (300 mm) as required to attach barbed wire assemblies.

E. Hardware:
 1. Padlock and Chain: Owner furnished.
 2. Roller assemblies, and stops fabricated from galvanized steel.

2.6 FITTINGS

A. General: Comply with ASTM F 626.

B. Post Caps: Provide for each post.
 1. Provide line post caps with loop to receive tension wire or top rail.

C. Rail and Brace Ends: For each gate, corner, pull, and end post.

D. Rail Fittings: Provide the following:
 1. Top Rail Sleeves: Pressed-steel or round-steel tubing not less than 6 inches (152 mm) long.
 2. Rail Clamps: Line and corner boulevard clamps for connecting intermediate brace rails in the fence line-to-line posts.

E. Tension and Brace Bands: Pressed steel.

F. Tension Bars: Steel, length not less than 2 inches (50 mm) shorter than full height of chain-link fabric. Provide one bar for each gate and end post, and two for each corner and pull post, unless fabric is integrally woven into post.

G. Truss Rod Assemblies: Steel, hot-dip galvanized after threading rod and turnbuckle or other means of adjustment.

H. Barbed Wire Arms: Pressed steel or cast iron, with clips, slots, or other means for attaching strands of barbed wire, integral with post cap; for each post unless otherwise indicated, and as follows:
 1. Provide line posts with arms that accommodate top rail or tension wire.
 2. Provide corner arms at fence corner posts, unless extended posts are indicated.
 3. Type I, single slanted arm.

I. Tie Wires, Clips, and Fasteners: According to ASTM F 626.
 1. Standard Round Wire Ties: For attaching chain-link fabric to posts, rails, and frames, complying with the following:
 a. Hot-Dip Galvanized Steel: 0.148-inch- (3.76-mm-) diameter wire; galvanized coating thickness matching coating thickness of chain-link fence fabric.
J. Finish:

1. Metallic Coating for Pressed Steel or Cast Iron: Not less than 1.2 oz. /sq. ft. (366 g /sq. m) zinc.

2.7 BARBED WIRE

A. Steel Barbed Wire: Comply with ASTM A 121, for two-strand barbed wire, 0.099-inch- (2.51-mm-) diameter line wire with 0.080-inch- (2.03-mm-) diameter, four-point round barbs spaced not more than 5 inches (127 mm) o.c.

1. Aluminum Coating: Type A.
2. Zinc Coating: Type Z, Class 3.

2.8 GATE OPERATORS

A. General: Provide factory-assembled automatic operating system designed for gate size, type, weight, and operation frequency. Provide operation control system with characteristics suitable for Project conditions, with remote-control stations, safety devices, and weatherproof enclosures; coordinate electrical requirements with building electrical system.

1. Provide operator designed so motor may be removed without disturbing limit-switch adjustment and without affecting auxiliary emergency operator.
2. Provide operator with UL-approved components.
4. Provide unit designed and wired for both right-hand/left-hand opening, permitting universal installation.

B. Comply with NFPA 70.

C. UL Standard: Fabricate and label gate operators to comply with UL 325.

D. Motor Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, within installed environment, with indicated operating sequence, and without exceeding nameplate rating or considering service factor. Comply with NEMA MG 1 and the following:

1. Voltage: 208 V.
4. Duty: Continuous duty at ambient temperature of 105 deg F (40 deg C) and at altitude of 3300 feet (1005 m) above sea level.
5. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.
6. Phase: Polyphase.

E. Gate Operators: Pedestal post mounted and as follows:

1. Mechanical Slide Gate Operators:
b. Gate Speed: Minimum 45 feet (13.7 m) per minute.
c. Maximum Gate Weight: 600 lb (272 kg).
d. Frequency of Use: Continuous duty.
e. Operating Type: Roller chain with manual release.
f. Drive Type: Enclosed worm gear and chain-and-sprocket reducers, roller-chain drive.

F. Remote Controls: Electric controls separated from gate and motor and drive mechanism, with NEMA ICS 6, Type 4 enclosure for pedestal mounting and with space for additional optional equipment. Provide the following remote-control device(s):

1. Control Station: Keyed, [two] [three]-position switch, located remotely from gate. Provide two keys per station.
2. Control Station: Momentary-contact, [single] [three]-button-operated; located remotely from gate. [Key switch to lock out open and close buttons.]
 a. Function: Open, stop, and close.

3. Card Reader: Functions only when authorized card is presented. Programmable, magnetic [multiple] [single]-code system, permitting four different access time periods; face-lighted unit fully visible at night.
 a. Reader Type: [Touch plate] [Swipe] [Insertion] [Proximity].
 b. Features: [Timed anti-passback] [Limited-time usage] [Capable of monitoring and auditing gate activity].

4. Digital Keypad Entry Unit: Multiple-[programmable] code capability of not less than [five] [500] [2500] <Insert number> possible individual codes, consisting of [one- to seven] [four] [five]-digit codes, and permitting four different access time periods.
 a. Features: [Timed anti-passback] [Limited-time usage] [Capable of monitoring and auditing gate activity].
 b. Face-lighted unit with [metal-keyed] [keyless-membrane] keypad fully visible at night.

5. Radio Control: Digital system consisting of code-compatible universal receiver for each gate, located where indicated, with remote antenna with coaxial cable and mounting brackets designed to operate gates. Provide [one] [two] <Insert number> programmable transmitter(s) with multiple-code capability permitting validating or voiding of not less than [1000] [10,000] <Insert number> codes per channel configured for the following functions:
 a. Transmitters: [Single] [Three]-button operated, with open and close function.
 b. Channel Settings: [Two] [Three] [Four] <Insert number> independent channel settings controlling separate receivers for operating more than one gate from each transmitter.
6. Telephone Entry System: Hands-free voice-communication system for connection to building telephone system with digital-entry code activation of gate operator [and auxiliary keypad entry].
 a. Residential System: Designed to be wired to same line with telephone.
 b. Multiunit System: Designed to be wired to a dedicated telephone line, with capacity to access [20] [100] <Insert number> telephones [and with electronic directory].

7. Vehicle Loop Detector: System including automatic closing timer with adjustable time delay before closing [timer cut-off switch], and loop detector designed to [open and close gate] [hold gate open until traffic clears] [reverse gate] <Insert functions>. Provide electronic detector with adjustable detection patterns, adjustable sensitivity and frequency settings, and panel indicator light designed to detect presence or transit of a vehicle over an embedded loop of wire and to emit a signal activating the gate operator. Provide number of loops consisting of multiple strands of wire, number of turns, loop size, and method of placement at location shown on Drawings, as recommended in writing by detection system manufacturer for function indicated.
 a. Loop: Wire, in size indicated for field assembly, for [pave-over] [saw-cut with epoxy-grouted] installation.
 b. Loop: Factory preformed in size indicated; style for [pave-over] [saw-cut with epoxy-grouted] installation.

8. Vehicle Presence Detector: System including automatic closing timer with adjustable time delay before closing [timer cut-off switch], and presence detector designed to [open and close gate] [hold gate open until traffic clears] [reverse gate] <Insert functions>. Provide [retroreflective] [emitter/receiver] detector with adjustable detection zone pattern and sensitivity, designed to detect the presence or transit of a vehicle in gate pathway when infrared beam in zone pattern is interrupted, and to emit a signal activating the gate operator.

G. Obstruction Detection Devices: Provide each motorized gate with automatic safety sensor(s). Activation of sensor(s) causes operator to immediately function as follows:

1. Action: [Reverse gate in both opening and closing cycles and hold until clear of obstruction] [Stop gate in opening cycle and reverse gate in closing cycle and hold until clear of obstruction].
2. Internal Sensor: Built-in torque or current monitor senses gate is obstructed.
3. Sensor Edge: Contact-pressure-sensitive safety edge, profile, and sensitivity designed for type of gate and component indicated, in locations as follows. Connect to control circuit using [take-up cable reel] [self-coiling cable] [gate edge transmitter and operator receiver system].
 a. Along entire gate leaf leading edge.
 b. Along entire gate leaf trailing edge.
 c. Across entire gate leaf bottom edge.
 d. Along entire length of gate posts.
 e. Along entire length of gate guide posts.
 f. Where indicated on Drawings.
g. <Insert extent and location>.

4. Photoelectric/Infrared Sensor System: Designed to detect an obstruction in gate's path when infrared beam in the zone pattern is interrupted.

H. Limit Switches: Adjustable switches, interlocked with motor controls and set to automatically stop gate at fully retracted and fully extended positions.

1. Type: [Integral fail-safe release, allowing gate to be pushed open without mechanical devices, keys, cranks, or special knowledge] [Mechanical device, key, or crank-activated release].

I. Operating Features:

1. Digital Microprocessor Control: Electronic programmable means for setting, changing, and adjusting control features [with capability for monitoring and auditing gate activity]. Provide unit that is isolated from voltage spikes and surges.

2. System Integration: With controlling circuit board capable of accepting any type of input from external devices.

3. Master/Slave Capability: Control stations designed and wired for gate pair operation.

4. Automatic Closing Timer: With adjustable time delay before closing [and timer cut-off switch].

5. Open Override Circuit: Designed to override closing commands.

6. Reversal Time Delay: Designed to protect gate system from shock load on reversal in both directions.

7. Maximum Run Timer: Designed to prevent damage to gate system by shutting down system if normal time to open gate is exceeded.

8. Clock Timer: [24-hour] [Seven-day] <Insert time period> programmable for regular events.

J. Accessories:

1. Warning Module: [Audio] [Visual], [constant] [strobe]-light alarm sounding three to five seconds in advance of gate operation and continuing until gate stops moving; compliant with the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines.

2. Battery Backup System: Battery-powered drive and access-control system, independent of primary drive system.

 a. Fail Safe: Gate opens and remains open until power is restored.

 b. Fail Secure: Gate cycles on battery power, then fail safe when battery is discharged.

3. External electric-powered [solenoid] [magnetic] lock with delay timer allowing time for lock to release before gate operates.

4. [Fire] [Postal] box.

5. Fire [strobe] [siren] alarm.

6. Intercom System: <Insert requirements>.
7. Instructional, Safety, and Warning Labels and Signs: [According to UL 325] [Manufacturer's standard for components and features specified] [As indicated on Drawings] <Insert requirements>.

8. Equipment Bases/Pads: Cast-in-place or precast concrete, [depth not less than 12 inches (300 mm)] <Insert depth 6 to 12 inches (150 to 300 mm) below frost line or detail on Drawings>, dimensioned and reinforced according to gate-operator component manufacturer's written instructions and as indicated on Drawings.

2.9 GROUT AND ANCHORING CEMENT

A. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout, recommended in writing by manufacturer, for exterior applications.

B. Erosion-Resistant Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with potable water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating and that is recommended in writing by manufacturer, for exterior applications.

2.10 FENCE GROUNDING

A. Conductors: Bare, solid wire for No. 6 AWG and smaller; stranded wire for No. 4 AWG and larger.

1. Material above Finished Grade: Copper.
2. Material on or below Finished Grade: Copper.
3. Bonding Jumpers: Braided copper tape, 1 inch (25 mm) wide, woven of No. 30 AWG bare copper wire, terminated with copper ferrules.

B. Connectors and Grounding Rods: Comply with UL 467.

1. Connectors for Below-Grade Use: Exothermic welded type.
2. Grounding Rods: Copper-clad steel, 5/8 by 96 inches (16 by 2440 mm).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for a verified survey of property lines and legal boundaries, site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.

1. Do not begin installation before final grading is completed unless otherwise permitted by Architect.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet (152.5 m) or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

3.3 INSTALLATION, GENERAL

A. Install chain-link fencing to comply with ASTM F 567 and more stringent requirements indicated.

1. Install fencing on established boundary lines inside property line.

3.4 CHAIN-LINK FENCE INSTALLATION

A. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.

B. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.

1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 a. Exposed Concrete (grass areas): Extend 2 inches (50 mm) above grade; shape and smooth to shed water.
 b. Concealed Concrete (concrete paved areas): Top 8 inches (200 mm) below grade to allow covering with surface material.

C. Terminal Posts: Locate terminal end, corner, and gate posts per ASTM F 567 and terminal pull posts at changes in horizontal or vertical alignment of 22.5 degrees or more.

D. Line Posts: Space line posts uniformly at 10 feet (3 m) o.c.

E. Post Bracing and Intermediate Rails: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.

1. Locate horizontal braces at mid-height of fabric 72 inches (1830 mm) or higher, on fences with top rail and at two-third fabric height on fences without top rail. Install so posts are plumb when diagonal rod is under proper tension.
F. Tension Wire: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch- (3.05-mm-) diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches (610 mm) o.c. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:

1. Extended along bottom of fence fabric. Install bottom tension wire within 6 inches (152 mm) of bottom of fabric and tie to each post with not less than same diameter and type of wire.

G. Top Rail: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended in writing by fencing manufacturer.

H. Intermediate and Bottom Rails: Install and secure to posts with fittings.

I. Chain-Link Fabric: Apply fabric to outside of enclosing framework. Leave 1 inch (25.4 mm) between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

J. Tension or Stretcher Bars: Thread through fabric and secure to end, corner, pull, and gate posts with tension bands spaced not more than 15 inches (380 mm) o.c.

K. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric per ASTM F 626. Bend ends of wire to minimize hazard to individuals and clothing.

1. Maximum Spacing: Tie fabric to line posts at 12 inches (300 mm) o.c. and to braces at 24 inches (610 mm) o.c.

L. Fasteners: Install nuts for tension bands and carriage bolts on the side of the fence opposite the fabric side.

M. Barbed Wire: Install barbed wire uniformly spaced, angled toward security side of fence. Pull wire taut, install securely to extension arms, and secure to end post or terminal arms.

3.5 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.
3.6 GATE OPERATOR INSTALLATION

A. General: Install gate operators according to manufacturer's written instructions, aligned and true to fence line and grade.

B. Excavation for Support Posts and Pedestals; Hand-excavate holes for bases/pads, in firm, undisturbed soil to dimensions and depths and at locations as required by gate-operator component manufacturer's written instructions and as indicated.

C. Vehicle Loop Detector System: Cut grooves in pavement and bury and seal wire loop according to manufacturer's written instructions. Connect to equipment operated by detector.

D. Comply with NFPA 70 and manufacturer's written instructions for grounding of electric-powered motors, controls, and other devices.

3.7 GROUNDING AND BONDING

A. Fence Grounding: Install at maximum intervals of 1,500 feet (450 m) except as follows:

1. Fences within 100 Feet (30 m) of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet (225 m).

 a. Gates and Other Fence Openings: Ground fence on each side of opening.

 1) Bond metal gates to gate posts.
 2) Bond across openings, with and without gates, except openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches (460 mm) below finished grade.

B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet (45 m) on each side of crossing.

C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

D. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches (150 mm) below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at the grounding location, including the following:

1. Make grounding connections to each barbed wire strand with wire-to-wire connectors designed for this purpose.
2. Make grounding connections to each barbed tape coil with connectors designed for this purpose.

E. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.

F. Connections: Make connections to minimize possibility of galvanic action or electrolysis. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

G. Bonding to Lightning Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning protection down conductor or lightning protection grounding conductor complying with NFPA 780.

3.8 FIELD QUALITY CONTROL

A. Grounding-Resistance Testing: [Owner will engage] [Engage] a qualified testing agency to perform tests and inspections.

1. Grounding-Resistance Tests: Subject completed grounding system to a megger test at each grounding location. Measure grounding resistance no fewer than two full days after last trace of precipitation, without soil having been moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural grounding resistance. Perform tests by two-point method according to IEEE 81.
2. Excessive Grounding Resistance: If resistance to grounding exceeds specified value, notify Architect promptly. Include recommendations for reducing grounding resistance and a proposal to accomplish recommended work.
3. Report: Prepare test reports certified by a testing agency of grounding resistance at each test location. Include observations of weather and other phenomena that may affect test results.

3.9 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Automatic Gate Operator: Energize circuits to electrical equipment and devices. Adjust operators, controls, safety devices, alarms, and limit switches.

1. Hydraulic Operator: Purge operating system, adjust pressure and fluid levels, and check for leaks.
2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
3. Test and adjust controls, alarms, and safeties. Replace damaged and malfunctioning controls and equipment.
C. Lubricate hardware, gate operator, and other moving parts.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's personnel to adjust, operate, and maintain chain-link fences and gates.

END OF SECTION 323113
SECTION 323119 - DECORATIVE METAL FENCES AND GATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Decorative metallic-coated steel tubular picket fences.
2. Horizontal slide gates.
3. Gate operators, including controls.
B. Related Sections:
1. Division 31 Section "Earth Moving" for site excavation, fill, and backfill where decorative metal fences and gates are located.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For gates. Include plans, elevations, sections, details, and attachments to other work.
C. Samples: For each fence material and for each color specified.
 1. Provide Samples 12 inches (300 mm) in length for linear materials.
D. Welding certificates.
E. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for decorative metallic-coated steel tubular picket fences, including finish, indicating compliance with referenced standard and other specified requirements.
F. Maintenance Data: For gate operators to include in maintenance manuals.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Fabricator of products.
B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
C. Mockups: Build mockups to **verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.**

1. Include **10-foot (3-m)** length of fence complying with requirements.
2. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

D. Preinstallation Conference: Conduct conference at **Project site.**

PART 2 - PRODUCTS

2.1 STEEL AND IRON

A. Plates, Shapes, and Bars: ASTM A 36/A 36M.

B. Bars (Pickets): Hot-rolled, carbon steel complying with ASTM A 29/A 29M, Grade 1010.

C. Tubing: ASTM A 500, cold formed steel tubing.

D. Uncoated Steel Sheet: **Hot-rolled steel sheet, ASTM A 1011/A 1011M, Structural Steel, Grade 45 (Grade 310).**

E. Galvanized-Steel Sheet: ASTM A 653/A 653M, structural quality, Grade 50 (Grade 340), with **G90 (Z275) coating.**

F. Aluminum-Zinc Alloy-Coated Steel Sheet: ASTM A 792/A 792M, structural quality, Grade 50 (Grade 340), with **AZ60 (AZM180) coating.**

G. Castings: Either gray or malleable iron unless otherwise indicated.

 2. Malleable Iron: ASTM A 47/A 47M.

2.2 COATING MATERIALS

A. Epoxy Primer for Galvanized Steel: Complying with MPI #101 and compatible with coating specified to be applied over it.

 1. Use primer with a VOC content of **420 g/L** or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Epoxy Intermediate Coat: Complying with MPI #77 and compatible with primer and topcoat.

 1. Use product with a VOC content of **420 g/L** or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Polyurethane Topcoat: Complying with MPI #72 and compatible with undercoat.
1. Use product with a VOC content of \textbf{420 g/L} or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MISCELLANEOUS MATERIALS

A. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.

B. Concrete: Normal-weight, air-entrained, ready-mix concrete complying with requirements in Division 03 Section "Cast-in-Place Concrete" with a minimum 28-day compressive strength of 3000 psi (20 MPa), 3-inch (75-mm) slump, and 1-inch (25-mm) maximum aggregate size or dry, packaged, normal-weight concrete mix complying with ASTM C 387 mixed with potable water according to manufacturer's written instructions.

C. Nonshrink Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107 and specifically recommended by manufacturer for exterior applications.

2.4 GROUNDING MATERIALS

A. Grounding Conductors: Bare, solid wire for No. 6 AWG and smaller; stranded wire for No. 4 AWG and larger.

1. Material above Finished Grade: \textbf{Copper}.
2. Material on or below Finished Grade: Copper.
3. Bonding Jumpers: Braided copper tape, 1 inch (25 mm) wide, woven of No. 30 AWG bare copper wire, terminated with copper ferrules.

B. Grounding Connectors and Grounding Rods: Comply with UL 467.

1. Connectors for Below-Grade Use: Exothermic-welded type.
2. Grounding Rods: Copper-clad steel.
 a. Size: 5/8 by 96 inches (16 by 2440 mm).

2.5 DECORATIVE METALLIC-COATED STEEL TUBULAR PICKET FENCES

A. Decorative Metallic-Coated Steel Tubular Picket New Fence: Comply with ASTM F 2408, for \textbf{light industrial (commercial)} application (class) unless otherwise indicated, and ASTM F2200 – 14 (maximum opening of 2-1/4” between pickets where gate pockets next to fencing)

1. Basis-of-Design Product: Subject to compliance with requirements, provide Montage II Genesis as manufactured by Amerstar Fence Products or comparable product by one of the following:
 a. Ameristar Fence Products.
 b. Fortress Iron; a division of Woodmark International, LP.
 c. Iron Eagle Industries, Inc.
 d. Master Halco.
 e. Merchants Metals; a division of MMI Products, Inc.
2.6 HORIZONTAL-SLIDE GATES

A. Gate Configuration: Single leaf
 1. Type: Cantilever slide, with external roller assemblies.

B. Gate Frame Height: As indicated

C. Gate Opening Width: As indicated

D. Automated vehicular gates shall comply with ASTM F 2200, Class IV. Maximum opening between pickets shall not be more than 2-1/4”.

E. Galvanized-Steel Frames and Bracing: Fabricate members from square tubing.
 1. Frame Members: Square tubes 1-1/2 by 1-1/2 inches formed from 0.108-inch (2.74-mm) nominal-thickness, metallic-coated steel sheet or formed from 0.105-inch (2.66-mm) nominal-thickness steel sheet and hot-dip galvanized after fabrication.
 2. Bracing Members: Square tubes 1-1/2 by 1-1/2 inches formed from 0.108-inch (2.74-mm) nominal-thickness, metallic-coated steel sheet or formed from 0.105-inch (2.66-mm) nominal-thickness steel sheet and hot-dip galvanized after fabrication.

F. Steel Frames and Bracing: Fabricate members from square tubing. Hot-dip galvanize frames after fabrication.
 1. Frame Members: Steel tubing 1-1/2 by 1-1/2 inches with 1/8-inch thickness.
 2. Bracing Members: Steel tubing 1-1/2 by 1-1/2 inches with 1/8-inch thickness.

G. Frame Corner Construction:
 1. Welded frame with panels assembled with bolted or riveted corner fittings and 5/16-inch diameter, adjustable truss rods for panels 5 feet (1.52 m) wide or wider.

H. Additional Rails: Provide as indicated, complying with requirements for fence rails.

I. Infill: Comply with requirements for adjacent fence and ASTM F 2200, Class IV. Maximum opening between pickets shall not be more than 2-1/4”.

J. Picket Size, Configuration, and Spacing: Comply with requirements for adjacent fence.
 1. Treillage: Finish as specified for adjacent fence and compliance with ASTM F 2200, Class IV. Maximum opening between pickets shall not be more than 2-1/4”.

K. Hardware: Latches permitting operation from both sides of gate, locking devices, hangers, roller assemblies (in compliance with ASTM F 2200, Class IV (all rollers to be guarded or covered)), and stops fabricated from galvanized steel. Fabricate latches with integral eye openings for padlocking; padlock accessible from both sides of gate.
1. Coordinate hardware configuration to be compatible with Gate Operator.

L. Finish exposed welds to comply with NOMMA Guideline 1, **Finish #4 - good-quality, uniform undressed weld with minimal splatter.**

M. Galvanizing: For items other than hardware that are indicated to be galvanized, hot-dip galvanize to comply with ASTM A 123/A 123M. For hardware items, hot-dip galvanize to comply with ASTM A 153/A 153M.

N. Metallic-Coated Steel Finish: High-performance coating.

2.7 GATE OPERATORS

A. Gate Operators:

1. Manufacturers: Subject to compliance with requirements, **provide products by one of the following:**

 a. Amazing Gates of America LLC.
 b. Apollo Gate Operators.
 c. AutoGate, Inc.
 d. Begley Automated Gate Systems.
 e. Byan Systems, Inc.
 f. CAME Americas Automation LLC.
 g. Chamberlain Group, Inc. (The).
 h. DoorKing, Inc.
 i. Eagle Access Control Systems, Inc.
 j. FAAC USA.
 k. Gates That Open, LLC.
 m. Tymetal Corp.
 n. USAutomatic Inc.

B. Provide factory-assembled automatic operating system designed for gate size, type, weight, and operation frequency. Provide operation control system with characteristics suitable for Project conditions, with remote-control stations, safety devices, and weatherproof enclosures; coordinate electrical requirements with building electrical system.

1. Provide operator designed so motor may be removed without disturbing limit-switch adjustment and without affecting auxiliary emergency operator.
2. Provide operator with UL **approval**.
4. Provide unit designed and wired for both right-hand/left-hand opening, permitting universal installation.

C. Comply with NFPA 70.

D. UL Standard: Manufacturer and label gate operators to comply with UL 325.
E. Emergency Access Requirements: Comply with requirements of authorities having jurisdiction for automatic gate operators on gates that must provide emergency access.

F. Motor Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, within installed environment, with indicated operating sequence, and without exceeding nameplate rating or considering service factor. Comply with NEMA MG 1 and the following:

1. Voltage: **NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected.**
2. Horsepower: Not less than \(\frac{1}{2}\).
3. Enclosure: **Manufacturer's standard.**
4. Duty: Continuous duty at ambient temperature of 105 deg F (40 deg C) and at altitude of 3300 feet (1005 m) above sea level.
5. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.
6. Phase: **One.**

G. Gate Operators: **Concrete base** mounted and as follows:

1. Mechanical **Slide** Gate Operators:
 a. Duty: **Heavy duty, commercial/industrial.**
 b. Gate Speed: Minimum **45 feet (13.7 m) per minute**
 c. Maximum Gate Weight: **1500 lb**
 d. Frequency of Use: **60 cycles per hour Continuous duty.**
 e. Drive Type: V-belt and **[worm gear] [chain-and-sprocket] reducers, roller-chain drive.**

H. Remote Controls: Electric controls separated from gate and motor and drive mechanism, with **NEMA ICS 6, Type 4** enclosure for **concrete base** mounting, and with space for additional optional equipment. Provide the following remote-control device(s):

1. Control Station: Keyed, **three-position switch with open, stop, and close function**; located remotely from gate. Provide two keys per station.
2. Control Station: Momentary-contact, **three-button-operated with open, stop, and close function**; located remotely from gate. **Key switch to lock out open and close buttons.**
3. Card Reader: Functions only when authorized card is presented. Programmable, **multiple code system, permitting four different access time periods** ; face-lighted unit fully visible at night.
 a. Reader Type: **Proximity.**
 b. Features: **Timed antipassback**

4. Digital Keypad Entry Unit: **Programmable, multiple-code capability of not less than 500 possible individual codes, consisting of 5-digit codes, and permitting four different access time periods.**
 a. Features: **Timed antipassback**
 b. Face-lighted unit with **metal-keyed keypad fully visible at night.**

5. Radio Control: Digital system consisting of code-compatible universal receiver for each gate, located where indicated, with remote antenna with coaxial cable and mounting
brackets designed to operate gates. Provide two programmable transmitter(s) with multiple-code capability permitting validating or voiding of not less than 1000 codes per channel configured for the following functions:

a. Transmitters: Three button operated, with open and close function.
b. Channel Settings: Two independent channel settings controlling separate receivers for operating more than one gate from each transmitter.

6. Telephone Entry System: Hands-free, voice-communication system for connection to building telephone system with digital-entry code activation of gate operator and auxiliary keypad entry.

I. "Vehicle Loop Detector" and "Vehicle Presence Detector" paragraphs below describe detectors that can be used for vehicle control and for safety, depending on function. Hold-open function is recommended only for swing gate(s). Revise paragraphs if system requires combination loop detector and presence detector to provide suitable functions. Consult manufacturers for information and features.

J. Vehicle Loop Detector: System includes automatic closing timer with adjustable time delay, timer cutoff switch and loop detector designed to open and close gate and hold gate open until traffic clears. System includes electronic detector with adjustable detection patterns, adjustable sensitivity and frequency settings, and panel indicator light designed to detect presence or transit of a vehicle over an embedded loop of wire and to emit a signal activating the gate operator. System includes number of loops consisting of multiple strands of wire, number of turns, loop size, and method of placement, as recommended in writing by detection system manufacturer for function indicated, at location shown on Drawings.

K. Obstruction Detection Devices: Provide each motorized gate with automatic safety sensor(s). Activation of sensor(s) causes operator to immediately function as follows:

1. Action: Reverse gate in both opening and closing cycles, and hold until clear of obstruction.
2. Internal Sensor: Built-in torque or current monitor senses gate is obstructed.
3. Sensor Edge: Contact-pressure-sensitive safety edge, profile, and sensitivity designed for type of gate and component indicated, in locations as follows. Connect to control circuit using gate edge transmitter and operator receiver system.

a. Along entire gate leaf leading edge.

4. Photoelectric/Infrared Sensor System: Designed to detect an obstruction in gate's path when infrared beam in the zone pattern is interrupted.

L. Limit Switches: Adjustable switches, interlocked with motor controls and set to automatically stop gate at fully retracted and fully extended positions.

M. Emergency Release Mechanism: Quick-disconnect release of operator drive system of the following type, permitting manual operation if operator fails. Design system so control-circuit power is disconnected during manual operation.

1. Type: Integral fail-safe release, allowing gate to be pushed open without mechanical devices, keys, cranks, or special knowledge.
DECORATIVE METAL FENCES AND GATES

N. Operating Features:

1. Digital Microprocessor Control: Electronic programmable means for setting, changing, and adjusting control features with capability for monitoring and auditing gate activity. Provide unit that is isolated from voltage spikes and surges.
2. System Integration: With controlling circuit board capable of accepting any type of input from external devices.
3. Automatic Closing Timer: With adjustable time delay before closing and timer cutoff switch.
4. Open Override Circuit: Designed to override closing commands.
5. Reversal Time Delay: Designed to protect gate system from shock load on reversal in both directions.
6. Maximum Run Timer: Designed to prevent damage to gate system by shutting down system if normal time to open gate is exceeded.
7. Clock Timer: 24-hour programmable for regular events.

O. Accessories:

1. Warning Module: Audio and strobe-light alarm sounding three to five seconds in advance of gate operation and continuing until gate stops moving; compliant with the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines.
2. Battery Backup System: Battery-powered drive and access-control system, independent of primary drive system:
 a. Fail-Secure: Gate cycles on battery power, then fail-safe when battery is discharged.
3. External electric-powered solenoid lock with delay timer allowing time for lock to release before gate operates.
4. Fire box.
5. Instructional, Safety, and Warning Labels and Signs: Manufacturer's standard for components and features specified.
6. Equipment Bases/Pads: Precast concrete, depth not less than 12 inches (305 mm), dimensioned and reinforced according to gate operator component manufacturer's written instructions and as indicated on Drawings.

2.8 METALLIC-COATED STEEL FINISHES

A. Galvanized Finish: Clean welds, mechanical connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

B. Surface Preparation: Clean surfaces with nonpetroleum solvent so surfaces are free of oil and other contaminants. After cleaning, apply a zinc-phosphate conversion coating suited to the organic coating to be applied over it. Clean welds, mechanical connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

C. Powder Coating: Immediately after cleaning and pretreating, apply 2-coat finish consisting of zinc-rich epoxy prime coat and TGIC polyester topcoat, with a minimum dry film thickness of 2 mils (0.05 mm) for topcoat. Comply with coating manufacturer's written instructions to achieve a minimum total dry film thickness of 4 mils (0.10 mm).
1. Color and Gloss: As selected by Architect from manufacturer's full range.
2. Comply with surface finish testing requirements in ASTM F 2408 except change corrosion-resistance requirement to 3000 hours without failure.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for site clearing, earthwork, pavement work, construction layout, and other conditions affecting performance of the Work.

B. Do not begin installation before final grading is completed unless otherwise permitted by Architect.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet (152.5 m) or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

1. Construction layout and field engineering are specified in Division 01 Section "Execution"

3.3 DECORATIVE FENCE INSTALLATION

A. Install fences according to manufacturer's written instructions.

B. Install fences by setting posts as indicated and fastening rails to posts. Peen threads of bolts after assembly to prevent removal.

C. Post Excavation: Drill or hand-excavate holes for posts in firm, undisturbed soil. Excavate holes to a diameter of not less than 4 times post size and a depth of not less than 24 inches (600 mm) plus 3 inches (75 mm) for each foot (300 mm) or fraction of a foot (300 mm) that fence height exceeds 4 feet (1200 mm).

D. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.

1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.

2. Concrete Fill: Place concrete around posts and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.

 a. Exposed Concrete: Extend 2 inches (50 mm) above grade. Finish and slope top surface to drain water away from post.
b. Concealed Concrete: Top 2 inches (50 mm) below grade as indicated on Drawings to allow covering with surface material. Slope top surface of concrete to drain water away from post.

3. Posts Set in Concrete: Extend post to within 6 inches (150 mm) of specified excavation depth, but not closer than 3 inches (75 mm) to bottom of concrete.

4. Space posts uniformly at 6 feet (1.83 m) o.c.

3.4 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.

3.5 GATE OPERATOR INSTALLATION

A. General: Install gate operators according to manufacturer's written instructions, aligned and true to fence line and grade.

B. Excavation for Concrete Bases: Hand-excavate holes for bases in firm, undisturbed soil to dimensions and depths and at locations as required by gate operator component manufacturer's written instructions and as indicated.

C. Concrete Bases: Cast-in-place or precast concrete, depth not less than 12 inches (300 mm), dimensioned and reinforced according to gate operator component manufacturer's written instructions and as indicated on Drawings.

D. Vehicle Loop Detector System: Cut grooves in pavement and bury and seal wire loop according to manufacturer's written instructions. Connect to equipment operated by detector.

E. Comply with NFPA 70 and manufacturer's written instructions for grounding of electric-powered motors, controls, and other devices.

3.6 GROUNDING AND BONDING

A. Fence Grounding: Install at maximum intervals of 1500 feet (450 m) except as follows:

1. Fences within 100 Feet (30 m) of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet (225 m).

 a. Gates and Other Fence Openings: Ground fence on each side of opening.

 1) Bond metal gates to gate posts.
 2) Bond across openings, with and without gates, except openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches (460 mm) below finished grade.
B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet (45 m) on each side of crossing.

C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

D. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches (150 mm) below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at the grounding location.

E. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.

F. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

G. Bonding to Lightning-Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning-protection down conductor or lightning-protection grounding conductor, complying with NFPA 780.

3.7 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

END OF SECTION 323119
SECTION 334100 - STORM UTILITY DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Pipe and fittings.
2. Non-pressure transition couplings.
3. Pressure pipe couplings.
4. Expansion joints and deflection fittings.
5. Backwater valves.
6. Cleanouts.
7. Drains.
8. Encasement for piping.
10. Channel drainage systems.
11. Catch basins.
13. Stormwater detention structures.
15. Stormwater disposal systems.

1.3 DEFINITIONS
A. FRP: Fiberglass-reinforced plastic.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

B. Shop Drawings:
1. Manholes: Include plans, elevations, sections, details, frames, and covers.
2. Catch basins and stormwater inlets: Include plans, elevations, sections, details, frames, covers, and grates.
3. Stormwater Detention Structures: Include plans, elevations, sections, details, frames, covers, design calculations, and concrete design-mix reports.
1.5 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from storm drainage system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
 B. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.
 C. Field quality-control reports.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
 B. Protect pipe, pipe fittings, and seals from dirt and damage.
 C. Handle manholes according to manufacturer's written rigging instructions.
 D. Handle catch basins and stormwater inlets according to manufacturer's written rigging instructions.

1.7 PROJECT CONDITIONS
 A. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Architect no fewer than two days in advance of proposed interruption of service.
 2. Do not proceed with interruption of service without Architect's written permission.

PART 2 - PRODUCTS

2.1 DUCTILE-IRON, CULVERT PIPE AND FITTINGS
 A. Pipe: ASTM A 716, for push-on joints.
 B. Standard Fittings: AWWA C110, ductile or gray iron, for push-on joints.
 C. Compact Fittings: AWWA C153, for push-on joints.
 D. Gaskets: AWWA C111, rubber.

2.2 DUCTILE-IRON, PRESSURE PIPE AND FITTINGS
 A. Push-on-Joint Piping:
 1. Pipe: AWWA C151, for push-on joints.
2. Standard Fittings: AWWA C110, ductile or gray iron, for push-on joints.
3. Compact Fittings: AWWA C153, for push-on joints.

B. Mechanical-Joint Piping:

1. Pipe: AWWA C151, with bolt holes in bell.
2. Standard Fittings: AWWA C110, ductile or gray iron, with bolt holes in bell.
4. Glands: Cast or ductile iron, with bolt holes and high-strength, cast-iron or high-strength, low-alloy steel bolts and nuts.
5. Gaskets: AWWA C111, rubber, of shape matching pipe, fittings, and glands.

2.3 PE PIPE AND FITTINGS

A. Corrugated PE Pipe and Fittings NPS 12 to NPS 60 (DN 300 to DN 1500): AASHTO M 294M, Type S, with smooth waterway for coupling joints.

2.4 PVC PIPE AND FITTINGS

A. PVC Type PSM Sewer Piping:

1. Pipe: ASTM D 3034, SDR 26, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
2. Fittings: ASTM D 3034, PVC with bell ends.

B. PVC Pressure Piping:

2. Fittings: AWWA C900, Class 150 PVC pipe with bell ends

C. PVC Water-Service Piping:

1. Pipe: ASTM D 1785, Schedule 40 and Schedule 80 PVC, with plain ends for solvent-cemented joints.

2.5 CONCRETE PIPE AND FITTINGS

A. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76 (ASTM C 76M).
1. **Bell-and-spigot or tongue-and-groove** ends and **gasketed joints with ASTM C 443 (ASTM C 443M), rubber gaskets** Retain first subparagraph below only for NPS 60 to NPS 144 (DN 1500 to DN 3600).

2. **Class III, Wall B.**

2.6 **NONPRESSURE TRANSITION COUPLINGS**

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground non-pressure piping. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. **Sleeve Materials:**

1. For Concrete Pipes: ASTM C 443 (ASTM C 443M), rubber.
2. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
3. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

C. **Unshielded, Flexible Couplings:**

1. Description: Elastomeric sleeve with **stainless-steel shear ring and** corrosion-resistant-metal tension band and tightening mechanism on each end.

D. **Shielded, Flexible Couplings:**

1. Description: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

E. **Ring-Type, Flexible Couplings:**

1. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.7 **PRESSURE PIPE COUPLINGS**

A. Description: AWWA C219, tubular-sleeve coupling, with center sleeve, gaskets, end rings, and bolt fasteners.

B. Metal, bolted, sleeve-type, reducing or transition coupling, for joining underground pressure piping. Include **150-psig (1035-kPa)** minimum pressure rating and ends sized to fit adjoining pipes.

C. **Center-Sleeve Material:** **Ductile iron.**

D. **Gasket Material:** Natural or synthetic rubber.

E. **Metal Component Finish:** Corrosion-resistant coating or material.
2.8 BACKWATER VALVES

A. Cast-Iron Backwater Valves:
1. Description: ASME A112.14.1, gray-iron body and bolted cover, with bronze seat.
2. Horizontal type; with swing check valve and hub-and-spigot ends.
3. Combination horizontal and manual gate-valve type; with swing check valve, integral gate valve, and hub-and-spigot ends.
4. Terminal type; with bronze seat, swing check valve, and hub inlet.

B. Plastic Backwater Valves:
1. Description: Horizontal type; with PVC body, PVC removable cover, and PVC swing check valve.

2.9 CLEANOUTS

A. Cast-Iron Cleanouts:
1. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
2. Top-Loading Classification(s): Medium Duty or Heavy Duty as specified or applicable.
3. Sewer Pipe Fitting and Riser to Cleanout: As specified or match sewer pipe material.

B. Plastic Cleanouts:
1. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.10 DRAINS

A. Cast-Iron Area Drains:
1. Description: ASME A112.6.3 gray-iron round body with anchor flange and round secured grate. Include bottom outlet with inside calk or spigot connection, of sizes indicated.
2. Top-Loading Classification(s): Heavy Duty.

B. Cast-Iron Trench Drains:
1. Description: ASME A112.6.3, 6-inch- (150-mm-) wide top surface unless specified otherwise, rectangular body with anchor flange or other anchoring device, and rectangular secured grate. Include units of total length indicated and quantity of bottom outlets with inside calk or spigot connections, of sizes indicated.
2. Top-Loading Classification(s): Medium Duty for walkways, Heavy Duty for traffic areas.

C. Steel Trench Drains:
1. Description: Factory fabricated from ASTM A 242/A 242M, welded steel plate, to form rectangular body with uniform bottom downward slope of 2 percent toward outlet, anchor flange, and grate. Include units of total length indicated, bottom outlet of size indicated, outlet strainer, acid-resistant enamel coating on inside and outside surfaces, and grate with openings of total free area at least two times cross-sectional area of outlet.
2. Plate Thicknesses: 1/8 inch (3.2 mm).
3. Overall Widths: 7-1/2 inches (190 mm).
 a. Grate Openings: 3/8-by-3-inch (9.5-by-76-mm) slots.

2.11 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105.

B. Material: Linear low-density polyethylene film of 0.008-inch (0.20-mm) or high-density, cross-laminated polyethylene film of 0.004-inch (0.10-mm) minimum thickness.

C. Form: Sheet or tube.

D. Color: Black.

2.12 MANHOLES

A. Standard Precast Concrete Manholes:
 1. Description: ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 2. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.
 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
 4. Base Section: 12-inch (300-mm) minimum thickness for floor slab and 4-inch (102-mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 5. Riser Sections: 4-inch (102-mm) minimum thickness, and lengths to provide depth indicated.
 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.
 8. Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.
 9. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
 10. Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Designed Precast Concrete Manholes:
 1. Description: ASTM C 913; designed according to ASTM C 890 for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to
manhole as required to prevent flotation.
4. Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole
walls, for each pipe connection.
5. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and
diameter matching manhole frame and cover, and of height required to adjust manhole
frame and cover to indicated elevation and slope. Include sealant recommended by ring
manufacturer.
6. Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, to
match diameter of manhole frame and cover, and of height required to adjust manhole
frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers:

1. Description: Ferrous; 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with
4-inch- (102-mm-) minimum width flange and 26-inch- (660-mm-) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to
"STORM SEWER."
2. Material: ASTM A 536, Grade 60-40-18 ductile or ASTM A 48/A 48M, Class 35 gray
iron unless otherwise indicated.

2.13 CONCRETE

A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R (ACI 350M/350RM), and
the following:

1. Cement: ASTM C 150, Type II.

B. Portland Cement Design Mix: 4000 psi (27.6 MPa) minimum, with 0.45 maximum
water/cementitious materials ratio.

2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design
mix, 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio.
Include channels and benches in manholes.

1. Channels: Concrete invert, formed to same width as connected piping, with height of
vertical sides to three-fourths of pipe diameter. Form curved channels with smooth,
uniform radius and slope.
 a. Invert Slope: 1 percent through manhole unless indicated otherwise.
2. Benches: Concrete, sloped to drain into channel.
a. Slope: **4 percent** minimum.

D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi (20.7 MPa) minimum, with 0.58 maximum water/cementitious materials ratio.

2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

2.14 POLYMER-CONCRETE, CHANNEL DRAINAGE SYSTEMS

A. General Requirements for Polymer-Concrete, Channel Drainage Systems: Modular system of precast, polymer-concrete channel sections, grates, and appurtenances; designed so grates fit into channel recesses without rocking or rattling. Include quantity of units required to form total lengths indicated.

B. Sloped-Invert, Polymer-Concrete Systems:

1. Channel Sections:

 a. Interlocking-joint, precast, modular units with end caps.
 b. 4-inch (102-mm) inside width and deep, rounded bottom, with built-in invert slope of 0.6 percent and with outlets in quantities, sizes, and locations indicated.
 c. Extension sections necessary for required depth.
 d. Frame: Include gray-iron or steel frame for grate.

2. Grates:

 a. Manufacturer's designation "**Medium Duty**," with slots or perforations that fit recesses in channels.
 b. Material: **Fiberglass**, **Galvanized steel**, **Gray iron**, or **Stainless steel** as indicated on Drawings.

3. Covers: Solid gray iron if indicated.
4. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

C. Narrow-Width, Level-Invert, Polymer-Concrete Systems:

1. Channel Sections:

 a. Interlocking-joint, precast, modular units with end caps.
 b. 5-inch (127-mm) inside width and 9-3/4-inch- (248-mm-) deep, rounded bottom, with level invert and with NPS 4 (DN 100) outlets in quantities, sizes, and locations indicated.

2. Grates:

 a. Slots or perforations that fit recesses in channels.
 b. Material: **Fiberglass**, **Galvanized steel**, **Gray iron**, or **Stainless steel** as indicated on Drawings.
3. Covers: Solid gray iron if indicated.
4. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

D. Wide-Width, Level-Invert, Polymer-Concrete Systems:

1. Channel Sections:
 a. Interlocking-joint, precast, modular units with end caps.
 b. **8-inch (203-mm) inside width and 13-3/4-inch (350-mm) deep**, rounded bottom, with level invert and with outlets in quantities, sizes, and locations indicated.

2. Grates:
 a. Slots or other openings that fit recesses in channels.
 b. Material: **Fiberglass** or **Gray iron** as indicated on Drawings.

3. Covers: Solid gray iron if indicated.
4. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

E. Drainage Specialties: Precast, polymer-concrete units.

1. Large Catch Basins:
 a. 24-by-12-inch (610-by-305-mm) polymer-concrete body, with outlets in quantities and sizes indicated.
 b. Gray-iron slotted grate.
 c. Frame: Include gray-iron or steel frame for grate.

2. Small Catch Basins:
 a. 19- to 24-inch by approximately 6-inch (483- to 610-mm by approximately 150-mm) polymer-concrete body, with outlets in quantities and sizes indicated.
 b. Gray-iron slotted grate.
 c. Frame: Include gray-iron or steel frame for grate.

3. Oil Interceptors:
 a. Polymer-concrete body with interior baffle and four steel support channels and two 1/4-inch (6.4-mm) thick, steel-plate covers.
 b. Steel-plate covers.
 c. Capacity: **140 gal. (530 L)**, **200 gal. (757 L)**, or **260 gal. (984 L)** as indicated on Drawings.
 d. Inlet and Outlet: **NPS 4 (DN 100)** or **NPS 6 (DN 150)** as indicated on Drawings.

4. Sediment Interceptors:
 a. 27-inch (686-mm) square, polymer-concrete body, with outlets in quantities and sizes indicated.
b. 24-inch- (610-mm-) square, gray-iron frame and slotted grate.

F. Supports, Anchors, and Setting Devices: Manufacturer's standard unless otherwise indicated.

G. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

2.15 PLASTIC, CHANNEL DRAINAGE SYSTEMS

A. General Requirements for Plastic, Channel Drainage Systems:

1. Modular system of plastic channel sections, grates, and appurtenances.
2. Designed so grates fit into frames without rocking or rattling.
3. Number of units required to form total lengths indicated.

B. Fiberglass Systems:

1. Channel Sections:
 a. Interlocking-joint, fiberglass modular units, with built-in invert slope of approximately 1 percent and with end caps.
 b. Rounded or inclined inside bottom surface, with outlets in quantities, sizes, and locations indicated.
 c. Width: 6 or 8 inches (150 or 203 mm) as indicated on Drawings.
2. Factory- or field-attached frames that fit channel sections and grates.
 a. Material: Galvanized steel or Stainless steel as indicated on Drawings.
3. Grates with slots or perforations that fit frames.
 a. Material: Fiberglass, Galvanized steel, Gray iron or Stainless steel as indicated on Drawings.
4. Covers: Solid gray iron if indicated.
5. Drainage Specialties:
 a. Large Catch Basins: 24-inch- (610-mm-) square plastic body, with outlets in quantities and sizes indicated. Include gray-iron frame and slotted grate.
 b. Small Catch Basins: 12-by-24-inch (305-by-610-mm) plastic body, with outlets in quantities and sizes indicated. Include gray-iron frame and slotted grate.

C. PE Systems:

1. Channel Sections: Interlocking-joint, PE modular units, 4 inches (102 mm) wide, with end caps. Include rounded bottom, with level invert and with outlets in quantities, sizes, and locations indicated.
2. Grates: PE, ladder shaped; with stainless-steel screws.
3. Color: Gray unless otherwise indicated.
4. Drainage Specialties: Include the following PE components:
a. Drains: **4-inch- (102-mm-) square, slotted top; with NPS 3 (DN 80) bottom outlet.**

b. Catch Basins: **12-inch- (305-mm-) square plastic body,** with outlets in quantities and sizes indicated. Include PE slotted grate 11-3/4 inches (298 mm) square by 1-1/8 inches (28.6 mm) thick.

D. Supports, Anchors, and Setting Devices: Manufacturer's standard unless otherwise indicated.

E. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

2.16 CATCH BASINS

A. Standard Precast Concrete Catch Basins:

1. **Description:** ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
2. **Base Section:** 6-inch (150-mm) minimum thickness for floor slab and 4-inch (102-mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
3. **Riser Sections:** 4-inch (102-mm) minimum thickness, 48-inch (1200-mm) diameter, and lengths to provide depth indicated.
4. **Top Section:** Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated. Top of cone of size that matches grade rings.
5. **Joint Sealant:** ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.
6. **Adjusting Rings:** Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.
7. **Grade Rings:** Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 225-mm) total thickness, that match 24-inch- (610-mm-) diameter frame and grate.
8. **Pipe Connectors:** ASTM C 923 (ASTM C 923M), resilient, of size required, for each pipe connecting to base section.

B. Designed Precast Concrete Catch Basins: ASTM C 913, precast, reinforced concrete; designed according to ASTM C 890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for joint sealants.

1. **Joint Sealants:** ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.
2. **Adjusting Rings:** Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.
3. **Grade Rings:** Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 225-mm) total thickness, that match 24-inch- (610-mm-) diameter frame and grate.
4. **Pipe Connectors:** ASTM C 923 (ASTM C 923M), resilient, of size required, for each pipe connecting to base section.

C. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include flat grate with small square or short-slotted drainage openings.

1. **Size:** 24 by 24 inches (610 by 610 mm) minimum unless otherwise indicated.
2. **Grate Free Area:** Approximately 50 percent unless otherwise indicated.
D. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with 4-inch (102-mm) minimum width flange, and 26-inch- (660-mm-) diameter flat grate with small square or short-slotted drainage openings.

1. Grate Free Area: Approximately 50 percent unless otherwise indicated.

2.17 STORMWATER INLETS

A. Curb Inlets: Made with vertical curb opening, of materials and dimensions according to utility standards.

B. Gutter Inlets: Made with horizontal gutter opening, of materials and dimensions according to utility standards. Include heavy-duty frames and grates.

C. Combination Inlets: Made with vertical curb and horizontal gutter openings, of materials and dimensions according to utility standards. Include heavy-duty frames and grates.

D. Frames and Grates: Heavy duty, according to utility standards.

2.18 STORMWATER DETENTION STRUCTURES

A. Cast-in-Place Concrete, Stormwater Detention Structures: Constructed of reinforced-concrete bottom, walls, and top; designed according to ASTM C 890 for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, dimensions, and appurtenances indicated.

1. Ballast: Increase thickness of concrete as required to prevent flotation.
2. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 229-mm) total thickness, that match 24-inch- (610-mm-) diameter frame and cover.
3. Steps: Individual FRP steps or FRP ladder, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of structure to finished grade is less than 60 inches (1500 mm).

B. Manhole Frames and Covers: ASTM A 536, Grade 60-40-18, ductile-iron castings designed for heavy-duty service. Include 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with 4-inch (102-mm) minimum width flange, and 26-inch- (660-mm-) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."

2.19 PIPE OUTLETS

A. Head Walls: Cast-in-place reinforced concrete, with apron and tapered sides.

B. Riprap Basins: Broken, irregularly sized and shaped, graded stone according to NSSGA's "Quarried Stone for Erosion and Sediment Control."

1. Average Size: NSSGA No. R-5, screen opening 5 inches (127 mm).

D. Energy Dissipaters: According to NSSGA's "Quarried Stone for Erosion and Sediment Control," No. A-1, 3-ton (2721-kg) average weight armor stone, unless otherwise indicated.

2.20 STORMWATER DISPOSAL SYSTEMS

A. Chamber Systems:
 1. Storage and Leaching Chambers: Molded PE with perforated sides and open bottom. Include number of chambers, distribution piping, end plates, and other standard components as required for system total capacity.
 2. Filtering Material: ASTM D 448, Size No. 24, 3/4- to 2-1/2-inch (19- to 63-mm) washed, crushed stone or gravel.
 3. Filter Mat: Geotextile woven or spun filter fabric, in one or more layers, for minimum total unit weight of 4 oz./sq. yd. (135 g/sq. m).

B. Pipe Systems: Perforated manifold, header, and lateral piping complying with AASHTO M 252M for NPS 10 (DN 250) and smaller, AASHTO M 294M for NPS 12 to NPS 60 (DN 300 to DN 1500). Include proprietary fittings, couplings, seals, and filter fabric.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Install gravity-flow, nonpressure drainage piping according to the following:
 1. Install piping pitched down in direction of flow.
 2. Install piping NPS 6 (DN 150) and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.
 3. Install piping with 36-inch (915-mm) minimum cover.
 4. Install ductile-iron piping and special fittings according to AWWA C600 or AWWA M41.
 5. Install PE corrugated sewer piping according to ASTM D 2321.
 6. Install PVC sewer piping according to ASTM D 2321 and ASTM F 1668.
 7. Install PVC water-service piping according to ASTM D 2321 and ASTM F 1668.
 8. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."

G. Install force-main pressure piping according to the following:
 1. Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.
 2. Install piping with 36-inch (915-mm) minimum cover.
 3. Install ductile-iron pressure piping according to AWWA C600 or AWWA M41.
 4. Install ductile-iron special fittings according to AWWA C600.
 5. Install PVC pressure piping according to AWWA M23, or ASTM D 2774 and ASTM F 1668.
 6. Install PVC water-service piping according to ASTM D 2774 and ASTM F 1668.

H. Install corrosion-protection piping encasement over the following underground metal piping according to ASTM A 674 or AWWA C105:
 1. Ductile-iron pipe and fittings.
 2. Expansion joints and deflection fittings.

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, non-pressure drainage piping according to the following:
 1. Join ductile-iron culvert piping according to AWWA C600 for push-on joints.
 2. Join ductile-iron piping and special fittings according to AWWA C600 or AWWA M41.
 3. Join corrugated PE piping according to ASTM D 3212 for push-on joints.
 4. Join PVC sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasketed joints.

B. Join force-main pressure piping according to the following:
1. Join ductile-iron pressure piping according to AWWA C600 or AWWA M41 for push-on joints.
2. Join ductile-iron special fittings according to AWWA C600 or AWWA M41 for push-on joints.
3. Join PVC pressure piping according to AWWA M23 for gasketed joints.
4. Join PVC water-service piping according to ASTM D 2855 for solvent-cemented joints.
5. Join dissimilar pipe materials with pressure-type couplings.

3.4 BACKWATER VALVE INSTALLATION

A. Install horizontal-type backwater valves in piping where indicated.
B. Install combination horizontal and manual gate-valve type in piping and in manholes where indicated.
C. Install terminal-type backwater valves on end of piping and in manholes where indicated.

3.5 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use Medium-Duty, top-loading classification cleanouts in earth, unpaved or paved foot-traffic areas.
 2. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
B. Set cleanout frames and covers in earth in cast-in-place concrete block, 18 by 18 by 12 inches (450 by 450 by 300 mm) deep. Set with tops 1 inch (25 mm) above surrounding earth grade.
C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.6 DRAIN INSTALLATION

A. Install type of drains in locations indicated.
 1. Use Medium-Duty, top-loading classification drains in earth, unpaved or paved foot-traffic areas.
 2. Use Heavy-Duty, top-loading classification drains in vehicle-traffic service areas.
 3. Use Extra-Heavy-Duty, top-loading classification drains in roads.
B. Embed drains in 4-inch (102-mm) minimum concrete around bottom and sides.
C. Fasten grates to drains if indicated.
D. Set drain frames and covers with tops flush with pavement surface.
E. Assemble trench sections with flanged joints.
F. Embed trench sections in **4-inch (102-mm)** minimum concrete around bottom and sides.

3.7 MANHOLE INSTALLATION

A. General: Install manholes, complete with appurtenances and accessories indicated.

B. Install precast concrete manhole sections with sealants according to ASTM C 891.

C. Where specific manhole construction is not indicated, follow manhole manufacturer's written instructions.

D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops **3 inches (76 mm)** above finished surface elsewhere unless otherwise indicated.

3.8 CATCH BASIN INSTALLATION

A. Construct catch basins to sizes and shapes indicated.

B. Set frames and grates to elevations indicated.

3.9 STORMWATER INLET AND OUTLET INSTALLATION

A. Construct inlet head walls, aprons, and sides of reinforced concrete, as indicated.

B. Construct riprap of broken stone, as indicated.

C. Install outlets that spill onto grade, anchored with concrete, where indicated.

D. Install outlets that spill onto grade, with flared end sections that match pipe, where indicated.

E. Construct energy dissipaters at outlets, as indicated.

3.10 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.

3.11 CHANNEL DRAINAGE SYSTEM INSTALLATION

A. Install with top surfaces of components, except piping, flush with finished surface.

B. Assemble channel sections to form slope down toward drain outlets. Use sealants, adhesives, fasteners, and other materials recommended by system manufacturer.

C. Embed channel sections and drainage specialties in **4-inch (102-mm)** minimum concrete around bottom and sides.

D. Fasten grates to channel sections if indicated.
E. Assemble channel sections with flanged or interlocking joints.
F. Embed channel sections in 4-inch (102-mm) minimum concrete around bottom and sides.

3.12 STORMWATER DISPOSAL SYSTEM INSTALLATION

A. Chamber Systems: Excavate trenches of width and depth, and install system and backfill according to chamber manufacturer's written instructions. Include storage and leaching chambers, filtering material, and filter mat.
B. Piping Systems: Excavate trenches of width and depth, and install piping system, filter fabric, and backfill, according to piping manufacturer's written instructions.

3.13 CONNECTIONS

A. Connect non-pressure, gravity-flow drainage piping in building's storm building drains specified in Section 221413 "Facility Storm Drainage Piping."
B. Connect force-main piping to building's storm drainage force mains specified in Section 221413 "Facility Storm Drainage Piping." Terminate piping where indicated.
C. Make connections to existing piping and underground manholes.
 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch (150-mm) overlap, with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
 2. Make branch connections from side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500). Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
 3. Make branch connections from side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes and structures by cutting into existing unit and creating an opening large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, encase entering connection in 6 inches (150 mm) of concrete for minimum length of 12 inches (300 mm) to provide additional support of collar from connection to undisturbed ground.
 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi (20.7 MPa) unless otherwise indicated.
 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
 4. Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.
D. Connect to sediment interceptors specified in Section 221323 "Sanitary Waste Interceptors."

E. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

1. Use non-pressure-type flexible couplings where required to join gravity-flow, non-pressure sewer piping unless otherwise indicated.
 a. **Shielded** flexible couplings for same or minor difference OD pipes.
 b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

2. Use pressure-type pipe couplings for force-main joints.

3.14 CLOSING ABANDONED STORM DRAINAGE SYSTEMS

A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:

1. Close open ends of piping with at least **8-inch- (203-mm-)** thick, brick masonry bulkheads.
2. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.

B. Abandoned Manholes and Structures: Excavate around manholes and structures as required and use one procedure below:

1. Remove manhole or structure and close open ends of remaining piping.
2. Remove top of manhole or structure down to at least **36 inches (915 mm)** below final grade. Fill to within **12 inches (300 mm)** of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.

C. Backfill to grade according to **Section 312000 "Earth Moving."**

3.15 IDENTIFICATION

A. Materials and their installation are specified in Section 312000 "Earth Moving." Arrange for installation of green warning tape directly over piping and at outside edge of underground structures.

1. Use **warning tape** or detectable warning tape over ferrous piping.
2. Use detectable warning tape over nonferrous piping and over edges of underground structures.
3.16 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches (610 mm) of backfill is in place, and again at completion of Project.

1. Submit separate reports for each system inspection.
2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.

3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Re-inspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Gravity-Flow Storm Drainage Piping: Test according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Option: Test plastic piping according to ASTM F 1417.
 b. Option: Test concrete piping according to ASTM C 924 (ASTM C 924M).
6. Force-Main Storm Drainage Piping: Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psig (1035 kPa).
 a. Ductile-Iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.
 b. PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.17 CLEANING

A. Clean interior of piping of dirt and superfluous materials. **Flush with water.**
END OF SECTION 334100
SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 6. Control panels.
 7. Pressure gages.

1.3 DEFINITIONS
 A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.4 SYSTEM DESCRIPIONS
 A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.5 PERFORMANCE REQUIREMENTS
 A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
 B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional using performance requirements and design criteria indicated.
 C. Sprinkler system design shall be approved by authorities having jurisdiction.
 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 2. Sprinkler Occupancy Hazard Classifications:
 3. a. Building Service Areas: Ordinary Hazard, Group 1.
 b. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
c. General Storage Areas: Ordinary Hazard, Group 1.
d. Library Stack Areas: Ordinary Hazard, Group 2.
e. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
f. Office and Public Areas: Light Hazard.

4. Minimum Density for Automatic-Sprinkler Piping Design:

5. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
6. Maximum Protection Area per Sprinkler: Per UL listing.

1.6 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. LEED Submittal:
1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, including printed statement of VOC content and chemical components.

C. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
1. Wiring Diagrams: For power, signal, and control wiring.

D. Qualification Data: For qualified Installer.

E. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

F. Welding certificates.

G. Fire-hydrant flow test report.

H. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

I. Field quality-control reports.

J. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:
1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 1. NFPA 13, "Installation of Sprinkler Systems."

1.8 COORDINATION
 A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.9 EXTRA MATERIALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
 A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS
 A. Schedule 30, Galvanized- and Black-Steel Pipe: ASTM A 135; ASTM A 795/A 795M, Type E; or ASME B36.10M, wrought steel; with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.
 C. Galvanized and Uncoated, Steel Couplings: ASTM A 865, threaded.
 E. Malleable- or Ductile-Iron Unions: UL 860.
 F. Cast-Iron Flanges: ASME 16.1, Class 125.
 G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
 I. Grooved-Joint, Steel-Pipe Appurtenances:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. National Fittings, Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
2. Pressure Rating: 175 psig minimum.
4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

J. Steel Pressure-Seal Fittings: UL 213, FM-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers’ pressure-seal tools.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Victaulic Company.

2.3 PIPING JOINING MATERIALS

 1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:
 1. Valves shall be UL listed or FM approved.

B. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Victaulic Company.
 2. Standard: UL 1091 except with ball instead of disc.
 3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
 4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
 5. Valves NPS 3: Ductile-iron body with grooved ends.
C. Bronze Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fivalco Inc.
 b. Global Safety Products, Inc.
 c. Milwaukee Valve Company.
2. Standard: UL 1091.
5. End Connections: Threaded.

D. Iron Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Milwaukee Valve Company.
 c. NIBCO INC.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.
2. Standard: UL 1091.
4. Body Material: Cast or ductile iron.
5. Style: Lug or wafer.

E. Check Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 c. Anvil International, Inc.
 d. Crane Co.; Crane Valve Group; Crane Valves.
 e. Fire Protection Products, Inc.
 f. Fivalco Inc.
 g. NIBCO INC.
 h. Potter Roemer.
 i. Reliable Automatic Sprinkler Co., Inc.
 j. Tyco Fire & Building Products LP.
 k. Victaulic Company.
 l. Watts Water Technologies, Inc.
4. Type: Swing check.
5. Body Material: Cast iron.
6. End Connections: Flanged or grooved.

F. Iron OS&Y Gate Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
b. American Valve, Inc.
c. Clow Valve Company; a division of McWane, Inc.
d. Crane Co.; Crane Valve Group; Crane Valves.
e. Crane Co.; Crane Valve Group; Jenkins Valves.
f. Crane Co.; Crane Valve Group; Stockham Division.
g. Milwaukee Valve Company.
h. Mueller Co.; Water Products Division.
i. NIBCO INC.
j. Tyco Fire & Building Products LP.
k. Watts Water Technologies, Inc.

4. Body Material: Cast or ductile iron.
5. End Connections: Flanged or grooved.

G. Indicating-Type Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Shurjoint Piping Products.
 h. Tyco Fire & Building Products LP.
 i. Victaulic Company.
2. Standard: UL 1091.
4. Valves NPS 2 and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.
5. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.

H. NRS Gate Valves:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Clow Valve Company; a division of McWane, Inc.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Kennedy Valve; a division of McWane, Inc.
 f. Mueller Co.; Water Products Division.
 g. NIBCO INC.
 h. Tyco Fire & Building Products LP.
5. Stem: Nonrising.
6. End Connections: Flanged or grooved.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:
 2. Pressure Rating: 175 psig minimum.

B. Angle Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.

C. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Affiliated Distributors.
 b. Anvil International, Inc.
 c. Conbraco Industries, Inc.; Apollo Valves.
 d. Fire Protection Products, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Potter Roemer.
 h. Tyco Fire & Building Products LP.
 i. Victaulic Company.
 j. Watts Water Technologies, Inc.

D. Plug Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Southern Manufacturing Group.

2.6 SPECIALTY VALVES

A. General Requirements:
 2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
 3. Body Material: Cast or ductile iron.
 4. Size: Same as connected piping.
 5. End Connections: Flanged or grooved.
B. Alarm Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 c. Reliable Automatic Sprinkler Co., Inc.
 d. Tyco Fire & Building Products LP.
 e. Venus Fire Protection Ltd.
 f. Victaulic Company.
 g. Viking Corporation.
 3. Design: For horizontal or vertical installation.
 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, and fill-line attachment with strainer.
 5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
 6. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

2.7 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. National Fittings, Inc.
 c. Shurjoint Piping Products.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.
 5. Type: Mechanical-T and -cross fittings.
 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
 8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AGF Manufacturing Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
 5. Size: Same as connected piping.
 6. Inlet and Outlet: Threaded.
C. Branch Line Testers:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Fire-End & Croker Corporation.
 c. Potter Roemer.
 2. Standard: UL 199.
 5. Size: Same as connected piping.
 6. Inlet: Threaded.
 7. Drain Outlet: Threaded and capped.
 8. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AGF Manufacturing Inc.
 b. Triple R Specialty.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Viking Corporation.
 4. Body Material: Cast- or ductile-iron housing with sight glass.
 5. Size: Same as connected piping.
 6. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. CECA, LLC.
 b. Corcoran Piping System Co.
 c. Merit Manufacturing; a division of Anvil International, Inc.
 5. Size: Same as connected piping.
 7. Inlet and Outlet: Threaded.

2.8 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AFAC Inc.
 3. Reliable Automatic Sprinkler Co., Inc.
 4. Tyco Fire & Building Products LP.
5. Venus Fire Protection Ltd.

B. General Requirements:
4. Pressure Rating for High-Pressure Automatic Sprinklers: 250 psig minimum.

C. Automatic Sprinklers with Heat-Responsive Element:
2. Nonresidential Applications: UL 199.
3. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

1. Characteristics:
 a. Nominal 1/2-inch Orifice: With Discharge Coefficient K between 5.3 and 5.8.
 b. Nominal 17/32-inch Orifice: With Discharge Coefficient K between 7.4 and 8.2.

E. Sprinkler Finishes:
1. Chrome plated.

F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

G. Sprinkler Guards:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Reliable Automatic Sprinkler Co., Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
2. Standard: UL 199.
3. Type: Wire cage with fastening device for attaching to sprinkler.

2.9 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Motor-Operated Alarm:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
b. Tyco Fire & Building Products LP.
c. Victaulic Company.
d. Viking Corporation.

2. Standard: UL 753.
3. Type: Mechanically operated, with Pelton wheel.
5. Size: 10-inch diameter.
6. Components: Shaft length, bearings, and sleeve to suit wall construction.
8. Outlet: NPS 1 drain connection.

C. Electrically Operated Alarm Bell:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Notifier; a Honeywell company.
 c. Potter Electric Signal Company.
3. Type: Vibrating, metal alarm bell.
4. Size: 8-inch minimum-diameter.
5. Finish: Red-enamel factory finish, suitable for outdoor use.

D. Water-Flow Indicators:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.
4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

E. Pressure Switches:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. AFAC Inc.
 b. Barksdale, Inc.
 c. Detroit Switch, Inc.
 d. Potter Electric Signal Company.
 e. System Sensor; a Honeywell company.
 f. Tyco Fire & Building Products LP.
 g. United Electric Controls Co.
h. Viking Corporation.
3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

F. Valve Supervisory Switches:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

G. Indicator-Post Supervisory Switches:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. System Sensor; a Honeywell company.
3. Type: Electrically supervised.
5. Design: Signals that controlled indicator-post valve is in other than fully open position.

2.10 MANUAL CONTROL STATIONS

A. Description: UL listed or FM approved, hydraulic operation, with union, NPS 1/2 pipe nipple, and bronze ball valve. Include metal enclosure labeled “MANUAL CONTROL STATION” with operating instructions and cover held closed by breakable strut to prevent accidental opening.

2.11 CONTROL PANELS

A. Description: Single-area, two-area, or single-area cross-zoned control panel as indicated, including NEMA ICS 6, Type 1 enclosure, detector, alarm, and solenoid-valve circuitry for operation of deluge valves. Panels contain power supply; battery charger; standby batteries; field-wiring terminal strip; electrically supervised solenoid valves and polarized fire-alarm bell; lamp test facility; single-pole, double-throw auxiliary alarm contacts; and rectifier.
1. Panels: UL listed and FM approved when used with thermal detectors and Class A detector circuit wiring. Electrical characteristics are 120-V ac, 60 Hz, with 24-V dc rechargeable batteries.
2. Manual Control Stations: Electric operation, metal enclosure, labeled "MANUAL CONTROL STATION" with operating instructions and cover held closed by breakable strut to prevent accidental opening.
3. Manual Control Stations: Hydraulic operation, with union, NPS 1/2 pipe nipple, and bronze ball valve. Include metal enclosure labeled "MANUAL CONTROL STATION" with
operating instructions and cover held closed by breakable strut to prevent accidental opening.

2.12 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AMETEK; U.S. Gauge Division.
 2. Ashcroft, Inc.
 4. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0 to 250 psig minimum.

E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.

3.2 WATER-SUPPLY CONNECTIONS

A. Connect sprinkler piping to building’s interior water-distribution piping. Comply with requirements for interior piping in Division 22 Section “Domestic Water Piping.”

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-distribution piping.

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water supply.

3.3 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.
C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

F. Install “Inspector’s Test Connections” in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

J. Install alarm devices in piping systems.

K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

M. Pressurize and check preaction sprinkler system piping.

N. Fill sprinkler system piping with water.

O. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing. Comply with requirements for heating cables in Division 21 "Heat Tracing for Fire-Suppression Piping" and for piping insulation in Division 21 Section "Fire-Suppression Systems Insulation."

P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."
3.4 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs one-quarter turn or tighten retainer pin.

I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

K. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

L. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

M. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

N. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.
3.5 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.

3.6 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.

3.7 FIRE-DEPARTMENT CONNECTION INSTALLATION

A. Install wall-type, fire-department connections.

B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

3.8 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Start and run excess-pressure pumps.
 6. Coordinate with fire-alarm tests. Operate as required.
7. Coordinate with fire-pump tests. Operate as required.
8. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.10 CLEANING
A. Clean dirt and debris from sprinklers.
B. Remove and replace sprinklers with paint other than factory finish.

3.11 DEMONSTRATION
A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.12 PIPING SCHEDULE
A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded joints.
B. Sprinkler specialty fittings may be used, downstream of control vales, instead of specified fittings.
C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 3. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 3. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
E. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:
 1. Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 3. Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
3.13 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
 2. Rooms with Suspended Ceilings: Recessed sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
 3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
 4. Upright Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 211313
SECTION 220523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Bronze ball valves.
 2. Bronze lift check valves.
 4. Bronze globe valves.
 5. Lubricated plug valves.
 B. Related Sections:
 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS
 A. CWP: Cold working pressure.
 B. EPDM: Ethylene propylene copolymer rubber.
 C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
 D. NRS: Nonrising stem.
 E. OS&Y: Outside screw and yoke.
 F. RS: Rising stem.
 G. SWP: Steam working pressure.

1.4 SUBMITTALS
 A. Product Data: For each type of valve indicated.
1.5 QUALITY ASSURANCE
A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
2. ASME B31.1 for power piping valves.
3. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, grooves, and weld ends.
3. Set angle, gate, and globe valves closed to prevent rattling.
4. Set ball and plug valves open to minimize exposure of functional surfaces.
5. Set butterfly valves closed or slightly open.
6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES
A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
1. Handwheel: For valves other than quarter-turn types.
2. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
3. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
1. Gate Valves: With rising stem.
2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
1. Flanged: With flanges according to ASME B16.1 for iron valves.
2. Solder Joint: With sockets according to ASME B16.18.
3. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Hammond Valve.
 e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

2.3 BRONZE LIFT CHECK VALVES

A. Class 125, Lift Check Valves with Bronze Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
e. Ends: Threaded.
f. Disc: Bronze.

2.4 BRONZE GATE VALVES

A. Class 125, NRS Bronze Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l. Zy-Tech Global Industries, Inc.

 2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.
3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball, butterfly, or gate valves.
 3. Throttling Service: Ball or butterfly valves.
 4. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 3. For Grooved-End Copper Tubing: Valve ends may be grooved.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Bronze Angle Valves: Class 125, bronze disc.
 3. Ball Valves: Two piece, full port, bronze with bronze trim.
 4. Bronze Swing Check Valves: Class 125, bronze disc.
 5. Bronze Gate Valves: Class 125, RS.

B. Pipe NPS 2-1/2 and Larger:
1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
2. Iron Ball Valves: Class 150.
4. Iron, Grooved-End Butterfly Valves: 175 CWP.
5. Iron Swing Check Valves: Class 125, metal seats.
6. Iron Gate Valves: Class 125, OS&Y.

END OF SECTION 220523
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe stands.
 7. Pipe positioning systems.
 8. Equipment supports.
B. Related Sections:
 1. Division 21 fire-suppression piping Sections for pipe hangers for fire-suppression piping.

1.3 DEFINITIONS
A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS
A. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
3. Fiberglass strut systems.
4. Pipe stands.
5. Equipment supports.

C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. Flex-Strut Inc.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut Corporation; Tyco International, Ltd.
2. HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Carpenter & Paterson, Inc.
 3. ERICO International Corporation.
 5. PHS Industries, Inc.
 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 7. Piping Technology & Products, Inc.
 8. Rilco Manufacturing Co., Inc.
 9. Value Engineered Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; Stainless Steel
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.8 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.9 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer’s operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer’s written instructions.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Division 07 Section "Roof Accessories" for curbs.

G. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. See Division 22 plumbing fixture Sections for requirements for pipe positioning systems for plumbing fixtures.

H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
K. Install lateral bracing with pipe hangers and supports to prevent swaying.

L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

M. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

O. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING
A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING
A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in painting Sections.
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE
A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 6. C-Clamps (MSS Type 23): For structural shapes.
 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Restraint-Control Devices (MSS Type 47): To control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

R. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
SECTION 220553 – IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. The Basic Materials and Methods, Section 22 02 00, are included as a part of this Section as though written in full in this document.

1.2 SCOPE

Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for owner's use.

1.3 Refer to Architectural Sections for additional requirements.

PART 2 - PRODUCTS

2.1 VALVE AND PIPE IDENTIFICATION

A. Valves:

1. All valves shall be identified with a 1-1/2" diameter brass disc wired onto the handle. The disc shall be stamped with 1/2" high depressed black filled identifying numbers. These numbers shall be numerically sequenced for all valves on the job.

2. The number and description indicating make, size, model number and service of each valve shall be listed in proper operational sequence, properly typewritten. Three copies to be turned over to Owner at completion.

3. Tags shall be fastened with approved meter seal and 4 ply 0.018 smooth copper wire. Tags and fastenings shall be manufactured by the Seton Name Plate Company or approved equal.

4. All valves shall be numbered serially with all valves of any one system and/or trade grouped together.

B. Pipe Marking:

1. All interior visible piping located in accessible spaces such as above accessible ceilings, equipment rooms, attic space, under floor spaces, etc., shall be identified with all temperature pipe markers as manufactured by W.H. Brady Company, 431 West Rock Ave., New Haven, Connecticut, or approved equal.

2. All exterior visible piping shall be identified with UV and acid resistant outdoor grade acrylic plastic markers as manufactured by Set Mark distributed by Seton nameplate company. Factory location 20 Thompson Road, Branford, Connecticut, or approved equal.

3. Generally, markers shall be located on each side of each partition, on each side of each tee, on each side of each valve and/or valve group, on each side of each
piece of equipment, and, for straight runs, at equally spaced intervals not to exceed 75 feet. In congested area, marks shall be placed on each pipe at the points where it enters and leaves the area and at the point of connection of each piece of equipment and automatic control valve. All markers shall have directional arrows.

4. Markers shall be installed after final painting of all piping and equipment and in such a manner that they are visible from the normal maintenance position. Manufacturer’s installation instructions shall be closely followed.

5. Markers shall be colored as indicated below per ANSI/OSHA Standards:

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>COLOR</th>
<th>LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>Yellow</td>
<td>Natural Gas</td>
</tr>
</tbody>
</table>

C. Pipe Painting:

1. All piping exposed to view shall be painted as indicated or as directed by the Architect in the field. Confirm all color selections with Architect prior to installation.

2. The entire fire protection piping system shall be painted red.

3. All piping located in mechanical rooms and exterior piping shall be painted as indicated below:

<table>
<thead>
<tr>
<th>System</th>
<th>Color</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Sewer</td>
<td>White</td>
<td>Light Gray</td>
</tr>
<tr>
<td>Sanitary Sewer Waste and Vent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Cold Water</td>
<td>Dark Blue</td>
<td>Orange</td>
</tr>
<tr>
<td>Domestic Hot Water Supply and Return</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PART 3 - EXECUTION

3.1 All labeling equipment shall be installed as per manufacturers printed installation instructions.

3.2 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Contractors price shall include all items required as per manufacturers’ requirements.

3.3 All piping shall be cleaned of rust, dirt, oil and all other contaminants prior to painting. Install primer and a quality latex paint over all surfaces of pipe.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic recirculating hot-water piping.
 4. Domestic chilled-water piping for drinking fountains.
 5. Sanitary waste piping exposed to freezing conditions.
 6. Storm-water piping exposed to freezing conditions.
 7. Roof drains and rainwater leaders.
 8. Supplies and drains for handicap-accessible lavatories and sinks.

B. Related Sections:
 1. Division 22 Section "Plumbing Equipment Insulation."

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. LEED Submittals:
 1. Product Data for Credit EQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content and chemical components.
 2. Laboratory Test Reports for Credit EQ 4: For adhesives and sealants, documentation indicating that product complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at pipe expansion joints for each type of insulation.
 3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 4. Detail removable insulation at piping specialties, equipment connections, and access panels.
 5. Detail application of field-applied jackets.
 6. Detail application at linkages of control devices.
D. Qualification Data: For qualified Installer.

E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

F. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in “Piping Insulation Schedule, General,” “Indoor Piping Insulation Schedule,” “Outdoor, Aboveground Piping Insulation Schedule,” and “Outdoor, Underground Piping Insulation Schedule” articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber, Preformed Pipe Insulation:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000-Degree Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.
 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Ramco Insulation, Inc.; Super-Stik.

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Ramco Insulation, Inc.; Thermokote V.

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.
2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

D. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Corning Corporation; 739, Dow Silicone.
 d. Speedline Corporation; Polycro VP Adhesive.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.
2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; 749.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 501.
 d. Mon-Eco Industries, Inc.; 55-10.
 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 3. Service Temperature Range: 0 to 180 deg F.

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 570.
 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 550.
 e. Vimasco Corporation; WC-1/WC-5.
 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Products: Subject to compliance with requirements, provide one of the following:
 c. Vimasco Corporation; 713 and 714.
3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. Joint Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Permanently flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 100 to plus 300 deg F.
 5. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 6. Use sealants that comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

B. FSK and Metal Jacket Flashing Sealants:
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. Color: Aluminum.
 6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. Use sealants that comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.
Emissions from Various Sources Using Small-Scale Environmental Chambers,” including 2004 Addenda.

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, provide one of the following:
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers,” including 2004 Addenda.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:
1. Products: Subject to compliance with requirements, provide one of the following:
 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
c. RPR Products, Inc.; Insul-Mate.

 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 2. Width: 3 inches.
 3. Thickness: 11.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.
 2. Width: 2 inches.
 3. Thickness: 6 mils.
 5. Elongation: 500 percent.
 6. Tensile Strength: 18 lbf/inch in width.

C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 488 AWF.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

A. Bands:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping and Seals.
 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch thick, 1/2 inch wide with closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer’s written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Division 07 Section “Penetration Firestopping” for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section “Penetration Firestopping.”

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. But each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Tests and Inspections:
1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.8 PIPING INSULATION SCHEDULE, GENERAL
A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.9 INDOOR PIPING INSULATION SCHEDULE
A. Domestic Cold Water:
1. **NPS 1 and Smaller:** Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
2. **NPS 1-1/4 and Larger:** Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
B. Domestic Hot and Recirculated Hot Water:
 1. **NPS 1-1/4 and Smaller:** Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 2. **NPS 1-1/2 and Larger:** Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Domestic Chilled Water (Potable):
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

D. Stormwater and Overflow:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

E. Roof Drain and Overflow Drain Bodies:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

F. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1/2 inch thick.

G. Sanitary Waste Piping Where Heat Tracing Is Installed:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.

H. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

I. Hot Service Drains:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

J. Hot Service Vents:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

3.10 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

B. Domestic Hot and Recirculated Hot Water:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

C. Hot Service Drains:
 1. All Pipe Sizes: Insulation shall be the following:
a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

D. Hot Service Vents:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type II: 1 inch thick.

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. Aluminum, Smooth: 0.016 inch thick.

3.12 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. Aluminum, Smooth: 0.020 inch thick.

3.13 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 220719
SECTION 221113 - FACILITY WATER DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes water-distribution piping and related components outside the building for water service, fire-service mains and combined water service and fire-service mains.

B. Utility-furnished products include water meters that will be furnished to the site, ready for installation.

1.3 DEFINITIONS

A. EPDM: Ethylene propylene diene terpolymer rubber.

B. LLDPE: Linear, low-density polyethylene plastic.

C. PA: Polyamide (nylon) plastic.

D. PE: Polyethylene plastic.

E. PP: Polypropylene plastic.

F. PVC: Polyvinyl chloride plastic.

G. RTRF: Reinforced thermosetting resin (fiberglass) fittings.

H. RTRP: Reinforced thermosetting resin (fiberglass) pipe.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.

B. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For water valves and specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Regulatory Requirements:
 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 3. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with ASTM F 645 for selection, design, and installation of thermoplastic water piping.

E. Comply with FMG's "Approval Guide" or UL's "Fire Protection Equipment Directory" for fire-service-main products.

F. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.
 1. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 1. Ensure that valves are dry and internally protected against rust and corrosion.
 2. Protect valves against damage to threaded ends and flange faces.
 3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
2. Protect from weather. Store indoors and maintain temperature higher than ambient dew-point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.

F. Protect flanges, fittings, and specialties from moisture and dirt.

G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

1.9 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:

1. Notify Architect and Owner no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of water-distribution service without Architect's written permission.

1.10 COORDINATION

A. Coordinate connection to water main with utility company.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Application" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372.

2.2 COPPER TUBE AND FITTINGS

A. Soft Copper Tube: ASTM B 88, Type K, water tube, annealed temper.

B. Hard Copper Tube: **ASTM B 88, Type K**, water tube, drawn temper.

C. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.

D. Copper Unions:

1. MSS SP-123.
4. Solder-joint or threaded ends.

2.3 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.

2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.

2. Gaskets: AWWA C111, rubber.

C. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, rounded-grooved ends.

1. Grooved-End, Ductile-Iron Pipe Appurtenances:
 b. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

D. Flanges: ASME 16.1, Class 125, cast iron.
2.4 PVC PIPE AND FITTINGS

A. PVC, Schedule 40 Pipe: ASTM D 1785.
 1. PVC, Schedule 40 Socket Fittings: ASTM D 2466.

B. PVC, Schedule 80 Pipe: ASTM D 1785.
 1. PVC, Schedule 80 Socket Fittings: ASTM D 2467.
 2. PVC, Schedule 80 Threaded Fittings: ASTM D 2464.

C. PVC, AWWA Pipe: AWWA C900, **Class 150 and Class 200**, with bell end with gasket, and with spigot end.
 1. Comply with UL 1285 for fire-service mains if indicated.
 2. PVC Fabricated Fittings: AWWA C900, **Class 150 and Class 200**, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 3. PVC Molded Fittings: AWWA C907, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 4. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 5. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 a. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.5 SPECIAL PIPE FITTINGS

A. Ductile-Iron Rigid Expansion Joints:
 1. Description: Three-piece, ductile-iron assembly consisting of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: **250 psig** minimum.
 b. Expansion Required: As specified in drawings.

B. Ductile-Iron Flexible Expansion Joints:
 1. Description: Compound, ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: **250 psig** minimum.
 b. Offset: As specified in drawings.
c. Expansion Required: As specified in drawings.

C. Ductile-Iron Deflection Fittings:
 1. Description: Compound, ductile-iron coupling fitting with sleeve and 1 or 2 flexing sections for up to 15-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: 250 psig minimum.

2.6 JOINING MATERIALS
 A. Refer to Section 330500 "Common Work Results for Utilities" for commonly used joining materials.
 B. Brazing Filler Metals: AWS A5.8, BCuP Series.
 C. Plastic Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

2.7 PIPING SPECIALTIES
 A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.
 B. Tubular-Sleeve Pipe Couplings:
 1. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners and with ends of same sizes as piping to be joined.
 b. Center-Sleeve Material: Ductile iron.
 c. Gasket Material: Natural or synthetic rubber.
 d. Pressure Rating: 150 psig.
 e. Metal Component Finish: Corrosion-resistant coating or material.
 C. Split-Sleeve Pipe Couplings:
 1. Description: Metal, bolted, split-sleeve-type, reducing or transition coupling with sealing pad and closure plates, O-ring gaskets, and bolt fasteners.
 c. Sleeve Dimensions: Of thickness and width required to provide pressure rating.
 d. Gasket Material: O-rings made of EPDM rubber, unless otherwise indicated.
 e. Pressure Rating: 150 psig minimum.
 f. Metal Component Finish: Corrosion-resistant coating or material.
 D. Flexible Connectors:
1. Nonferrous-Metal Piping: Bronze hose covered with bronze wire braid; with copper-tube, pressure-type, solder-joint ends or bronze flanged ends brazed to hose.

2. Ferrous-Metal Piping: Stainless-steel hose covered with stainless-steel wire braid; with ASME B1.20.1, threaded steel pipe nipples or ASME B16.5, steel pipe flanges welded to hose.

E. Dielectric Fittings:

1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

2. Dielectric Unions:
 a. Description:
 1) Standard: ASSE 1079.
 2) Pressure Rating: **150 psig**.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.

3. Dielectric Flanges:
 a. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: **150 psig**.
 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

4. Dielectric-Flange Insulating Kits:
 a. Description:
 1) Nonconducting materials for field assembly of companion flanges.
 2) Pressure Rating: **150 psig**.
 3) Gasket: Neoprene or phenolic.
 4) Bolt Sleeves: Phenolic or polyethylene.
 5) Washers: Phenolic with steel backing washers.

5. Dielectric Nipples:
 a. Description:
 1) Standard: IAPMO PS 66.
 2) Electroplated steel nipple complying with ASTM F 1545.
 3) Pressure Rating: **300 psig**.
 4) End Connections: Male threaded or grooved.
 5) Lining: Inert and noncorrosive, propylene.
2.8 CORROSION-PROTECTION PIPING ENCASEMENT

A. Encasement for Underground Metal Piping:
 1. Standards: ASTM A 674 or AWWA C105.
 2. Form: Sheet or tube.
 3. Material: High-density, crosslaminated PE film of 0.004-inch minimum thickness.

2.9 GATE VALVES

A. AWWA, Cast-Iron Gate Valves:
 1. Nonrising-Stem, Metal-Seated Gate Valves:
 a. Description: Gray- or ductile-iron body and bonnet; with cast-iron or bronze
double-disc gate, bronze gate rings, bronze stem, and stem nut.
 1) Standard: AWWA C500.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Mechanical joint.
 4) Interior Coating: Complying with AWWA C550.
 2. Nonrising-Stem, Resilient-Seated Gate Valves:
 a. Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or
ductile-iron gate, resilient seats, bronze stem, and stem nut.
 1) Standard: AWWA C509.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Mechanical joint.
 4) Interior Coating: Complying with AWWA C550.
 3. Nonrising-Stem, High-Pressure, Resilient-Seated Gate Valves:
 a. Description: Ductile-iron body and bonnet; with bronze or ductile-iron gate,
 resilient seats, bronze stem, and stem nut.
 1) Standard: AWWA C509.
 2) Minimum Pressure Rating: 250 psig.
 3) End Connections: Push on or mechanical joint.
 4) Interior Coating: Complying with AWWA C550.
 4. OS&Y, Rising-Stem, Metal-Seated Gate Valves:
 a. Description: Cast- or ductile-iron body and bonnet, with cast-iron double disc,
 bronze disc and seat rings, and bronze stem.
 1) Standard: AWWA C500.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Flanged.
5. OS&Y, Rising-Stem, Resilient-Seated Gate Valves:
 a. Description: Cast- or ductile-iron body and bonnet, with bronze or gray- or ductile-iron gate, resilient seats, and bronze stem.
 1) Standard: AWWA C509.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Flanged.

B. UL/FMG, Cast-Iron Gate Valves:
 1. UL/FMG, Nonrising-Stem Gate Valves:
 a. Description: Iron body and bonnet with flange for indicator post, bronze seating material, and inside screw.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Flanged.
 2. OS&Y, Rising-Stem Gate Valves:
 a. Description: Iron body and bonnet and bronze seating material.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Flanged.

C. Bronze Gate Valves:
 1. OS&Y, Rising-Stem Gate Valves:
 a. Description: Bronze body and bonnet and bronze stem.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Threaded.
 2. Nonrising-Stem Gate Valves:
 a. Description: Class 125, Type 1, bronze with solid wedge, threaded ends, and malleable-iron handwheel.
 1) Standard: MSS SP-80.

2.10 GATE VALVE ACCESSORIES AND SPECIALTIES
 A. Tapping-Sleeve Assemblies:
 1. Description: Sleeve and valve compatible with drilling machine.
 a. Standard: MSS SP-60.
b. Tapping Sleeve: Cast- or ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
c. Valve: AWWA, cast-iron, nonrising-stem, [metal] [resilient]-seated gate valve with one raised face flange mating tapping-sleeve flange.

B. Valve Boxes: Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches in diameter.

1. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.

C. Indicator Posts: UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.

2.11 CHECK VALVES

A. AWWA Check Valves:
1. Description: Swing-check type with resilient seat. Include interior coating according to AWWA C550 and ends to match piping.
 b. Pressure Rating: 175 psig.

B. UL/FMG, Check Valves:
1. Description: Swing-check type with pressure rating; rubber-face checks, unless otherwise indicated; and ends matching piping.
 a. Standards: UL 312 and FMG approved.
 b. Pressure Rating: 175 psig.

2.12 DETECTOR CHECK VALVES

A. Detector Check Valves:
1. Description: Galvanized cast-iron body, bolted cover with air-bleed device for access to internal parts, and flanged ends. Include one-piece bronze disc with bronze bushings, pivot, and replaceable seat. Include threaded bypass taps in inlet and outlet for bypass meter connection. Set valve to allow minimal water flow through bypass meter when major water flow is required.
 a. Standards: UL 312 and FMG approved.
 b. Pressure Rating: 175 psig.
 c. Water Meter: AWWA C700, disc type, at least one-fourth size of detector check valve. Include meter, bypass piping, gate valves, check valve, and connections to detector check valve.
2. Description: Iron body, corrosion-resistant clapper ring and seat ring material, flanged ends, with connections for bypass and installation of water meter.
 a. Standards: UL 312 and FMG approved.
 b. Pressure Rating: 175 psig.

2.13 BUTTERFLY VALVES

A. AWWA Butterfly Valves:
 1. Description: Rubber seated.
 b. Body: Cast or ductile iron.
 c. Body Type: Wafer or flanged.
 d. Pressure Rating: 150 psig.

B. UL Butterfly Valves:
 1. Description: Metal on resilient material seating.
 a. Standards: UL 1091 and FMG approved.
 b. Body: Cast or ductile iron.
 c. Body Type: Wafer or flanged.
 d. Pressure Rating: 175 psig.

2.14 PLUG VALVES

A. Plug Valves:
 1. Description: Resilient-seated eccentric.
 b. Body: Cast iron.
 c. Pressure Rating: 175-psig minimum CWP.
 d. Seat Material: Suitable for potable-water service.

2.15 CORPORATION VALVES AND CURB VALVES

A. Service-Saddle Assemblies: Comply with AWWA C800. Include saddle and valve compatible with tapping machine.
 1. Service Saddle: Copper alloy with seal and AWWA C800, threaded outlet for corporation valve.
 2. Corporation Valve: Bronze body and ground-key plug, with AWWA C800, threaded inlet and outlet matching service piping material.
 3. Manifold: Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.

B. Curb Valves: Comply with AWWA C800. Include bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.
C. Service Boxes for Curb Valves: Similar to AWWA M44 requirements for cast-iron valve boxes. Include cast-iron telescoping top section of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over curb valve and with a barrel approximately 3 inches in diameter.

1. Shutoff Rods: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and slotted end matching curb valve.

2.16 WATER METERS

A. Water meters will be furnished by utility company.

B. Displacement-Type Water Meters:

1. Description: With bronze main case.

 b. Registration: Flow in **gallons**.

C. Turbine-Type Water Meters:

1. Description:

 b. Registration: Flow in **gallons**.

D. Compound-Type Water Meters:

1. Description:

 b. Registration: Flow in **gallons**.

E. Remote Registration System:

1. Description: Utility company standard; direct-reading type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.

 b. Registration: Flow in **gallons**.

F. Remote Registration System:

1. Description: Utility company standard; encoder type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.

 b. Registration: Flow in **gallons**.
 c. Data-Acquisition Units: Comply with utility company requirements for type and quantity.
d. Visible Display Units: Comply with utility company requirements for type and quantity.

2.17 DETECTOR-TYPE WATER METERS

A. Detector-Type Water Meters:

B. Description: Main line, proportional meter with second meter on bypass. Register flow in gallons.

1. Standards: AWWA C703, UL listed, and FMG approved.
 a. Size: At least one-half nominal size of main-line meter.

C. Description: Main-line turbine meter with strainer and second meter on bypass. Register flow in gallons.

1. Standards: AWWA C703, UL listed, and FMG approved.
 a. Size: At least NPS 2.

D. Remote Registration System:

1. Description: Utility company standard; direct-reading type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 b. Registration: Flow in gallons.

E. Remote Registration System:

1. Description: Utility company standard; encoder type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 b. Registration: Flow in gallons.
 c. Data-Acquisition Units: Comply with utility company requirements for type and quantity.
 d. Visible Display Units: Comply with utility company requirements for type and quantity.

2.18 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:
1. Standard: **ASSE 1013 or AWWA C511**.
2. Operation: Continuous-pressure applications.
3. Pressure Loss: **12 psig** maximum, through middle 1/3 of flow range.
4. Size: As specified in drawings.
5. Design Flow Rate: As specified in drawings.
6. Body: Bronze for **NPS 2** and smaller; **cast iron with interior lining complying with AWWA C550 or that is FDA approved** for **NPS 2-1/2** and larger.
7. End Connections: Threaded for **NPS 2** and smaller; **flanged** for **NPS 2-1/2** and larger.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of **NPS 2** and smaller; OS&Y gate type with flanged ends on inlet and outlet of **NPS 2-1/2** and larger.

B. Double-Check, Detector-Assembly Backflow Preventers:
1. Standards: **ASSE 1048** and UL listed or FMG approved.
2. Operation: Continuous-pressure applications.
3. Pressure Loss: **5 psig** maximum, through middle 1/3 of flow range.
4. Size: As specified in drawings.
5. Design Flow Rate: As specified in drawings.
6. Body: **Cast iron with interior lining complying with AWWA C550 or that is FDA approved**.
8. Accessories:
 a. Valves: UL 262, FMG-approved, OS&Y gate type with flanged ends on inlet and outlet.
 b. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.

2.19 WATER METER BOXES

A. Description: Cast-iron body and cover for disc-type water meter, with lettering "WATER METER" in cover; and with slotted, open-bottom base section of length to fit over service piping.

 1. Option: Base section may be cast-iron, PVC, clay, or other pipe.

B. Description: Cast-iron body and double cover for disc-type water meter, with lettering "WATER METER" in top cover; and with separate inner cover; air space between covers; and slotted, open-bottom base section of length to fit over service piping.

C. Description: Polymer-concrete body and cover for disc-type water meter, with lettering "WATER" in cover; and with slotted, open-bottom base section of length to fit over service piping. Include vertical and lateral design loadings of **15,000 lb minimum over 10 by 10 inches** square.
2.20 CONCRETE VAULTS

A. Description: Precast, reinforced-concrete vault, designed for A-16 load designation according to ASTM C 857 and made according to ASTM C 858.

1. Ladder: ASTM A 36/A 36M, steel or polyethylene-encased steel steps.
2. Manhole: ASTM A 48/A 48M Class No. 35A minimum tensile strength, gray-iron traffic frame and cover.
 a. Dimension: 24-inch minimum diameter, unless otherwise indicated.
3. Manhole: ASTM A 536, Grade 60-40-18, ductile-iron traffic frame and cover.
 a. Dimension: 24-inch minimum diameter, unless otherwise indicated.
4. Drain: ASME A112.6.3, cast-iron floor drain with outlet of size indicated. Include body anchor flange, light-duty cast-iron grate, bottom outlet, and integral or field-installed bronze ball or clapper-type backwater valve.

2.21 PROTECTIVE ENCLOSURES

A. Freeze-Protection Enclosures:
1. Description: Insulated enclosure designed to protect aboveground water piping, equipment, or specialties from freezing and damage, with heat source to maintain minimum internal temperature of 40 deg F when external temperatures reach as low as minus 34 deg F.
 b. Class I: For equipment or devices other than pressure or atmospheric vacuum breakers.
 c. Class I-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.
 1) Housing: Reinforced aluminum or fiberglass construction.
 a) Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 b) Drain opening for units with drain connection.
 c) Access doors with locking devices.
 d) Insulation inside housing.
 e) Anchoring devices for attaching housing to concrete base.
 2) Electric heating cable or heater with self-limiting temperature control.

B. Weather-Resistant Enclosures:
1. Description: Uninsulated enclosure designed to protect aboveground water piping, equipment, or specialties from weather and damage.
b. Class III: For equipment or devices other than pressure or atmospheric vacuum breakers.

c. Class III-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.

1) Housing: Reinforced **aluminum or fiberglass** construction.

 a) Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 b) Drain opening for units with drain connection.
 c) Access doors with locking devices.
 d) Anchoring devices for attaching housing to concrete base.

C. Expanded-Metal Enclosures:

1. Description: Enclosure designed to protect aboveground water piping, equipment, or specialties from damage.

 a. Material: ASTM F 1267, expanded metal side and top panels, of weight and with reinforcement of same metal at edges as required for rigidity.
 b. Type: Type I, expanded or Type II, expanded and flattened.
 c. Class: Class 1, uncoated carbon steel or 2, hot-dip, zinc-coated carbon steel.
 d. Finish: Manufacturer's enamel paint.
 e. Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 f. Locking device.
 g. Lugs or devices for securing enclosure to base.

D. Enclosure Bases:

1. Description: **6-inch**-minimum thickness precast concrete, of dimensions required to extend at least 6 inches beyond edges of enclosure housings. Include openings for piping.

2.22 FIRE HYDRANTS

A. Dry-Barrel Fire Hydrants: In accordance with Utility company and local Fire Department Standards, Specifications and Requirements.

2.23 FIRE DEPARTMENT CONNECTIONS

A. Fire Department Connections:

1. Description: Freestanding, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, and threaded bottom outlet. Include lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; **18-inch**- high brass sleeve; and round escutcheon plate.

 b. Connections: As specified by project MEP engineer and/or required by local Fire Department.
c. Inlet Alignment: As specified by project MEP engineer and/or required by local Fire Department.
d. Finish Including Sleeve: Polished chrome-plated or Polished bronze.
e. Escutcheon Plate Marking: "AUTO SPKR & STANDPIPE or as applicable."

2.24 ALARM DEVICES

A. Alarm Devices, General: UL 753 and FMG approved, of types and sizes to mate and match piping and equipment.

B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psig working pressure; designed for horizontal or vertical installation; with 2 single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.

C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.

D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.

B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.

C. Do not use flanges or unions for underground piping.

D. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.

E. Underground water-service piping NPS 3/4 to NPS 3 shall be the following:
 1. PVC, Schedule 40 pipe; PVC, Schedule 40 socket fittings; and solvent-cemented joints.

F. Underground water-service piping NPS 4 to NPS 8 shall be any of the following:
 1. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint mechanical-joint fittings.
 2. PVC, AWWA C900; DR 18 with ductile iron or mechanical-joint fittings; and gasketed joints.
G. Aboveground Water-Service Piping NPS 3/4 to NPS 3 shall be the following:
 1. PVC, Schedule 80 pipe; PVC, Schedule 80 socket fittings; and solvent-cemented or threaded fittings; and threaded joints.

H. Aboveground water-service piping NPS 4 to NPS 8 shall be the following:
 1. Ductile-iron, flanged end or grooved-end pipe; ductile-iron, flanged end or grooved-end appurtenances; and flanged end or grooved joints.

I. Underground Fire-Service-Main Piping NPS 4 to NPS 12 shall be one of the following:
 1. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint or mechanical-joint fittings; and gasketed joints.
 2. PVC, AWWA C900 DR 14 150 pipe listed for fire-protection service; ductile iron fittings; and gasketed joints.

J. Aboveground Fire-Service-Main Piping NPS 4 to NPS 12 shall be ductile-iron, flanged or grooved-end pipe; ductile-iron-pipe appurtenances; and flanged or grooved joints.

K. Underground Combined Water-Service and Fire-Service-Main Piping NPS 6 to NPS 12 shall be any of the following:
 1. Ductile-iron, push-on-joint pipe; push-on-joint or mechanical-joint fittings; and gasketed joints.
 2. PVC, AWWA C900 DR 18 or DR 14 as specified pipe listed for fire-protection service; ductile iron fittings and gasketed joints.

L. Aboveground Combined Water Service and Fire-Service-Main Piping NPS 6 to NPS 12 shall be ductile-iron, flanged end or grooved-end pipe; ductile-iron-pipe appurtenances; and flanged end or grooved joints.

3.3 VALVE APPLICATIONS

A. General Application: Use mechanical-joint-end valves for NPS 3 and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, nonrising-stem gate valves for installation with indicator posts. Use corporation valves and curb valves with ends compatible with piping, for NPS 2 and smaller installation.

B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

2. Underground Valves, NPS 4 and Larger, for Indicator Posts: UL/FMG, cast-iron, nonrising-stem gate valves with indicator post.
3. Use the following for valves in vaults and aboveground:
 a. Gate Valves, NPS 2 and Smaller: Bronze, nonrising stem.
 b. Gate Valves, NPS 3 and Larger: AWWA, cast iron, OS&Y rising stem, resilient seated.
 c. Check Valves: AWWA C508 or UL/FMG, swing type.
4. Detector Check Valves: Use for water-service piping in vaults and aboveground to detect unauthorized use of water.

3.4 PIPING SYSTEMS - COMMON REQUIREMENTS

A. See Section 330500 "Common Work Results for Utilities" for piping-system common requirements.

3.5 PIPING INSTALLATION

A. Water-Main Connection: Arrange with utility company for tap of size and in location indicated in water main.

B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.

C. Make connections larger than NPS 2 with tapping machine according to the following:

1. Install tapping sleeve and tapping valve according to MSS SP-60.
2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.

D. Make connections NPS 2 and smaller with drilling machine according to the following:

1. Install service-saddle assemblies and corporation valves in size, quantity, and arrangement required by utility company standards.
2. Install service-saddle assemblies on water-service pipe to be tapped. Position outlets for corporation valves.
3. Use drilling machine compatible with service-saddle assemblies and corporation valves. Drill hole in main. Remove drilling machine and connect water-service piping.
4. Install corporation valves into service-saddle assemblies.
5. Install manifold for multiple taps in water main.
6. Install curb valve in water-service piping with head pointing up and with service box.

E. Comply with NFPA 24 for fire-service-main piping materials and installation.

1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.
2. Install copper tube and fittings according to CDA's "Copper Tube Handbook."

F. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.

1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.

G. Install PE pipe according to ASTM D 2774 and ASTM F 645.

H. Install PVC, AWWA pipe according to ASTM F 645 and AWWA M23.
I. Install fiberglass AWWA pipe according to AWWA M45.

J. Bury piping with depth of cover over top at least 36 inches, and according to the following:
 1. Under Driveways: With at least 36 inches cover over top.
 2. In Loose Gravelly Soil and Rock: With at least 12 inches additional cover.

K. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.

L. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
 1. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.

M. Sleeves are specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

N. Mechanical sleeve seals are specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

O. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

P. See Section 211200 "Fire-Suppression Standpipes," Section 211313 "Wet-Pipe Sprinkler Systems," and Section 211316 "Dry-Pipe Sprinkler Systems" for fire-suppression-water piping inside the building.

Q. See Section 221116 "Domestic Water Piping" for potable-water piping inside the building.

3.6 JOINT CONSTRUCTION

A. See Section 330500 "Common Work Results for Utilities" for basic piping joint construction.

B. Make pipe joints according to the following:
 1. Copper-Tubing, Pressure-Sealed Joints: Join copper tube and pressure-seal fittings with tools and procedures recommended by pressure-seal-fitting manufacturer. Leave insertion marks on pipe after assembly.
 5. PE Piping Insert-Fitting Joints: Use plastic insert fittings and fasteners according to fitting manufacturer's written instructions.
6. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139 and pipe manufacturer's written instructions.

7. Fiberglass Piping Bonded Joints: Use adhesive and procedure recommended by piping manufacturer.

8. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 a. Dielectric Fittings for **NPS 2** and Smaller: Use dielectric nipples or unions.
 b. Dielectric Fittings for **NPS 2-1/2 to NPS 4**: Use dielectric nipples.
 c. Dielectric Fittings for **NPS 5** and Larger: Use dielectric flange kits.

3.7 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:
 1. Concrete thrust blocks.
 2. Locking mechanical joints.
 4. Bolted flanged joints.
 5. Heat-fused joints.
 6. Pipe clamps and tie rods.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:
 2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.8 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.

B. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.

C. UL/FMG, Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.

D. UL/FMG, Valves Other Than Gate Valves: Comply with NFPA 24.

E. MSS Valves: Install as component of connected piping system.
F. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.

3.9 DETECTOR-CHECK VALVE INSTALLATION
A. Install in vault or aboveground.
B. Install for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.
C. Support detector check valves, meters, shutoff valves, and piping on brick or concrete piers.

3.10 WATER METER INSTALLATION
A. Install water meters, piping, and specialties according to utility company's written instructions.
B. Water Meters: Install displacement turbine-type water meters, NPS 2 and smaller, in meter boxes with shutoff valves on water meter inlets. Include valves on water meter outlets and valved bypass around meters unless prohibited by authorities having jurisdiction.
C. Water Meters: Install compound turbine-type water meters, NPS 3 and larger, in meter vaults. Include shutoff valves on water meter inlets and outlets and valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.
D. Water Meters: Install detector-type water meters in meter vault according to AWWA M6. Include shutoff valves on water meter inlets and outlets and full-size valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.

3.11 ROUGHING-IN FOR WATER METERS
A. Rough-in piping and specialties for water meter installation according to utility company's written instructions.

3.12 VACUUM BREAKER ASSEMBLY INSTALLATION
A. Install pressure vacuum breaker assemblies of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
B. Do not install pressure vacuum breaker assemblies in vault or other space subject to flooding.

3.13 BACKFLOW PREVENTER INSTALLATION
A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
B. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.

C. Do not install bypass piping around backflow preventers.

D. Support NPS 2-1/2 and larger backflow preventers, valves, and piping near floor and on brick or concrete piers.

3.14 WATER METER BOX INSTALLATION

A. Install water meter boxes in paved areas flush with surface.

B. Install water meter boxes in grass or earth areas with top 2 inches above surface.

3.15 CONCRETE VAULT INSTALLATION

A. Install precast concrete vaults according to ASTM C 891.

3.16 PROTECTIVE ENCLOSURE INSTALLATION

A. Install concrete base level and with top approximately 2 inches above grade.

B. Install protective enclosure over valves and equipment.

C. Anchor protective enclosure to concrete base.

3.17 FIRE HYDRANT INSTALLATION

A. General: Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.

B. Wet-Barrier Fire Hydrants: Install with valve below frost line. Provide for drainage.

C. AWWA Fire Hydrants: Comply with AWWA M17.

D. UL/FMG Fire Hydrants: Comply with NFPA 24.

3.18 FLUSHING HYDRANT INSTALLATION

A. Install post-type flushing hydrants with valve below frost line and provide for drainage. Support in upright position. Include separate gate valve or curb valve and restrained joints in supply piping.

B. Install ground-type flushing hydrants with valve below frost line and provide for drainage. Install hydrant box flush with grade. Include separate gate valve or curb valve and restrained joints in supply piping.
C. Install sampling stations with valve below frost line and provide for drainage. Attach weather-resistant housing and support in upright position. Include separate curb valve in supply piping.

3.19 FIRE DEPARTMENT CONNECTION INSTALLATION

A. Install ball drip valves at each check valve for fire department connection to mains.

B. Install protective pipe bollards [on two sides of] [on three sides of] <Describe arrangement> each fire department connection. Pipe bollards are specified in Section 055000 "Metal Fabrications."

3.20 ALARM DEVICE INSTALLATION

A. General: Comply with NFPA 24 for devices and methods of valve supervision. Underground valves with valve box do not require supervision.

B. Supervisory Switches: Supervise valves in open position.
 1. Valves: Grind away portion of exposed valve stem. Bolt switch, with plunger in stem depression, to OS&Y gate-valve yoke.
 2. Indicator Posts: Drill and thread hole in upper-barrel section at target plate. Install switch, with toggle against target plate, on barrel of indicator post.

C. Locking and Sealing: Secure unsupervised valves as follows:
 2. Post Indicators: Install padlock on wrench on indicator post.

D. Pressure Switches: Drill and thread hole in exposed barrel of fire hydrant. Install switch.

E. Water-Flow Indicators: Install in water-service piping in vault. Select indicator with saddle and vane matching pipe size. Drill hole in pipe, insert vane, and bolt saddle to pipe.

F. Connect alarm devices to building fire alarm system. Wiring and fire-alarm devices are specified in Section 284621.11 "Addressable Fire-Alarm Systems" and Section 284621.13 "Conventional Fire-Alarm Systems."

3.21 CONNECTIONS

A. See Section 330500 "Common Work Results for Utilities" for piping connections to valves and equipment.

B. Connect water-distribution piping to utility water main. Use tapping sleeve and tapping valve as indicated on the drawings.

C. Connect water-distribution piping to interior domestic water and fire-suppression piping as indicated on drawings.
D. Connect waste piping from concrete vault drains to storm-drainage system. See Section 334400 "Storm Utility Drainage Piping" for connection to storm-sewer piping.

E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.22 FIELD QUALITY CONTROL

A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.

1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig. Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

C. Prepare reports of testing activities.

3.23 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 312000 "Earth Moving."

B. Permanently attach equipment nameplate or marker indicating plastic water-service piping, on main electrical meter panel. See Section 330500 "Common Work Results for Utilities" for identifying devices.

3.24 CLEANING

A. Clean and disinfect water-distribution piping as follows:

1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.

2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.

3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.

b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.

c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.

d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.

END OF SECTION 221113
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 2. Specialty valves.
 3. Flexible connectors.

1.3 SUBMITTALS

A. Product Data: For the following products:
 1. Specialty valves.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Flexible connectors.
 5. Water meters.
 7. Water penetration systems.

B. LEED Submittal:
 1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, including printed statement of VOC content.

C. Water Samples: Specified in "Cleaning" Article.

D. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Fire-suppression-water piping.
 2. Domestic water piping.
 3. Compressed air piping.

E. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
B. Comply with NSF 14 for plastic, potable domestic water piping and components.
C. Comply with NSF 61 for potable domestic water piping and components.

1.5 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS
A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

2.3 TRANSITION FITTINGS
A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.
B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
C. Sleeve-Type Transition Coupling: AWWA C219.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cascade Waterworks Manufacturing.
 b. Dresser, Inc.; Dresser Piping Specialties.
 c. Ford Meter Box Company, Inc. (The).
 d. JCM Industries.
 e. Romac Industries, Inc.
 f. Smith-Blair, Inc; a Sensus company.
 g. Viking Johnson; c/o Mueller Co.
D. Plastic-to-Metal Transition Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. Harvel Plastics, Inc.
c. Spears Manufacturing Company.

2. Description: CPVC or PVC one-piece fitting with manufacturer’s Schedule 80 equivalent dimensions; one end with threaded brass insert and one solvent-cement-socket or threaded end.

E. Plastic-to-Metal Transition Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Colonial Engineering, Inc.
 b. NIBCO INC.
 c. Spears Manufacturing Company.

2. Description: CPVC or PVC four-part union. Include brass threaded end, solvent-cement-joint or threaded plastic end, rubber O-ring, and union nut.

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.

B. Dielectric Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. EPCO Sales, Inc.
 d. Hart Industries International, Inc.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 f. Zurn Plumbing Products Group; Wilkins Water Control Products.

2. Description:
 a. Pressure Rating: 150 psig at 180 deg F.
 b. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. EPCO Sales, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Factory-fabricated, bolted, companion-flange assembly.
 b. Pressure Rating: 150 psig.
 c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
b. Calpico, Inc.
c. Central Plastics Company.
d. Pipeline Seal and Insulator, Inc.

2. Description:
a. Nonconducting materials for field assembly of companion flanges.
b. Pressure Rating: 150 psig.
c. Gasket: Neoprene or phenolic.
d. Bolt Sleeves: Phenolic or polyethylene.
e. Washers: Phenolic with steel backing washers.

E. Dielectric Couplings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Calpico, Inc.
b. Lochinvar Corporation.
2. Description:
a. Galvanized-steel coupling.
b. Pressure Rating: 300 psig at 225 deg F.
c. End Connections: Female threaded.
d. Lining: Inert and noncorrosive, thermoplastic.

F. Dielectric Nipples:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Perfection Corporation; a subsidiary of American Meter Company.
b. Precision Plumbing Products, Inc.
c. Victaulic Company.
2. Description:
a. Electroplated steel nipple complying with ASTM F 1545.
b. Pressure Rating: 300 psig at 225 deg F.
c. End Connections: Male threaded or grooved.
d. Lining: Inert and noncorrosive, propylene.

2.5 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Flex-Hose Co., Inc.
2. Flexicraft Industries.
3. Flex Pression, Ltd.
4. Flex-Weld, Inc.
5. Hyspan Precision Products, Inc.
7. Metraflex, Inc.
8. Proco Products, Inc.
10. Unaflex, Inc.
11. Universal Metal Hose; a Hyspan company

B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 EARTHWORK
 A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
 B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
 C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.
 D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.
 E. Install shutoff valve immediately upstream of each dielectric fitting.
 F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.
 G. Install domestic water piping level without pitch and plumb.
 H. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
 I. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 J. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
K. Install piping adjacent to equipment and specialties to allow service and maintenance.

L. Install piping to permit valve servicing.

M. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.

N. Install piping free of sags and bends.

O. Install fittings for changes in direction and branch connections.

P. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

Q. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

R. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.

S. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2 and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

E. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.5 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.
3.6 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

3.7 FLEXIBLE CONNECTOR INSTALLATION

A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.

B. Install bronze-hose flexible connectors in copper domestic water tubing.

C. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.8 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Division 22 Section "Vibration for Plumbing Piping and Equipment".

B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet If Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 6. NPS 6: 10 feet with 5/8-inch rod.
 7. NPS 8: 10 feet with 3/4-inch rod.

F. Install supports for vertical copper tubing every 10 feet.
3.9 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment and machines to allow service and maintenance.
C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.10 IDENTIFICATION

A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.
B. Label pressure piping with system operating pressure.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
C. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
3. Leave new, altered, extended, or replaced domestic water piping uncovered and un concealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
6. Prepare reports for tests and for corrective action required.

D. Domestic water piping will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.12 ADJUSTING

A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.13 CLEANING

A. Clean and disinfect potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Prepare and submit reports of purging and disinfecting activities.
C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.14 PIPING SCHEDULE
A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
D. Under-building-slab, domestic water, building service piping, NPS 3 and smaller, shall be the following:
 1. Soft copper tube, ASTM B 88, Type K; no joints.
E. Under-building-slab, domestic water, building-service piping, NPS 4 to NPS 8 and larger, shall be the following:
 1. Soft copper tube, ASTM B 88, Type K; wrought-copper solder-joint fittings; and brazed joints.
F. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be the following:
 1. Soft copper tube, ASTM B 88, Type K; no joints.
G. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and soldered joints.
H. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and soldered joints.

3.15 VALVE SCHEDULE
A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following domestic water piping specialties:
 1. Vacuum breakers.
 2. Backflow preventers.
 4. Temperature-actuated water mixing valves.
 5. Strainers.
 6. Outlet boxes.
 8. Hose bibbs.
 9. Wall hydrants.
 10. Drain valves.
 12. Air vents.
 13. Trap-seal primer valves.
 14. Trap-seal primer systems.

B. Related Sections include the following:
 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 2. Division 22 Section "Domestic Water Piping" for water meters.
 3. Division 22 Section "Emergency Plumbing Fixtures" for water tempering equipment.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field quality-control test reports.
D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:
 2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. FEBCO; SPX Valves & Controls.
 e. Rain Bird Corporation.
 f. Toro Company (The); Irrigation Div.
 g. Watts Industries, Inc.; Water Products Div.
 h. Zurn Plumbing Products Group; Wilkins Div.
 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 5. Inlet and Outlet Connections: Threaded.

B. Hose-Connection Vacuum Breakers:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrowhead Brass Products, Inc.
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. Legend Valve.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts Industries, Inc.; Water Products Div.
 h. Woodford Manufacturing Company.
i. Zurn Plumbing Products Group; Light Commercial Operation.
j. Zurn Plumbing Products Group; Wilkins Div.
k.

5. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
6. Finish: Chrome or nickel plated.

C. Reduced-Pressure-Principle Backflow Preventers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Watts Industries, Inc.; Water Products Div.
 f. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

D. Double-Check Backflow-Prevention Assemblies:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomatic Corporation.
 e. Watts Industries, Inc.; Water Products Div.
 f. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications, unless otherwise indicated.
4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

E. Beverage-Dispensing-Equipment Backflow Preventers:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 c. Zurn Plumbing Products Group; Wilkins Div.

4. Operation: Continuous-pressure applications.

F. Dual-Check-Valve Backflow Preventers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Conbraco Industries, Inc.
 c. FEBCO; SPX Valves & Controls.
 d. Flomac Corporation.
 e. Ford Meter Box Company, Inc. (The).
 f. Honeywell Water Controls.
 g. Legend Valve.
 h. McDonald, A. Y. Mfg. Co.
 i. Mueller Co.; Water Products Div.
 k. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications.

G. Carbonated-Beverage-Dispenser, Dual-Check-Valve Backflow Preventers:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Lancer Corporation.

4. Operation: Continuous-pressure applications.

H. Hose-Connection Backflow Preventers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 c. Woodford Manufacturing Company.

3. Operation: Up to 10-foot head of water back pressure.
4. Inlet Size: NPS 1/2 or NPS 3/4.
5. Outlet Size: Garden-hose thread complying with ASME B1.20.7.
6. Capacity: At least 3-gpm flow.

2.2 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flo Fab Inc.
 c. ITT Industries; Bell & Gossett Div.
 d. NIBCO INC.
 e. TAC Americas.
 f. Taco, Inc.
 g. Watts Industries, Inc.; Water Products Div.
 2. Type: Ball valve with two readout ports and memory setting indicator.
 3. Body: Brass or bronze.
 4. Size: Same as connected piping, but not larger than NPS 2.
 5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

B. Memory-Stop Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Div.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corp.
 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 3. Pressure Rating: 400-psig minimum CWP.
 4. Size: NPS 2 or smaller.
 5. Body: Copper alloy.
 6. Port: Standard or full port.
 7. Ball: Chrome-plated brass.
 8. Seats and Seals: Replaceable.
 9. End Connections: Solder joint or threaded.

2.3 TEMPERATURE-ACTUATED WATER MIXING VALVES

A. Water-Temperature Limiting Devices:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Conbraco Industries, Inc.
 c. Honeywell Water Controls.
d. Leonard Valve Company.
e. Powers; a Watts Industries Co.
f. Symmons Industries, Inc.
g. Taco, Inc.
h. Watts Industries, Inc.; Water Products Div.
i. Zurn Plumbing Products Group; Wilkins Div.

4. Type: Thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Tempered-Water Setting: Adjustable 105F

B. Primary, Thermostatic, Water Mixing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Lawler Manufacturing Company, Inc.
 c. Leonard Valve Company.
 d. Powers; a Watts Industries Co.
 e. Symmons Industries, Inc.
4. Type: Cabinet-type, thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
9. Tempered-Water Setting: 105F.
10. Valve Finish: Rough bronze.
11. Piping Finish: Copper.
12. Cabinet: Factory-fabricated, stainless steel, for recessed mounting and with hinged, stainless-steel door.

C. Individual-Fixture, Water Tempering Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
 b. Conbraco Industries, Inc.
 c. Honeywell Water Controls.
 d. Lawler Manufacturing Company, Inc.
 e. Leonard Valve Company.
 f. Powers; a Watts Industries Co.
 g. Watts Industries, Inc.; Water Products Div.
 h. Zurn Plumbing Products Group; Wilkins Div.
3. Pressure Rating: 125 psig minimum, unless otherwise indicated.
5. Temperature Control: Adjustable.
6. Inlets and Outlet: Threaded.
7. Finish: Rough or chrome-plated bronze.

8. Primary Water Tempering Valves:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Holby Valve Co., Inc.
 3. Standard: ASSE 1017, thermostatically controlled tempering valve, listed as tempering valve.
 4. Pressure Rating: 125 psig minimum, unless otherwise indicated.
 5. Body: Bronze.
 7. Inlets and Outlet: Threaded.

2.4 STRainers FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:
 1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
 5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.

2.5 OUTLET BOXES

A. Clothes Washer Outlet Boxes:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Guy Gray Manufacturing Co., Inc.
 c. IPS Corporation.
 d. LSP Products Group, Inc.
 e. Oatey.
 f. Plastic Oddities; a division of Diverse Corporate Technologies.
 g. Symmons Industries, Inc.
 h. Watts Industries, Inc.; Water Products Div.
 i. Whitehall Manufacturing; a div. of Acorn Engineering Company.
 j. Zurn Plumbing Products Group; Light Commercial Operation.
 4. Faucet: Combination, valved fitting or separate hot- and cold-water, valved fittings complying with ASME A112.18.1. Include garden-hose thread complying with ASME B1.20.7 on outlets.
5. Supply Shutoff Fittings: NPS 1/2 gate, globe, or ball valves and NPS 1/2 copper, water tubing.
6. Drain: NPS 2 standpipe and P-trap for direct waste connection to drainage piping.
7. Inlet Hoses: Two 60-inch-long, rubber household clothes washer inlet hoses with female, garden-hose-thread couplings. Include rubber washers.
8. Drain Hose: One 48-inch-long, rubber household clothes washer drain hose with hooked end.

B. Icemaker Outlet Boxes:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. IPS Corporation.
 c. LSP Products Group, Inc.
 d. Oatey.
 e. Plastic Oddities; a division of Diverse Corporate Technologies.
4. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
5. Supply Shutoff Fitting: NPS 1/2 gate, globe, or ball valve and NPS 1/2 copper, water tubing.

2.6 HOSE BIBBS

A. Hose Bibbs:
4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
10. Finish for Finished Rooms: Chrome or nickel plated.
11. Operation for Equipment Rooms: Wheel handle or operating key.
12. Operation for Service Areas: Operating key.
14. Include operating key with each operating-key hose bibb.
15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

B. Moderate-Climate Wall Hydrants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Woodford Manufacturing Company.
h. Zurn Plumbing Products Group; Light Commercial Operation.

i. Zurn Plumbing Products Group; Specification Drainage Operation.

4. Operation: Loose key.

5. Inlet: NPS 3/4 or NPS 1.

6. Outlet: Concealed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011; and garden-hose thread complying with ASME B1.20.7.

7. Box: Deep, flush mounting with cover.

8. Box and Cover Finish: Polished nickel bronze.

9. Outlet: Exposed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011; and garden-hose thread complying with ASME B1.20.7.

11. Operating Keys(s): Two with each wall hydrant.

C. Vacuum Breaker Wall Hydrants:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Arrowhead Brass Products, Inc.
 b. Mansfield Plumbing Products LLC.
 d. Prier Products, Inc.
 g. Woodford Manufacturing Company.
 h. Zurn Plumbing Products Group; Light Commercial Operation.

3. Standard: ASSE 1019, Type A or Type B.

4. Type: Freeze-resistant, automatic draining with integral air-inlet valve.

5. Classification: Type A, for automatic draining with hose removed or Type B, for automatic draining with hose removed or with hose attached and nozzle closed.

7. Operation: Loose key.

8. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.

2.7 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig minimum CWP.

4. Body: Copper alloy.

5. Ball: Chrome-plated brass.

8. Inlet: Threaded or solder joint.

B. Gate-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: Class 125.
 5. Inlet: NPS 3/4 threaded or solder joint.
 6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

C. Stop-and-Waste Drain Valves:
 1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
 2. Pressure Rating: 200-psig minimum CWP or Class 125.
 5. Drain: NPS 1/8 side outlet with cap.

2.8 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Josam Company.
 c. MIFAB, Inc.
 d. PPP Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; Wade Div.
 h. Watts Drainage Products Inc.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
 3. Type: Metal bellows.
 4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.9 AIR VENTS

A. Bolted-Construction Automatic Air Vents:
 1. Body: Bronze.
 2. Pressure Rating: 125-psig minimum pressure rating at 140 deg F.
 3. Float: Replaceable, corrosion-resistant metal.
 5. Size: NPS 1/2 minimum inlet.

B. Welded-Construction Automatic Air Vents:
 2. Pressure Rating: 150-psig minimum pressure rating.
 3. Float: Replaceable, corrosion-resistant metal.

2.10 TRAP-SEAL PRIMER VALVES

A. Supply-Type, Trap-Seal Primer Valves :
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. PPP Inc.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Watts Industries, Inc.; Water Products Div.
5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

B. Drainage-Type, Trap-Seal Primer Valves :
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 3. Do not install bypass piping around backflow preventers.

C. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

D. Install balancing valves in locations where they can easily be adjusted.
E. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install thermometers and water regulators if specified.
 2. Install cabinet-type units recessed in or surface mounted on wall as specified.

F. Install Y-pattern strainers for water on supply side of each control valve, solenoid valve, and pump.

G. Install outlet boxes recessed in wall. Install 2-by-4-inch fire-retardant-treated-wood blocking wall reinforcement between studs. Fire-retardant-treated-wood blocking is specified in Division 06 Section "Rough Carpentry."

H. Install water hammer arresters in water piping according to PDI-WH 201.

I. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.

J. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

K. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Pressure vacuum breakers.
 2. Intermediate atmospheric-vent backflow preventers.
 3. Reduced-pressure-principle backflow preventers.
 5. Carbonated-beverage-machine backflow preventers.
 7. Calibrated balancing valves.
 8. Primary, thermostatic, water mixing valves.
 11. Supply-type, trap-seal primer valves.
B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:
 1. Test each reduced-pressure-principle backflow preventer double-check, detector-assembly backflow preventer according to authorities having jurisdiction and the device’s reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 221119
SECTION 22 11 21 - NATURAL GAS PIPING SYSTEMS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS
 A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.
 B. The Basic Materials and Methods, Section 22 02 00, are included as a part of this Section as though written in full in this document.

1.2 SCOPE
 A. Scope of the Work shall include the furnishing, complete installation and testing of the gas piping system, with all metering, valves, piping and auxiliaries, ready for owner's use.
 B. Coordinate with the gas company and pay all fees and permits required for a complete and operating gas service to the project.

PART 2 - PRODUCTS

2.1 All gas piping above ground shall be Schedule 40 black steel as manufactured by National Tube, Republic, Youngstown, or approved equal domestic manufacturer.

2.2 All gas piping larger than 2" shall be of welded construction. Screwed fittings will only be permitted for size 2" and smaller. Unions and valves will not be permitted above furred ceiling areas or in walls or chases.

2.3 All pipe fittings shall be of materials as follows:
 A. All welding fittings shall be factory-made and shall be full line size, for each tee, branch, elbow, etc., with reducers after fittings, if required.
 B. All screwed fittings shall be Crane, or approved equal, Class 150 malleable iron. Screw joints shall be made up with graphite and oil or Teflon tape. Screwed threads shall be in accordance with American Pipe Thread Standards.
 C. All piping and fittings shall be from a domestic manufacturer.

2.4 All underground gas piping with 5 pound working pressure or less shall be as follows:
 A. The pipe shall be yellow polyethylene with socket heat fusion joints and fittings. Pipe sizes 1-1/2" and 2" shall be SDR 11, (PE 2406) and pipe sizes 3" and 4" shall be SDR 11.5 (PE 2406).
 B. All socket heat fusion fittings shall be D.O.T. approved and meet ASTM D-2513 and ANSI B31.8 codes.
 C. All gas valves shall be polyethylene ball type, doubled union, rated for natural gas use. All valves shall be placed in a cast-iron valve box of an adequate size for accessibility and maintenance.
 D. All transition meter risers shall be D.O.T. approved anode-less service type, fusion coupled and PE 2406 rated.
E. The contractor shall take thermal expansion under consideration during installation. The contractor shall follow all requirements set by the manufacturer to protect the system from damage due to thermal expansion.

F. The contractor shall provide detector tape approximately 12” above all gas piping.

G. Wrap pipe with 18 gauge minimum copper tracer wire.

2.5 Gas piping installed in unventilated spaces shall be routed in properly vented continuous sleeve where required by the building code.

2.6 Gas valves shall be U.L. listed as follows:

A. Ball Valves: Nibco T585-70-UL for ¼” to 1” and T580-70-UL for 1-¼” to 3”.

B. Plug Valves: DeZurick Series 425 or 435 Eccentric valves with RS 49 plug seals.

2.7 Gas pressure regulators shall be capable of reducing 75 psi pressure gas to 0.5 psi gas at capacities required by Gas Demand. Install per A.G.A. Bulletin 90. Regulators shall be as manufactured by Rockwell, Fisher-Governor or approved equal.

2.8 All gas regulators located inside the building shall be vented to atmosphere with schedule 40 black steel pipe. This includes all regulators provided with mechanical and plumbing equipment and all other regulators provided under this contract. Vent piping shall be the full size of regulatory port opening, or as recommended by regulator manufacturer, and shall run independent of any other regulator vent through to point of termination.

PART 3 - EXECUTION

3.1 All piping shall be installed in accordance with the manufacturer’s recommendations and printed installation instructions.

3.2 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Provide all items required as per manufacturer’s requirements.

3.3 All underground gas piping shall be laid on 6” of wet compact banksand approximately 24” below grade. Backfill trench with wet compacted banksand to 6” above pipe. The remainder of backfill shall be selected backfill and shall meet all compaction requirements set forth by the general trenching and backfill requirements.

3.4 Provide lever handle gas valve, drip leg and union to each piece of equipment and where indicated.

3.5 All gas lines entering building shall be valved on the exterior of the building above grade.

PART 4 - TESTING

4.1 TESTING OF GAS PIPING SYSTEMS

A. All gas system testing shall be in compliance with local codes or as required in NFPA 54 National Fuel Gas Code whichever is the more stringent requirement.

B. All work shall be performed by a Journeyman Plumber holding current State and local licenses.
C. All tests shall be accomplished during normal working hours and after having given due notification to building owner, construction manager or designee, of tests to be performed. All tests shall be performed in the presence of and witnessed by the building owners representative or designee.

D. All gas system piping shall be subjected to a pneumatic test pressure of 60 psig for not less than 2 hours upon completion of all rough-in work and prior to covering. While the systems are subjected to this air pressure test, all joints shall have a soapy water solution applied and shall be observed for leaks. During test period there shall be no perceptible drop in test gage pressure.

E. A final test shall be performed after all portions of the piping system are completely installed and covered. The entire system shall be tested, with all system outlets plugged or capped, before any equipment or appliances are connected to the piping.

1. Final test shall be with mercury, measured with a manometer or slope gage. Test pressures shall in no case be less than one and one half times the normal operating pressure or as listed below; which ever is the greater:
 a. 10.5 inches mercury (5 psig) for 4 ounce system.
 b. 21.0 inches mercury (10 psig) for 8 ounce system.

2. Tests shall be for a period of not less than 30 minutes and shall prove absolutely tight, showing no perceptible drop, for the entire test period.

F. Purge air from test piping before connecting equipment or appliances. Purge air to outdoors or to ventilated space of sufficient volume to prevent accumulation of flammable mixtures.

END OF SECTION 221121
SECTION 221313 - FACILITY SANITARY SEWER

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

2. Hubless cast-iron soil pipe and fittings.
3. Ductile-iron, gravity sewer pipe and fittings.
4. Ductile-iron, pressure pipe and fittings.
5. ABS pipe and fittings.
6. PVC pipe and fittings.
7. Fiberglass pipe and fittings.
8. Concrete pipe and fittings.
10. Pressure-type pipe couplings.
11. Expansion joints and deflection fittings.
13. Cleanouts.
15. Manholes.
16. Concrete.

1.3 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:

1. Pipe and fittings.
2. Non-pressure and pressure couplings
3. Expansion joints and deflection fittings.
4. Backwater valves.
5. Cleanouts.
B. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings:
 1. Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
 2. Show system piping in profile. Draw profiles to horizontal scale of not less than 1 inch equals 50 feet and to vertical scale of not less than 1 inch equals 5 feet. Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing system piping.

B. Product Certificates: For each type of pipe and fitting.

C. Field quality-control reports.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic manholes, pipe, and fittings in direct sunlight.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

C. Handle manholes according to manufacturer's written rigging instructions.

1.7 FIELD CONDITIONS

A. Interruption of Existing Sanitary Sewerage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Architect and Owner no fewer than two days in advance of proposed interruption of service.
 2. Do not proceed with interruption of service without Architect's written permission.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

A. PVC Type PSM Sewer Piping:
 1. Pipe: ASTM D3034, SDR 26, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
 2. Fittings: ASTM D3034, PVC with bell ends.
B. PVC Pressure Piping:
 1. Pipe: AWWA C900, **Class 150** PVC pipe with bell-and-spigot ends for gasketed joints.
 2. Fittings: AWWA C900, **Class 150** PVC pipe with bell ends.

2.2 NONPRESSURE-TYPE TRANSITION COUPLINGS

A. Comply with ASTM C1173, elastomeric, sleeve-type, reducing or transition coupling; for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and include corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:
 1. For Plastic Pipes: ASTM F477, elastomeric seal or ASTM D5926, PVC.
 2. For Dissimilar Pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.

C. Unshielded, Flexible Couplings:
 1. Description: Elastomeric sleeve with **stainless-steel shear ring and** corrosion-resistant-metal tension band and tightening mechanism on each end.

D. Shielded, Flexible Couplings:
 1. Description: ASTM C1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

E. Ring-Type, Flexible Couplings:
 1. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.3 PRESSURE-TYPE PIPE COUPLINGS

A. Tubular-Sleeve Couplings: AWWA C219, with center sleeve, gaskets, end rings, and bolt fasteners.

B. Metal, bolted, sleeve-type, reducing or transition coupling; for joining underground pressure piping. Include **150-psig** minimum pressure rating and ends of same sizes as piping to be joined.
C. Center-Sleeve Material: **Ductile iron.**

D. Gasket Material: Natural or synthetic rubber.

E. Metal Component Finish: Corrosion-resistant coating or material.

2.4 EXPANSION JOINTS AND DEFLECTION FITTINGS

A. Ductile-Iron, Flexible Expansion Joints:

1. Description: Compound fitting with combination of flanged and mechanical-joint ends complying with AWWA C110/A21.10 or AWWA C153/A21.53. Include two gasketed ball-joint sections and one or more gasketed sleeve sections, rated for 250-psig minimum working pressure and for offset and expansion indicated.

B. Ductile-Iron Expansion Joints:

1. Description: Three-piece assembly of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110/A21.10 or AWWA C153/A21.53. Include rating for 250-psig minimum working pressure and for expansion indicated.

C. Ductile-Iron Deflection Fittings:

1. Description: Compound coupling fitting with ball joint, flexing section, gaskets, and restrained-joint ends complying with AWWA C110/A21.10 or AWWA C153/A21.53. Include rating for 250-psig minimum working pressure and for up to 15 degrees of deflection.

2.5 BACKWATER VALVES

A. Cast-Iron Backwater Valves:

1. Description: ASME A112.14.1, gray-iron body and bolted cover, with bronze seat.

2. Horizontal type; with swing check valve and hub-and-spigot ends.

3. Combination horizontal and manual gate-valve type; with swing check valve, integral gate valve, and hub-and-spigot ends.

4. Terminal type; with bronze seat, swing check valve, and hub inlet.

B. PVC Backwater Valves:

1. Description: Horizontal type; with PVC body, PVC removable cover, and PVC swing check valve.

2.6 CLEANOUTS

A. Cast-Iron Cleanouts:
1. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.

2. Top-Loading Classification(s): **Heavy Duty**.

3. Sewer Pipe Fitting and Riser to Cleanout: ASTM A74, Service class, cast-iron soil pipe and fittings.

B. PVC Cleanouts:

1. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.7 ENCASEMENT FOR PIPING

A. Standard: ASTM A674 or AWWA C105/A21.5.

B. Material: **Linear low-density polyethylene film of 0.008-inch or high-density, cross-laminated polyethylene film of 0.004-inch** minimum thickness.

C. Form: **Sheet or tube**.

D. Color: **Black**.

2.8 MANHOLES

A. Standard Precast Concrete Manholes:

1. Description: ASTM C478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.

2. Diameter: **48 inches** minimum unless otherwise indicated.

3. Ballast: Increase thickness of precast concrete sections or add concrete to base section, as required to prevent flotation.

4. Base Section: **6-inch** minimum thickness for floor slab and **4-inch** minimum thickness for walls and base riser section; with separate base slab or base section with integral floor.

5. Riser Sections: **4-inch** minimum thickness, of length to provide depth indicated.

6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated; with top of cone of size that matches grade rings.

7. Joint Sealant: ASTM C990, bitumen or butyl rubber.

8. Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.

9. Steps: **Individual FRP steps or FRP ladder**; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than **60 inches**.

10. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Designed Precast Concrete Manholes:

1. Description: ASTM C913; designed according to ASTM C890 for A-16 (ASSHTO HS20-44 in AASHTO HL), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
4. Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.
5. Steps: Individual FRP steps or FRP ladder; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
6. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
7. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers:

1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser, with 4-inch-minimum-width flange and 26-inch-diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "SANITARY SEWER."

D. Manhole-Cover Inserts:

1. Description: Manufactured, plastic form, of size to fit between manhole frame and cover and designed to prevent stormwater inflow. Include handle for removal and gasket for gastight sealing.
2. Type: Valve.

2.9 CONCRETE

A. General: Cast-in-place concrete complying with ACI 318, ACI 350, and the following:

1. Cement: ASTM C150/C150M, Type II.
B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.
 2. Reinforcing Bars: ASTM A615/A615M, Grade 60 deformed steel.

C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.
 1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 a. Invert Slope: 1 percent through manhole.
 2. Benches: Concrete, sloped to drain into channel.
 a. Slope: 4 percent.

D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.
 2. Reinforcing Bars: ASTM A615/A615M, Grade 60 deformed steel.

PART 3 - EXECUTION

3.1 EARTHWORK
 A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION
 A. General Locations and Arrangements: Drawing plans and details to indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
 B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
 C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
 D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Install gravity-flow, nonpressure, drainage piping according to the following:

1. Install piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.
2. Install piping with 36-inch minimum cover.
4. Install hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook."
5. Install ductile-iron, gravity sewer piping according to ASTM A746.
6. Install ABS sewer piping according to ASTM D2321 and ASTM F1668.
7. Install PVC cellular-core sewer piping according to ASTM D2321 and ASTM F1668.
8. Install PVC corrugated sewer piping according to ASTM D2321 and ASTM F1668.
9. Install PVC profile sewer piping according to ASTM D2321 and ASTM F1668.
10. Install PVC Type PSM sewer piping according to ASTM D2321 and ASTM F1668.
11. Install PVC gravity sewer piping according to ASTM D2321 and ASTM F1668.
12. Install fiberglass sewer piping according to ASTM D3839 and ASTM F1668.
13. Install nonreinforced-concrete sewer piping according to ASTM C1479 and ACPA's "Concrete Pipe Installation Manual."

G. Install force-main, pressure piping according to the following:

1. Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place-concrete supports or anchors.
2. Install piping with 36-inch minimum cover.
3. Install ductile-iron pressure piping according to AWWA C600 or AWWA M41.
4. Install ductile-iron special fittings according to AWWA C600.
5. Install PVC pressure piping according to AWWA M23 or to ASTM D2774 and ASTM F1668.
6. Install PVC water-service piping according to ASTM D2774 and ASTM F1668.

H. Install corrosion-protection piping encasement over the following underground metal piping according to ASTM A674 or AWWA C105/A21.5:

2. Hubless cast-iron soil pipe and fittings.
3. Ductile-iron pipe and fittings.
4. Expansion joints and deflection fittings.

I. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.
3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure, drainage piping according to the following:
1. Join ductile-iron, gravity sewer piping according to AWWA C600 for push-on joints.
2. Join PVC Type PSM sewer piping according to ASTM D2321 and ASTM D3034 for elastomeric-seal joints or ASTM D3034 for elastomeric-gasket joints.
3. Join dissimilar pipe materials with nonpressure-type, flexible or rigid couplings.

B. Join force-main, pressure piping according to the following:
1. Join ductile-iron pressure piping according to AWWA C600 or AWWA M41 for push-on joints.
2. Join ductile-iron special fittings according to AWWA C600 or AWWA M41 for push-on joints.
3. Join PVC pressure piping according to AWWA M23 for gasketed joints.
4. Join PVC water-service piping according to ASTM D2855.
5. Join dissimilar pipe materials with pressure-type couplings.

C. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
1. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 a. Shielded flexible or rigid couplings for pipes of same or slightly different OD.
 b. Unshielded, increaser/reducer-pattern, flexible or rigid couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.
2. Use pressure pipe couplings for force-main joints.

3.4 MANHOLE INSTALLATION

A. General: Install manholes complete with appurtenances and accessories indicated.
B. Install precast concrete manhole sections with sealants according to ASTM C891.
C. Install FRP manholes according to manufacturer's written instructions.
D. Form continuous concrete channels and benches between inlets and outlet.
E. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.
F. Install manhole-cover inserts in frame and immediately below cover.
3.5 CONCRETE PLACEMENT
 A. Place cast-in-place concrete according to ACI 318.

3.6 BACKWATER VALVE INSTALLATION
 A. Install horizontal-type backwater valves in piping manholes or pits.
 B. Install combination horizontal and manual gate-type valves in piping and in manholes.
 C. Install terminal-type backwater valves on end of piping and in manholes. Secure units to sidewalls.

3.7 CLEANOUT INSTALLATION
 A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use Medium-Duty, top-loading classification cleanouts in earth, paved or unpaved foot-traffic areas.
 2. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
 B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.
 C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.8 CONNECTIONS
 A. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains specified in Section 221316 "Sanitary Waste and Vent Piping."
 B. Connect force-main piping to building's sanitary force mains specified in Section 221316 "Sanitary Waste and Vent Piping." Terminate piping where indicated.
 C. Make connections to existing piping and underground manholes.
 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes by cutting opening into existing unit large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of, and be flush with, inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.

 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.

4. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

D. Connect to grease, oil and sand interceptors specified in Section 221323 "Sanitary Waste Interceptors."

3.9 CLOSING ABANDONED SANITARY SEWER SYSTEMS

A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:

 1. Close open ends of piping with at least 8-inch-thick, brick masonry bulkheads.
 2. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.

B. Abandoned Manholes: Excavate around manhole as required and use either procedure below:

 1. Remove manhole and close open ends of remaining piping.
 2. Remove top of manhole down to at least 36 inches below final grade. Fill to within 12 inches of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.

C. Backfill to grade according to Section 312000 "Earth Moving."

3.10 IDENTIFICATION

A. Comply with requirements in Section 312000 "Earth Moving" for underground utility identification devices. Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.

 1. Use warning tape over ferrous piping.
 2. Use detectable warning tape over nonferrous piping and over edges of underground manholes.
3.11 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

1. Submit separate report for each system inspection.
2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.

3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 a. Fill sewer piping with water. Test with pressure of at least 10-foot head of water, and maintain such pressure without leakage for at least 15 minutes.
 b. Close openings in system and fill with water.
 c. Purge air and refill with water.
 d. Disconnect water supply.
 e. Test and inspect joints for leaks.

6. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Test plastic gravity sewer piping according to ASTM F1417.
 b. Test concrete gravity sewer piping according to ASTM C1628.

7. Force Main: Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psig.
 a. Ductile-Iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.
 b. PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.
8. Manholes: Perform hydraulic test according to ASTM C969.

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.12 CLEANING

A. Clean dirt and superfluous material from interior of piping. *Flush with potable water.*
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.
B. Related Sections:
 1. Division 22 Section "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.
 2. Division 22 Section "Sanitary Sewerage Pumps" for effluent and sewage pumps.
 3. Division 22 Section "Chemical-Waste Systems for Laboratory and Healthcare Facilities" for chemical-waste and vent piping systems.

1.3 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.
B. LEED Submittal:
 1. Product Data for Credit EQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
C. Shop Drawings: For solvent drainage system. Include plans, elevations, sections, and details.
D. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Extra Heavy class(es).

B. Gaskets: ASTM C 564, rubber.

C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.

C. CISPI, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 c. Fernco Inc.
 d. Matco-Norca, Inc.
 e. MIFAB, Inc.
 f. Mission Rubber Company; a division of MCP Industries, Inc.
 g. Stant.
 h. Tyler Pipe.
 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

D. Heavy-Duty, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Clamp-All Corp.
 d. MIFAB, Inc.
 e. Mission Rubber Company; a division of MCP Industries, Inc.
3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

C. Adhesive Primer: ASTM F 656.
 1. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. Solvent Cement: ASTM D 2564.
 1. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD’s or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 3. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Fernco Inc.
 3) Mission Rubber Company; a division of MCP Industries, Inc.
 4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 d. Sleeve Materials:
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
 4. Shielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Mission Rubber Company; a division of MCP Industries, Inc.
c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Division 31 Section "Earth Moving."

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
L. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

M. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

O. Install underground PVC piping according to ASTM D 2321.

P. Install engineered soil and waste drainage and vent piping systems as follows:
 2. Sovent Drainage System: Comply with ASSE 1043 and sovent fitting manufacturer's written installation instructions.
 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

Q. Plumbing Specialties:
 1. Install backwater valves in sanitary waste gravity-flow piping. Comply with requirements for backwater valves specified in Division 22 Section "Sanitary Waste Piping Specialties."
 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Sanitary Waste Piping Specialties."
 3. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Sanitary Waste Piping Specialties."

R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."
3.3 JOINT CONSTRUCTION

C. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

D. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 3. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in OD's.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

B. Shutoff Valves:
 1. Install shutoff valve on each sewage pump discharge.
 2. Install gate or full-port ball valve for piping NPS 2 and smaller.
 3. Install gate valve for piping NPS 2-1/2 and larger.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

D. Backwater Valves: Install backwater valves in piping subject to backflow.
 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.
 4. Comply with requirements for backwater valve specified in Division 22 Section "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
B. Comply with requirements for pipe hanger and support devices and installation specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 4. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.
 6. Base of Vertical Piping: MSS Type 52, spring hangers.
C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.
D. Support vertical piping and tubing at base and at each floor.
E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
G. Install supports for vertical cast-iron soil piping every 15 feet.
H. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.
 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 5. NPS 3: 12 feet with 1/2-inch rod.
 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 7. NPS 6 and NPS 8: 12 feet with 3/4-inch rod.
 8. NPS 10 and NPS 12: 12 feet with 7/8-inch rod.
I. Install supports for vertical steel piping every 15 feet.
J. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 2. NPS 3: 48 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.
K. Install supports for vertical PVC piping every 48 inches.
L. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Install horizontal backwater valves with cleanout cover flush with floor in pit with pit cover flush with floor.
 6. Comply with requirements for backwater valves cleanouts and drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
 7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.

3.11 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

C. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
D. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

E. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

F. Underground, soil and waste piping NPS 5 and larger shall be any of the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following sanitary drainage piping specialties:
 1. Backwater valves.
 2. Cleanouts.
 3. Floor drains.
 4. Trench drains.
 5. Air-admittance valves.
 6. Roof flashing assemblies.
 7. Through-penetration firestop assemblies.
 10. Solids interceptors.

B. Related Sections include the following:
 1. Division 22 Section "Storm Drainage Piping Specialties" for trench drains for storm water, channel drainage systems for storm water, roof drains, and catch basins.
 2. Division 22 Section "Plumbing Fixtures" for hair interceptors.

1.3 DEFINITIONS

B. FOG: Fats, oils, and greases.

C. FRP: Fiberglass-reinforced plastic.

D. HDPE: High-density polyethylene plastic.

E. PE: Polyethylene plastic.

F. PP: Polypropylene plastic.

G. PVC: Polyvinyl chloride plastic.
1.4 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
 1. Grease interceptors.

B. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 BACKWATER VALVES

A. Horizontal, Cast-Iron Backwater Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 3. Size: Same as connected piping.
5. **Cover:** Cast iron with bolted or threaded access check valve.
6. **End Connections:** Hub and spigot.
7. **Type Check Valve:** Removable, bronze, swing check, factory assembled or field modified to hang closed.
8. **Extension:** ASTM A 74, Service class; full-size, cast-iron, soil-pipe extension to field-installed cleanout at floor; replaces backwater valve cover.

B. Drain-Outlet Backwater Valves:
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 c. Watts Drainage Products Inc.
 d. Zurn Plumbing Products Group; Specification Drainage Operation.
2. **Size:** Same as floor drain outlet.
3. **Body:** Cast iron or bronze made for vertical installation in bottom outlet of floor drain.
4. **Check Valve:** Removable ball float.
5. **Inlet:** Threaded.
6. **Outlet:** Threaded or spigot.

C. Horizontal, Plastic Backwater Valves:
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Canplas LLC.
 b. IPS Corporation.
 c. NDS Inc.
 d. Oatey.
 e. Plastic Oddities; a division of Diverse Corporate Technologies.
 f. Sioux Chief Manufacturing Company, Inc.
 g. Zurn Plumbing Products Group; Light Commercial Operation.
2. **Size:** Same as connected piping.
3. **Body:** PVC.
4. **Cover:** Same material as body with threaded access to check valve.
5. **Check Valve:** Removable swing check.
6. **End Connections:** Socket type.

2.2 CLEANOUTS

A. Exposed Metal Cleanouts:
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
 g. Josam Company; Blucher-Josam Div.
2. **Standard:** ASME A112.36.2M for cast iron for cleanout test tee.
3. **Size:** Same as connected drainage piping
4. **Body Material:** Hub-and-spigot, cast-iron soil pipe T-branch Hubless, cast-iron soil pipe test tee as required to match connected piping.
7. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Metal Floor Cleanouts:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Oatey.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products Inc.
 g. Zurn Plumbing Products Group; Light Commercial Operation.
 h. Zurn Plumbing Products Group; Specification Drainage Operation.
 i. Josam Company; Josam Div.
 j. Kusel Equipment Co.
 l. Josam Company; Blucher-Josam Div.
4. Size: Same as connected branch.
5. Type: Adjustable housing Cast-iron soil pipe with cast-iron ferrule.
6. Body or Ferrule: Cast iron.
7. Clamping Device: Required.
8. Outlet Connection: Spigot.
9. Closure: Brass plug with straight threads and gasket.
10. Adjustable Housing Material: Cast iron with.
12. Frame and Cover Shape: Round.
14. Riser: ASTM A74, Extra-Heavy class, cast-iron drainage pipe fitting and riser to cleanout.
16. Size: Same as connected branch.
17. Housing: Stainless steel.

C. Cast-Iron Wall Cleanouts:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
3. Standard: ASME A112.36.2M. Include wall access.
4. Size: Same as connected drainage piping.
5. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
6. Closure: Countersunk, plug.
7. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.3 FLOOR DRAINS

A. Cast-Iron Floor Drains:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Commercial Enameling Co.
 b. Josam Company; Josam Div.
 c. MIFAB, Inc.
 d. Prier Products, Inc.
 e. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 f. Tyler Pipe; Wade Div.
 g. Watts Drainage Products Inc.
 h. Zurn Plumbing Products Group; Light Commercial Operation.
 i. Zurn Plumbing Products Group; Specification Drainage Operation.
2. Standard: ASME A112.6.3.
3. Pattern: Area Floor Funnel floor drain.
5. Seepage Flange: Required.
6. Anchor Flange: Required.
7. Clamping Device: Not required.
8. Outlet: Bottom.
10. Sediment Bucket: Not required.
11. Top or Strainer Material: Nickel bronze.
13. Top Shape: Round.
15. Trap Material: Cast iron.
17. Trap Features: Trap-seal primer valve drain connection.

B. Plastic Floor Drains:
1.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Canplas LLC.
 b. IPS Corporation.
 c. Josam Company; Josam Div.
 d. Oatey.
 e. Plastic Oddities; a division of Diverse Corporate Technologies.
 f. Sioux Chief Manufacturing Company, Inc.
 g. Zurn Plumbing Products Group; Light Commercial Operation.
4. Material: PVC.
5. Seepage Flange: Required.
7. Outlet: Bottom.
8. Sediment Bucket: Not required.
11. Top Shape: Square.
12. Dimensions of Top or Strainer: 12”x 12”

2.4 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Engineering Company; Elmdor/Stoneman Div.
 b. Thaler Metal Industries Ltd.
 c.

B. Description: Manufactured assembly made of 4.0-lb/sq. ft., 0.0625-inch- thick, lead flashing collar and skirt extending at least 6 inches from pipe, with galvanized-steel boot reinforcement and counter flashing fitting.

2.5 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ProSet Systems Inc.
4. Size: Same as connected soil, waste, or vent stack.
5. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
7. Special Coating: Corrosion resistant on interior of fittings.

2.6 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:
1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
2. Size: Same as connected waste piping.

B. Deep-Seal Traps:
1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
2. Size: Same as connected waste piping.
 a. NPS 2: 4-inch- minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

C. Floor-Drain, Trap-Seal Primer Fittings:
 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

D. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

E. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.

F. Stack Flashing Fittings:
 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 2. Size: Same as connected stack vent or vent stack.

G. Vent Caps Insert drawing designation if any:
 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
 2. Size: Same as connected stack vent or vent stack.

H. Expansion Joints:
 1. Standard: ASME A112.21.2M.
 2. Body: Cast iron with bronze sleeve, packing, and gland.
 3. End Connections: Matching connected piping.
 4. Size: Same as connected soil, waste, or vent piping.

2.7 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft. thickness.
2. Vent Pipe Flashing: 8 oz./sq. ft. thickness.

C. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.

E. Fasteners: Metal compatible with material and substrate being fastened.

F. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

G. Solder: ASTM B 32, lead-free alloy.

H. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

2.8 SOLIDS INTERCEPTORS

A. Solids Interceptors:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MI$AB, Inc.
 c. Rockford Sanitary Systems, Inc.
 d. Schier Products Company.
 e. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 f. Tyler Pipe; Wade Div.
 g. Watts Drainage Products Inc.
 h. Zurn Plumbing Products Group; Specification Drainage Operation.
 i. Ashland Trap Distribution Co.
 j. Schier Products Company.
 k. Town & Country Plastics, Inc.
 2. Type: Factory-fabricated interceptor made for removing and retaining sediment from wastewater.
 3. Body Material: Cast iron or steel.
 5. Interior Lining: Corrosion-resistant enamel.

2.9 MOTORS

A. General requirements for motors are specified in Division 22 Section "Common Motor Requirements for Plumbing Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backwater valves in building drain piping. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.

C. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate at base of each vertical soil and waste stack.

D. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

E. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

F. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

G. Install trench drains at low points of surface areas to be drained. Set grates of drains flush with finished surface, unless otherwise indicated.

H. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

I. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

J. Assemble open drain fittings and install with top of hub 2 inches above floor.

K. Install deep-seal traps on floor drains and other waste outlets, if indicated.

L. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.
M. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

N. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

O. Install vent caps on each vent pipe passing through roof.

P. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.

Q. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
 2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashings or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."
F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 224000 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following conventional plumbing fixtures and related components:
 1. Faucets for lavatories bathtub/showers showers and sinks.
 2. Laminar-flow faucet-spout outlets.
 3. Flushometers.
 4. Toilet seats.
 5. Protective shielding guards.
 6. Fixture supports.
 7. Interceptors.
 8. Shower receptors.
 10. Urinals.
 12. Lavatories.
 13. Commercial sinks.
 15. Group showers.
 16. Whirlpool bathtubs.
 18. Service sinks.
 20. Owner-furnished fixtures.

B. Related Sections include the following:
 1. Division 10 Section "Toilet, Bath, and Laundry Accessories."
 2. Division 22 Section "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.
 3. Division 22 Section "Domestic Water Filtration Equipment" for water filters.
 4. Division 22 Section "Healthcare Plumbing Fixtures."
 5. Division 22 Section "Emergency Plumbing Fixtures."
 6. Division 22 Section "Security Plumbing Fixtures."
 7. Division 22 Section "Drinking Fountains and Water Coolers."
 8. Division 31 Section "Facility Water Distribution Piping" for exterior plumbing fixtures and hydrants.

1.3 DEFINITIONS

B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.

C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.

D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.

E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

F. FRP: Fiberglass-reinforced plastic.

G. PMMA: Polymethyl methacrylate (acrylic) plastic.

H. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.

B. LEED Submittal:
 1. Product Data for Credit WE 2, 3.1, and 3.2: Documentation indicating flow and water consumption requirements.

C. Shop Drawings: Diagram power, signal, and control wiring.

D. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.

E. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
 2. Porcelain-Enameled, Formed-Steel Fixtures: ASME A112.19.4M.
 6. Vitreous-China Fixtures: ASME A112.19.2M.
 9. Whirlpool Bathtub Fittings: ASME A112.19.8M.

H. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:
 1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.
 2. Backflow Protection Devices for Faucets with Hose-Thread Outlet: ASME A112.18.3M.
 5. Hose-Connection Vacuum Breakers: ASSE 1011.

I. Comply with the following applicable standards and other requirements specified for shower faucets:
 1. Backflow Protection Devices for Hand-Held Showers: ASME A112.18.3M.
 2. Combination, Pressure-Equalizing and Thermostatic-Control Antiscald Faucets: ASSE 1016.

J. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
2. Brass and Copper Supplies: ASME A112.18.1.

K. Comply with the following applicable standards and other requirements specified for miscellaneous components:
2. Floor Drains: ASME A112.6.3.
6. Off-Floor Fixture Supports: ASME A112.6.1M.

1.6 WARRANTY

A. Special Warranties: Manufacturer's standard form in which manufacturer agrees to repair or replace components of whirlpools that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures of unit shell.
 b. Faulty operation of controls, blowers, pumps, heaters, and timers.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.
2. Warranty Period for Commercial Applications: One year(s) from date of Substantial Completion.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
2. Flushometer Valve, Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than 12 of each type.
3. Provide hinged-top wood or metal box, or individual metal boxes, with separate compartments for each type and size of extra materials listed above.
4. Flushometer Tank, Repair Kits: Equal to 5 percent of amount of each type installed, but no fewer than 2 of each type.
PART 2 - PRODUCTS- REFER TO DRAWINGS

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.

B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

D. Install counter-mounting fixtures in and attached to casework.

E. Install fixtures level and plumb according to roughing-in drawings.

F. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

G. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

H. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.

I. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.

J. Install toilet seats on water closets.

K. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

L. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

M. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

N. Install shower flow-control fittings with specified maximum flow rates in shower arms.

O. Install traps on fixture outlets.
 1. Exception: Omit trap on fixtures with integral traps.
 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
P. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Escutcheons for Plumbing Piping."

Q. Set shower receptors and service basins in leveling bed of cement grout. Grout is specified in Division 22 Section "Common Work Results for Plumbing."

R. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

E. Install fresh batteries in sensor-operated mechanisms.

3.4 ADJUSTING

A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.

C. Replace washers and seals of leaking and dripping faucets and stops.
D. Install fresh batteries in sensor-operated mechanisms.

3.5 CLEANING

A. Clean fixtures, faucets, and other fittings with manufacturers’ recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.6 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224000
SECTION 224700 - DRINKING FOUNTAINS AND WATER COOLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following drinking fountains and water coolers and related components:
 1. Drinking fountains.
 2. Pressure water coolers.
 4. Fixture supports.

1.3 DEFINITIONS
A. Accessible Drinking Fountain or Water Cooler: Fixture that can be approached and used by people with disabilities.
B. Cast Polymer: Dense, cast-filled-polymer plastic.
C. Drinking Fountain: Fixture with nozzle for delivering stream of water for drinking.
D. Fitting: Device that controls flow of water into or out of fixture.
E. Fixture: Drinking fountain or water cooler unless one is specifically indicated.
F. Remote Water Cooler: Electrically powered equipment for generating cooled drinking water.
G. Water Cooler: Electrically powered fixture for generating and delivering cooled drinking water.

1.4 SUBMITTALS
A. Product Data: For each fixture indicated. Include rated capacities, furnished specialties, and accessories.
B. Shop Drawings: Diagram power, signal, and control wiring.
C. Field quality-control test reports.
D. Operation and Maintenance Data: For fixtures to include in emergency, operation, and maintenance manuals.
1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. ASHRAE Standard: Comply with ASHRAE 34, "Designation and Safety Classification of Refrigerants," for water coolers. Provide HFC 134a (tetrafluoroethane) refrigerant, unless otherwise indicated.

1.6 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filter Cartridges: Equal to 5 percent of amount installed for each type and size indicated, but no fewer than 5 of each.

PART 2 - PRODUCTS- REFER TO DRAWINGS

2.1 FIXTURE SUPPORTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Josam Co.
 2. MIFAB Manufacturing, Inc.
 4. Tyler Pipe; Wade Div.
 5. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.

B. Description: ASME A112.6.1M, water cooler carriers. Include vertical, steel uprights with feet and tie rods and bearing plates with mounting studs matching fixture to be supported.
 1. Type I: Hanger-type carrier with two vertical uprights.
 2. Type II: Bilevel, hanger-type carrier with three vertical uprights.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water and waste piping systems to verify actual locations of piping connections before fixture installation. Verify that sizes and locations of piping and types of supports match those indicated.

B. Examine walls and floors for suitable conditions where fixtures are to be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Use carrier off-floor supports for wall-mounting fixtures, unless otherwise indicated.

B. Use mounting frames for recessed water coolers, unless otherwise indicated.

C. Set remote water coolers on floor, unless otherwise indicated.

D. Use chrome-plated brass or copper tube, fittings, and valves in locations exposed to view. Plain copper tube, fittings, and valves may be used in concealed locations.

3.3 INSTALLATION

A. Install off-floor supports affixed to building substrate and attach wall-mounting fixtures, unless otherwise indicated.

B. Install mounting frames affixed to building construction and attach recessed water coolers to mounting frames, unless otherwise indicated.

C. Install fixtures level and plumb. For fixtures indicated for children, install at height required by authorities having jurisdiction.

D. Install water-supply piping with shutoff valve on supply to each fixture to be connected to water distribution piping. Use ball, gate, or globe valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

E. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.

F. Install pipe escutcheons at wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding pipe fittings. Escutcheons are specified in Division 22 Section "Escutcheons for Plumbing Piping."

G. Seal joints between fixtures and walls and floors using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."
3.4 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.5 FIELD QUALITY CONTROL

A. Water Cooler Testing: After electrical circuitry has been energized, test for compliance with requirements. Test and adjust controls and safeties.
 1. Remove and replace malfunctioning units and retest as specified above.
 2. Report test results in writing.

3.6 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.

B. Adjust water cooler temperature settings.

3.7 CLEANING

A. After completing fixture installation, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

END OF SECTION 224700
SECTION 23 02 00 - BASIC MATERIALS AND METHODS

PART 1 - GENERAL

1.01 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all Work herein.

B. The Contract Drawings indicate the extent and general arrangement of the systems. If any departure from the Contract Drawings are deemed necessary by the Contractor, details of such departures and the reasons therefore, shall be submitted to the Architect for approval as soon as practicable. No such departures shall be made without the prior written approval of the Architect.

C. Notwithstanding any reference in the Specifications to any article, device, product, material, fixture, form or type of construction by name, make or catalog number, such reference shall not be construed as limiting competition; and the Contractor, in such cases, may at his option use any article, device, product, material, fixture, form or type of construction which in the judgment of the Architect, expressed in writing, is equal to that specified.

1.02 SCOPE OF WORK

A. The Work included under this Contract consists of the furnishing and installation of all equipment and material necessary and required to form the complete and functioning systems in all of its various phases, all as shown on the accompanying Drawings and/or described in these Specifications. The contractor shall review all pertinent drawings, including those of other contracts prior to commencement of Work.

B. This Division requires the furnishing and installing of all items Specified herein, indicated on the Drawings or reasonably inferred as necessary for safe and proper operation; including every article, device or accessory (whether or not specifically called for by item) reasonably necessary to facilitate each system's functioning as indicated by the design and the equipment specified. Elements of the work include, but are not limited to, materials, labor, supervision, transportation, storage, equipment, utilities, all required permits, licenses and inspections. All work performed under this Section shall be in accordance with the Project Manual, Drawings and Specifications and is subject to the terms and conditions of the Contract.

C. The approximate locations of Mechanical (HVAC) items are indicated on the Drawings. These Drawings are not intended to give complete and accurate details in regard to location of outlets, apparatus, etc. Exact locations are to be determined by actual measurements at the building, and will in all cases be subject to the Review of the Owner or Engineer, who reserves the right to make any reasonable changes in the locations indicated without additional cost to the Owner.

D. Items specifically mentioned in the Specifications but not shown on the Drawings and/or items shown on Drawings but not specifically mentioned in the Specifications shall be installed by the Contractor under the appropriate section of work as if they were both specified and shown.

E. All discrepancies between the Contract Documents and actual job-site conditions shall be reported to the Owner or Engineer so that they will be resolved prior to the bidding, where
this cannot be done at least 7 working days prior to bid; the greater or more costly of the discrepancy shall be bid. All labor and materials required to perform the work described shall be included as part of this Contract.

F. It is the intention of this Section of the Specifications to outline minimum requirements to furnish the Owner with a turn-key and fully operating system in cooperation with other trades.

G. It is the intent of the above "Scope" to give the Contractor a general outline of the extent of the Work involved; however, it is not intended to include each and every item required for the Work. Anything omitted from the "Scope" but shown on the Drawings, or specified later, or necessary for a complete and functioning heating, ventilating and air conditioning system shall be considered a part of the overall "Scope".

H. The Contractor shall rough-in fixtures and equipment furnished by others from rough-in and placement drawings furnished by others. The Contractor shall make final connection to fixtures and equipment furnished by others.

1.03 SCHEMATIC NATURE OF CONTRACT DOCUMENTS

A. The contract documents are schematic in nature in that they are only to establish scope and a minimum level of quality. They are not to be used as actual working construction drawings. The actual working construction drawings shall be the approved shop drawings.

B. All duct or pipe or equipment locations as indicated on the documents do not indicate every transition, offset, or exact location. All transitions, offsets clearances and exact locations shall be established by actual field measurements, coordination with the structural, architectural and reflected ceiling plans, and other trades. Submit shop drawings for approval.

C. All transitions, offsets and relocations as required by actual field conditions shall be performed by the contractor at no additional cost to the owner.

D. Additional coordination with electrical contractor may be required to allow adequate clearances of electrical equipment, fixtures and associated appurtenances. Contractor to notify Architect and Engineer of unresolved clearances, conflicts or equipment locations.

1.04 SITE VISIT AND FAMILIARIZATION

A. Before submitting a bid, it will be necessary for each Contractor whose work is involved to visit the site and ascertain for himself the conditions to be met therein in installing his work and make due provision for same in his bid. It will be assumed that this Contractor in submitting his bid has visited the premises and that his bid covers all work necessary to properly install the equipment shown. Failure on the part of the Contractor to comply with this requirement shall not be considered justification for the omission or faulty installation of any work covered by these Specifications and Drawings.

B. Understand the existing utilities from which services will be supplied; verify locations of utility services, and determine requirements for connections.

C. Determine in advance that equipment and materials proposed for installation fit into the confines indicated.
1.05 WORK SPECIFIED IN OTHER SECTIONS

A. Finish painting is specified. Prime and protective painting are included in the work of this Division.

B. Owner and General Contractor furnished equipment shall be properly connected to Mechanical (HVAC) systems.

C. Furnishing and installing all required Mechanical (HVAC) equipment control relays and electrical interlock devices, conduit, wire and J-boxes are included in the Work of this Division.

1.06 PERMITS, TESTS, INSPECTIONS

A. Arrange and pay for all permits, fees, tests, and all inspections as required by governmental authorities.

1.07 DATE OF FINAL ACCEPTANCE

A. The date of final acceptance shall be the date of owner occupancy, or the date all punch list items have been completed or final payment has been received. Refer to Division One for additional requirements.

B. The date of final acceptance shall be documented in writing and signed by the architect, owner and contractor.

1.08 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to the project properly identified with names, model numbers, types, grades, compliance labels, and other information needed for identification.

B. Deliver products to the project at such time as the project is ready to receive the equipment, pipe or duct properly protected from incidental damage and weather damage.

C. Damaged equipment, duct or pipe shall be promptly removed from the site and new, undamaged equipment, pipe and duct shall be installed in its place promptly with no additional charge to the Owner.

1.09 NOISE AND VIBRATION

A. The heating, ventilating and air conditioning systems, and the component parts thereof, shall be guaranteed to operate without objectionable noise and vibration.

B. Provide foundations, supports and isolators as specified or indicated, properly adjusted to prevent transmission of vibration to the Building structure, piping and other items.

C. Carefully fabricate ductwork and fittings with smooth interior finish to prevent turbulence and generation or regeneration of noise.

D. All equipment shall be selected to operate with minimum of noise and vibration. If, in the opinion of the Architect, objectionable noise or vibration is produced or transmitted to or through the building structure by equipment, piping, ducts or other parts of the Work, the Contractor shall rectify such conditions without extra cost to the Owner.

1.10 APPLICABLE CODES
A. Obtain all required permits and inspections for all work required by the Contract Documents and pay all required fees in connection thereof.

B. Arrange with the serving utility companies for the connection of all required utilities and pay all charges, meter charges, connection fees and inspection fees, if required.

C. Comply with all applicable codes, specifications, local ordinances, industry standards, utility company regulations and the applicable requirements which includes and is not limited to the following nationally accepted codes and standards:

1. Air Moving & Conditioning Association, AMCA.
2. American Standards Association, ASA.
4. American Society of Mechanical Engineers, ASME.
5. American Society of Plumbing Engineers, ASPE.
6. American Society of Testing Materials, ASTM.
7. American Water Works Association, AWWA.
8. National Bureau of Standards, NBS.
10. Sheet Metal & Air Conditioning Contractors' National Association, SMACNA.
11. Underwriters' Laboratories, Inc., UL.

D. Where differences existing between the Contract Documents and applicable state or city building codes, state and local ordinances, industry standards, utility company regulations and the applicable requirements of the listed nationally accepted codes and standards, the more stringent or costly application shall govern. Promptly notify the Engineer in writing of all differences.

E. When directed in writing by the Engineer, remove all work installed that does not comply with the Contract Documents and applicable state or city building codes, state and local ordinances, industry standards, utility company regulations and the applicable requirements of the above listed nationally accepted codes and standards, correct the deficiencies, and complete the work at no additional cost to the Owner.

1.11 DEFINITIONS AND SYMBOLS

A. General Explanation: A substantial amount of construction and Specification language constitutes definitions for terms found in other Contract Documents, including Drawings which must be recognized as diagrammatic and schematic in nature and not completely descriptive of requirements indicated thereon. Certain terms used in Contract Documents are defined generally in this article, unless defined otherwise in Division 1.

B. Definitions and explanations of this Section are not necessarily either complete or exclusive, but are general for work to the extent not stated more explicitly in another provision of the Contract Documents.

C. Indicated: The term "Indicated" is a cross-reference to details, notes or schedules on the Drawings, to other paragraphs or schedules in the Specifications and to similar means of recording requirements in Contract Documents. Where such terms as "Shown", "Noted",

230200
“Scheduled”, "Specified" and "Detailed" are used in lieu of "Indicated", it is for the purpose of helping the reader locate cross-reference material, and no limitation of location is intended except as specifically shown.

D. Directed: Where not otherwise explained, terms such as "Directed", "Requested", "Accepted", and "Permitted" mean by the Architect or Engineer. However, no such implied meaning will be interpreted to extend the Architect's or Engineer's responsibility into the Contractor's area of construction supervision.

E. Reviewed: Where used in conjunction with the Engineer's response to submittals, requests for information, applications, inquiries, reports and claims by the Contractor the meaning of the term "Reviewed" will be held to limitations of Architect's and Engineer's responsibilities and duties as specified in the General and Supplemental Conditions. In no case will "Reviewed" by Engineer be interpreted as a release of the Contractor from responsibility to fulfill the terms and requirements of the Contract Documents.

F. Furnish: Except as otherwise defined in greater detail, the term "Furnish" is used to mean supply and deliver to the project site, ready for unloading, unpacking, assembly, installation, etc., as applicable in each instance.

G. Install: Except as otherwise defined in greater detail, the term "Install" is used to describe operations at the project site including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protection, cleaning and similar operations, as applicable in each instance.

H. Provide: Except as otherwise defined in greater detail, the term "Provide" is used to mean "Furnish and Install", complete and ready for intended use, as applicable in each instance.

I. Installer: Entity (person or firm) engaged by the Contractor or its subcontractor or Sub-contractor for performance of a particular unit of work at the project site, including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protection, cleaning and similar operations, as applicable in each instance. It is a general requirement that such entities (Installers) be expert in the operations they are engaged to perform.

J. Imperative Language: Used generally in Specifications. Except as otherwise indicated, requirements expressed imperatively are to be performed by the Contractor. For clarity of reading at certain locations, contrasting subjective language is used to describe responsibilities that must be fulfilled indirectly by the Contractor, or when so noted by other identified installers or entities.

K. Minimum Quality/Quantity: In every instance, the quality level or quantity shown or specified is intended as minimum quality level or quantity of work to be performed or provided. Except as otherwise specifically indicated, the actual work may either comply exactly with that minimum (within specified tolerances), or may exceed that minimum within reasonable tolerance limits. In complying with requirements, indicated or scheduled numeric values are either minimums or maximums as noted or as appropriate for the context of the requirements. Refer instances of uncertainty to Owner or Engineer via a request for information (RFI) for decision before proceeding.

L. Abbreviations and Symbols: The language of Specifications and other Contract Documents including Drawings is of an abbreviated type in certain instances, and implies words and meanings which will be appropriately interpreted. Actual word abbreviations of
BASIC MATERIALS AND METHODS

1.12 DRAWINGS AND SPECIFICATIONS

A. These Specifications are intended to supplement the Drawings and it will not be the province of the Specifications to mention any part of the work which the Drawings are competent to fully explain in every particular and such omission is not to relieve the Contractor from carrying out portions indicated on the Drawings only.

B. Should items be required by these Specifications and not indicated on the Drawings, they are to be supplied even if of such nature that they could have been indicated thereon. In case of disagreement between Drawings and Specifications, or within either Drawings or Specifications, the better quality or greater quantity of work shall be estimated and the matter referred to the Architect or Engineer for review with a request for information and clarification at least 7 working days prior to bid opening date for issuance of an addendum.

C. The listing of product manufacturers, materials and methods in the various sections of the Specifications, and indicated on the Drawings, is intended to establish a standard of quality only. It is not the intention of the Owner or Engineer to discriminate against any product, material or method that is equal to the standards as indicated and/or specified, nor is it intended to preclude open, competitive bidding. The fact that a specific manufacturer is listed as an acceptable manufacturer should not be interpreted to mean that the manufacturers' standard product will meet the requirements of the project design, Drawings, Specifications and space constraints.

D. The Architect or Engineer and Owner shall be the sole judge of quality and equivalence of equipment, materials and methods.

E. Products by other reliable manufacturers, other materials, and other methods, will be accepted as outlined, provided they have equal capacity, construction, and performance. However, under no circumstances shall any substitution be made without the written permission of the Architect or Engineer and Owner. Request for prior approval must be made in writing 10 days prior to the bid date without fail.

F. Wherever a definite product, material or method is specified and there is not a statement that another product, material or method will be acceptable, it is the intention of the Owner or Engineer that the specified product, material or method is the only one that shall be used without prior approval.

G. Wherever a definite material or manufacturer's product is specified and the Specification states that products of similar design and equal construction from the specified list of
manufacturers may be substituted, it is the intention of the Owner or Engineer that products of manufacturers that are specified are the only products that will be acceptable and that products of other manufacturers will not be considered for substitution without approval.

H. Wherever a definite product, material or method is specified and there is a statement that "OR EQUAL" product, material or method will be acceptable, it is the intention of the Owner or Engineer that the specified product, material or method or an "OR EQUAL" product, material or method may be used if it complies with the specifications and is submitted for review to the Engineer as outline herein.

I. Where permission to use substituted or alternative equipment on the project is granted by the Owner or Engineer in writing, it shall be the responsibility of the Contractor or Subcontractor involved to verify that the equipment will fit in the space available which includes allowances for all required Code and maintenance clearances, and to coordinate all equipment structural support, plumbing and electrical requirements and provisions with the Mechanical (HVAC) Design Documents and all other trades, including Division 26.

J. Changes in architectural, structural, electrical, mechanical, and plumbing requirements for the substitution shall be the responsibility of the bidder wishing to make the substitution. This shall include the cost of redesign by the affected designer(s). Any additional cost incurred by affected subcontractors shall be the responsibility of this bidder and not the owner.

K. If any request for a substitution of product, material or method is rejected, the Contractor will automatically be required to furnish the product, material or method named in the Specifications. Repetitive requests for substitutions will not be considered.

L. The Owner or Engineer will investigate all requests for substitutions when submitted in accordance with above and if accepted, will issue a letter allowing the substitutions.

M. Where equipment other than that used in the design as specified or shown on the Drawings is substituted (either from an approved manufacturers list or by submittal review), it shall be the responsibility of the substituting Contractor to coordinate space requirements, building provisions and connection requirements with his trades and all other trades and pay all additional costs to other trades, the Owner, the Architect or Engineer, if any, due to the substitutions.

1.13 SUBMITTALS

A. Coordinate with Division 1 for submittal timetable requirements, unless noted otherwise within thirty (30) days after the Contract is awarded the Contractor shall submit a minimum of eight (8) complete bound sets of shop drawings and complete data covering each item of equipment or material. The first submittal of each item requiring a submittal must be received by the Architect or Engineer within the above thirty day period. The Architect or Engineer shall not be responsible for any delays or costs incurred due to excessive shop drawing review time for submittals received after the thirty (30) day time limit. The Architect and Engineer will retain one (1) copy each of all shop drawings for their files. Where full size drawings are involved, submit one (1) print and one (1) reproducible sepia or mylar in lieu of eight (8) sets. All literature pertaining to an item subject to Shop Drawing submittal shall be submitted at one time. A submittal shall not contain information from more than one Specification section, but may have a section subdivided into items or equipment as listed in each section. The Contractor may elect to submit each item or type of equipment separately. Each submittal shall include the following items enclosed in a suitable binder:
1. A cover sheet with the names and addresses of the Project, Architect, MEP Engineer, General Contractor and the Subcontractor making the submittal. The cover sheet shall also contain the section number covering the item or items submitted and the item nomenclature or description.

2. An index page with a listing of all data included in the Submittal.

3. A list of variations page with a listing all variations, including unfurnished or additional required accessories, items or other features, between the submitted equipment and the specified equipment. If there are no variations, then this page shall state “NO VARIATIONS”. Where variations affect the work of other Contractors, then the Contractor shall certify on this page that these variations have been fully coordinated with the affected Contractors and that all expenses associated with the variations will be paid by the submitting Contractor. This page will be signed by the submitting Contractor.

4. Equipment information including manufacturer’s name and designation, size, performance and capacity data as applicable. All applicable Listings, Labels, Approvals and Standards shall be clearly indicated.

5. Dimensional data and scaled drawings as applicable to show that the submitted equipment will fit the space available with all required Code and maintenance clearances clearly indicated and labeled at a minimum scale of 1/4" = 1'-0", as required to demonstrate that the alternate or substituted product will fit in the space available.

6. Identification of each item of material or equipment matching that indicated on the Drawings.

7. Sufficient pictorial, descriptive and diagrammatic data on each item to show its conformance with the Drawings and Specifications. Any options or special requirements or accessories shall be so indicated. All applicable information shall be clearly indicated with arrows or another approved method.

8. Additional information as required in other Sections of this Division.

9. Certification by the General Contractor and Subcontractor that the material submitted is in accordance with the Drawings and Specifications, signed and dated in long hand. Submittals that do not comply with the above requirements shall be returned to the Contractor and shall be marked "REVISE AND RESUBMIT".

B. Refer to Division 1 for additional information on shop drawings and submittals.

C. Equipment and materials submittals and shop drawings will be reviewed for compliance with design concept only. It will be assumed that the submitting Contractor has verified that all items submitted can be installed in the space allotted. Review of shop drawings and submittals shall not be considered as a verification or guarantee of measurements or building conditions.

D. Where shop drawings and submittals are marked “REVIEWED”, the review of the submittal does not indicate that submittals have been checked in detail nor does it in any way relieve the Contractor from his responsibility to furnish material and perform work as required by the Contract Documents.

E. Shop drawings shall be reviewed and returned to the Contractor with one of the following categories indicated:

1. REVIEWED: Contractor need take no further submittal action, shall include this submittal in the O&M manual and may order the equipment submitted on.
2. **REVIEWED AS NOTED:** Contractor shall submit a letter verifying that required exceptions to the submittal have been received and complied with including additional accessories or coordination action as noted, and shall include this submittal and compliance letter in the O&M manual. The contractor may order the equipment submitted on at the time of the returned submittal providing the Contractor complies with the exceptions noted.

3. **NOT APPROVED:** Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is not approved, the Contractor will automatically be required to furnish the product, material or method named in the Specifications and/or drawings. Contractor shall not order equipment that is not approved. Repetitive requests for substitutions will not be considered.

4. **REVISE AND RESUBMIT:** Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is marked revise and resubmit, the Contractor will automatically be required to furnish the product, material or method named in the Specifications and/or provide as noted on previous shop drawings. Contractor shall not order equipment marked revise and resubmit. Repetitive requests for substitutions will not be considered.

5. **CONTRACTOR’S CERTIFICATION REQUIRED:** Contractor shall resubmit submittal on material, equipment or method of installation. The Contractor’s stamp is required stating the submittal meets all conditions of the contract documents. The stamp shall be signed by the General Contractor. The submittal will not be reviewed if the stamp is not placed and signed on all shop drawings.

6. **MANUFACTURER NOT AS SPECIFIED:** Contractor shall resubmit new submittal on material, equipment or method of installation when the alternate or substitute is marked manufacturer not as specified, the Contractor will automatically be required to furnish the product, material or method named in the specifications. Contractor shall not order equipment where submittal is marked manufacturer not as specified. Repetitive requests for substitutions will not be considered.

F. Materials and equipment which are purchased or installed without shop drawing review shall be at the risk of the Contractor and the cost for removal and replacement of such materials and equipment and related work which is judged unsatisfactory by the Owner or Engineer for any reason shall be at the expense of the Contractor. The responsible Contractor shall remove the material and equipment noted above and replace with specified equipment or material at his own expense when directed in writing by the Architect or Engineer.

G. Shop Drawing Submittals shall be complete and checked prior to submission to the Engineer for review.

H. Submittals are required for, but not limited to, the following items:

1. Pipe Material and Specialties.
2. Pipe Fabrication Drawings.
4. Variable Air Volume Boxes.
5. Air Handling Units.
6. Chillers.
7. Water Treatment.
8. Expansion Compensation.
11. HVAC Pipe and Duct Insulation.
13. Hydronic Piping and Accessories.
15. Portable Pipe Hanger and Equipment Supports.
17. Duct Fabrication Drawings.
19. Fan Coil Units.
20. Filters.
22. Fire Dampers and Fire Smoke Dampers.
23. Temperature Controls and Control Sequences.
24. Test, Adjust and Balance Reports.
25. Testing, Adjusting and Balancing Contractor Qualifications.
26. Coordination Drawings.

I. Refer to other Division 23 sections for additional shop drawing requirements. Provide samples of actual materials and/or equipment to be used on the Project upon request of the Owner or Engineer.

1.4 COORDINATION DRAWINGS

A. Prepare coordination drawings to a scale of 1/4"=1'-0" or larger; detailing major elements, components, and systems of mechanical equipment and materials in relationship with other systems, installations, and building components. Indicate locations where space is limited for installation and access and where sequencing and coordination of installations are of importance to the efficient flow of the Work, including (but not necessarily limited to) the following:

1. Indicate the proposed locations of pipe, duct, equipment, and other materials. Include the following:
 a. Wall and type locations.
 b. Clearances for installing and maintaining insulation.
 c. Locations of light fixtures and sprinkler heads.
 d. Clearances for servicing and maintaining equipment, including tube removal, filter removal, and space for equipment disassembly required for periodic maintenance.
 e. Equipment connections and support details.
 f. Exterior wall and foundation penetrations.
 g. Routing of storm and sanitary sewer piping.
 h. Fire-rated wall and floor penetrations.
 i. Sizes and location of required concrete pads and bases.
 j. Valve stem movement.
 k. Structural floor, wall and roof opening sizes and details.

2. Indicate scheduling, sequencing, movement, and positioning of large equipment into the building during construction.

3. Prepare floor plans, elevations, and details to indicate penetrations in floors, walls, and ceilings and their relationship to other penetrations and installations.

4. Prepare reflected ceiling plans to coordinate and integrate installations, air distribution devices, light fixtures, communication systems components, and other ceiling-mounted items.
B. This Contractor shall be responsible for coordination of all items that will affect the installation of the work of this Division. This coordination shall include, but not be limited to: voltage, ampacity, capacity, electrical and piping connections, space requirements, sequence of construction, building requirements and special conditions.

C. By submitting shop drawings on the project, this Contractor is indicating that all necessary coordination has been completed and that the systems, products and equipment submitted can be installed in the building and will operate as specified and intended, in full coordination with all other Contractors and Subcontractors.

1.15 RECORD DOCUMENTS

A. Prepare record documents in accordance with the requirements in Special Project Requirements, in addition to the requirements specified in Division 23, indicate the following installed conditions:

1. Duct mains and branches, size and location, for both exterior and interior; locations of dampers, fire dampers, duct access panels, and other control devices; filters, fuel fired heaters, fan coils, condensing units, and roof-top A/C units requiring periodic maintenance or repair.
2. Mains and branches of piping systems, with valves and control devices located and numbered, concealed unions located, and with items requiring maintenance located (i.e., traps, strainers, expansion compensators, tanks, etc.). Valve location diagrams, complete with valve tag chart. Indicate actual inverts and horizontal locations of underground piping.
3. Equipment locations (exposed and concealed), dimensioned from prominent building lines.
5. Contract Modifications, actual equipment and materials installed.

B. Engage the services of a Land Surveyor or Professional Engineer registered in the state in which the project is located as specified herein to record the locations and invert elevations of underground installations.

C. The Contractor shall maintain a set of clearly marked black line record "AS-BUILT" prints on the job site on which he shall mark all work details, alterations to meet site conditions and changes made by "Change Order" notices. These shall be kept available for inspection by the Owner, Architect or Engineer at all times.

D. Refer to Division 1 for additional requirements concerning record drawings. If the Contractor does not keep an accurate set of as-built drawings, the pay request may be altered or delayed at the request of the Architect. Mark the drawings with a colored pencil. Delivery of as-built prints and reproducibles is a condition of final acceptance.

E. The record prints shall be updated on a daily basis and shall indicate accurate dimensions for all buried or concealed work, precise locations of all concealed pipe or duct, locations of all concealed valves, controls and devices and any deviations from the work shown on the Construction Documents which are required for coordination. All dimensions shall include at least two dimensions to permanent structure points.

F. Submit three prints of the tracings for approval. Make corrections to tracings as directed and delivered "Auto Positive Tracings" to the architect. "As-Built" drawings shall be furnished in addition to shop drawings.
G. When the option described in paragraph F., above is not exercised then upon completion of the work, the Contractor shall transfer all marks from the submit a set of clear concise set of reproducible record "AS-BUILT" drawings and shall submit the reproducible drawings with corrections made by a competent draftsman and three (3) sets of black line prints to the Architect or Engineer for review prior to scheduling the final inspection at the completion of the work. The reproducible record "AS-BUILT" drawings shall have the Engineers Name and Seal removed or blanked out and shall be clearly marked and signed on each sheet as follows:

CERTIFIED RECORD DRAWINGS

DATE:

(NAME OF GENERAL CONTRACTOR)

BY: ________________________________

(SIGNATURE)

(NAME OF SUBCONTRACTOR)

BY: ________________________________

(SIGNATURE)

1.16 OPERATING MANUALS

A. Prepare maintenance manuals in accordance with Division 1 and in addition to the requirements specified in Division 1, include the following information for equipment items:

1. Description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of replacement parts.

2. Manufacturer's printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.

3. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.

4. Servicing instructions and lubrication charts and schedules.
1.17 CERTIFICATIONS AND TEST REPORTS

A. Submit a detailed schedule for completion and testing of each system indicating scheduled dates for completion of system installation and outlining tests to be performed and schedule date for each test. This detailed completion and test schedule shall be submittal at least 90 days before the projected Project completion date.

B. Test result reporting forms shall be submitted for review no later than the date of the detailed schedule submitted.

C. Submit 4 copies of all certifications and test reports to the Architect or Engineer for review adequately in advance of completion of the Work to allow for remedial action as required to correct deficiencies discovered in equipment and systems.

D. Certifications and test reports to be submitted shall include, but not be limited to those items outlined in Section of Division 23.

1.18 MAINTENANCE MANUALS

A. Coordinate with Division 1 for maintenance manual requirements, unless noted otherwise bind together in “D ring type” binders by National model no. 79-883 or equal, binders shall be large enough to allow ¼” of spare capacity. Three (3) sets of all approved shop drawing submittals, fabrication drawings, bulletins, maintenance instructions, operating instructions and parts exploded views and lists for each and every piece of equipment furnished under this Specification. All sections shall be typed and indexed into sections and labeled for easy reference and shall utilize the individual specification section numbers shown in the Mechanical Specifications as an organization guideline. Bulletins containing information about equipment that is not installed on the project shall be properly marked up or stripped and reassembled. All pertinent information required by the Owner for proper operation and maintenance of equipment supplied by Division 23 shall be clearly and legibly set forth in memoranda that shall, likewise, be bound with bulletins.

B. Prepare maintenance manuals in accordance with Special Project Conditions, in addition to the requirements specified in Division 23, include the following information for equipment items:

1. Identifying names, name tags designations and locations for all equipment.
2. Valve tag lists with valve number, type, color coding, location and function.
3. Reviewed shop drawing submittals with exceptions noted compliance letter.
4. Fabrication drawings.
5. Equipment and device bulletins and data sheets clearly highlighted to show equipment installed on the project and including performance curves and data as applicable, i.e., description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and model numbers of replacement parts.
6. Manufacturer’s printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.
7. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions, servicing instructions and lubrication charts and schedules.
8. Equipment and motor name plate data.
10. Exploded parts views and parts lists for all equipment and devices.
11. Color coding charts for all painted equipment and conduit.
12. Location and listing of all spare parts and special keys and tools furnished to the Owner.
13. Furnish recommended lubrication schedule for all required lubrication points with listing of type and approximate amount of lubricant required.

C. Refer to Division 1 for additional information on Operating and Maintenance Manuals.
D. Operating and Maintenance Manuals shall be turned over to the Owner or Engineer a minimum of 14 working days prior to the beginning of the operator training period.

1.19 OPERATOR TRAINING

A. The Contractor shall furnish the services of factory trained specialists to instruct the Owner's operating personnel. The Owner's operator training shall include 12 hours of on site training in three 4 hour shifts.

B. Before proceeding with the instruction of Owner Personnel, prepare a typed outline in triplicate, listing the subjects that will be covered in this instruction, and submit the outline for review by the Owner. At the conclusion of the instruction period obtain the signature of each person being instructed on each copy of the reviewed outline to signify that he has a proper understanding of the operation and maintenance of the systems and resubmit the signed outlines.

C. Refer to other Division 23 Sections for additional Operator Training requirements.

1.20 FINAL COMPLETION

A. At the completion of the work, all equipment and systems shall be tested and faulty equipment and material shall be repaired or replaced. Refer to Sections of Division 23 for additional requirements.

B. Clean and adjust all air distribution devices and replace all air filters immediately prior to final acceptance.

C. Touch up and/or refinish all scratched equipment and devices immediately prior to final acceptance.

1.21 CONTRACTOR'S GUARANTEE

A. Use of the HVAC systems to provide temporary service during construction period will not be allowed without permission from the Owner in writing and if granted shall not be cause warranty period to start, except as defined below.

B. Contractor shall guarantee to keep the entire installation in repair and perfect working order for a period of one year after its completion and final acceptance, and shall furnish free of additional cost to the Owner all materials and labor necessary to comply with the above guarantee throughout the year beginning from the date of issue of Substantial Completion, Beneficial Occupancy by the Owner or the Certificate of Final Payment as agreed upon by all parties.
C. This guarantee shall not include cleaning or changing filters except as required by testing, adjusting and balancing.

D. All air conditioning compressors shall have parts and labor guarantees for a period of not less than 5 years beyond the date of final acceptance.

E. Refer to Sections in Division 23 for additional guarantee or warranty requirements.

1.22 TRANSFER OF ELECTRONIC FILES

A. Project documents are not intended or represented to be suitable for reuse by Architect/Owner or others on extensions of this project or on any other project. Any such reuse or modification without written verification or adaptation by Engineer, as appropriate for the specific purpose intended, will be at Architect/Owner's risk and without liability or legal exposure to Engineer or its consultants from all claims, damages, losses and expense, including attorney's fees arising out of or resulting thereof.

B. Because data stored in electric media format can deteriorate or be modified inadvertently, or otherwise without authorization of the data's creator, the party receiving the electronic files agrees that it will perform acceptance tests or procedures within sixty (60) days of receipt, after which time the receiving party shall be deemed to have accepted the data thus transferred to be acceptable. Any errors detected within the sixty (60) day acceptance period will be corrected by the party delivering the electronic files. Engineer is not responsible for maintaining documents stored in electronic media format after acceptance by the Architect/Owner.

C. When transferring documents in electronic media format, Engineer makes no representations as to the long term compatibility, usability or readability of documents resulting from the use of software application packages, operating systems, or computer hardware differing from those used by Engineer at the beginning of the Project.

D. Any reuse or modifications will be Contractor's sole risk and without liability or legal exposure to Architect, Engineer or any consultant.

E. The Texas Board of Architectural Examiners (TBAE) has stated that it is in violation of Texas law for persons other than the Architect of record to revise the Architectural drawings without the Architect's written consent.

It is agreed that “MEP” hard copy or computer-generated documents will not be issued to any other party except directly to the Architect/Owner. The contract documents are contractually copyrighted and cannot be used for any other project or purpose except as specifically indicated in AIA B-141 Standard Form of Agreement Between Architect and Owner.

If the client, Architect/Owner, or developer of the project requires electronic media for “record purposes”, then an AutoCAD based compact disc (“CD”) will be prepared. The “CD” will be submitted with all title block references intact and will be formatted in a “plot” format to permit the end user to only view and plot the drawings. Revisions will not be permitted in this configuration.

F. At the Architect/Owner’s request, Engineer will prepare one “CD” of electronic media to assist the contractor in the preparation of submittals. The Engineer will prepare and submit the “CD” to the Architect/Owner for distribution to the contractor. All copies of the “CD” will be reproduced for a cost of reproduction fee of Five Hundred Dollars ($500.00) per “CD”.

The “CD” will be prepared and all title blocks, names and dates will be removed. The “CD” will be prepared in a “.dwg” format to permit the end user to revise the drawings.

G. This Five Hundred Dollars ($500.00) per “CD” cost of reproduction will be paid directly from the Contractor to the Engineer. The “CD” will be prepared only after receipt of the Five Hundred Dollars ($500.00). The Five Hundred Dollars ($500.00) per “CD” cost of reproduction is to only recover the cost of the manhours necessary to reproduce the documents. It is not a contractual agreement between the Contractor and Engineer to provide any engineering services, nor any other service.
PART 2 - PRODUCTS

2.01 MATERIALS

A. Provide materials and equipment manufactured by a domestic United States manufacturer.

B. Access Doors: Provide access doors as required for access to equipment, valves, controls, cleanouts and other apparatus where concealed. Access doors shall have concealed hinges and screw driver cam locks.

C. All access panels located in wet areas such as restrooms, locker rooms, shower rooms, kitchen and any other wet areas shall be constructed of stainless steel.

D. Access Doors: shall be as follows:
 1. Plastic Surfaces: Milcor Style K.
 2. Ceramic Tile Surface: Milcor Style M.
 3. Drywall Surfaces: Milcor Style DW.
 4. Install panels only in locations approved by the Architect.

PART 3 - EXECUTION

3.01 ROUGH-IN

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected via reviewed submittals.

B. Refer to equipment specifications in Divisions 2 through 48 for additional rough-in requirements.

3.02 MECHANICAL INSTALLATIONS

A. General: Sequence, coordinate, and integrate the various elements of mechanical systems, materials, and equipment. Comply with the following requirements:

 1. Coordinate mechanical systems, equipment, and materials installation with other building components.
 2. Verify all dimensions by field measurements.
 3. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for mechanical installations.
 4. Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 5. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the Work. Give particular attention to large equipment requiring positioning prior to closing in the building.
 6. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible.
 7. Coordinate connection of mechanical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies. Provide required connection for each service.
8. Install systems, materials, and equipment to conform with architectural action markings on submittal, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, resolve conflicts and route proposed solution to the Architect for review.

9. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed exposed in finished spaces.

10. Install mechanical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations. Extend grease fittings to an accessible location and label.

11. Install access panel or doors where units are concealed behind finished surfaces. Access panels and doors are specified.

12. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.

14. The equipment to be furnished under this Specification shall be essentially the standard product of the manufacturer. Where two or more units of the same class of equipment are required, these units shall be products of a single manufacturer; however, the component parts of the system need not be the product of the same manufacturer.

15. The architectural and structural features of the building and the space limitations shall be considered in selection of all equipment. No equipment shall be furnished which will not suit the arrangement and space limitations indicated.

16. Lubrication: Prior to start-up, check and properly lubricate all bearings as recommended by the manufacturer.

17. Where the word "Concealed" is used in these Specifications in connection with insulating, painting, piping, ducts, etc., it shall be understood to mean hidden from sight as in chases, furred spaces or suspended ceilings. "Exposed" shall be understood to mean the opposite of concealed.

18. Identification of Mechanical Equipment:
 a. Mechanical equipment shall be identified by means of nameplates permanently attached to the equipment. Nameplates shall be engraved laminated plastic or etched metal. Shop drawings shall include dimensions and lettering format for approval. Attachments shall be with escutcheon pins, self-tapping screws, or machine screws.
 b. Tags shall be attached to all valves, including control valves, with nonferrous chain. Tags shall be brass and at least 1-1/2 inches in diameter. Nameplate and tag symbols shall correspond to the identification symbols on the temperature control submittal and the "as-built" drawings.

3.03 CUTTING AND PATCHING

A. Protection of Installed Work: During cutting and patching operations, protect adjacent installations.

B. Perform cutting, fitting, and patching of mechanical equipment and materials required to:

1. Uncover Work to provide for installation of ill-timed Work.
2. Remove and replace defective Work.
3. Remove and replace Work not conforming to requirements of the Contract Documents.
4. Remove samples of installed Work as specified for testing.
5. Install equipment and materials in existing structures.
6. Upon written instructions from the Engineer, uncover and restore Work to provide for Engineer/Owner's observation of concealed Work, without additional cost to the Owner.
7. Patch existing finished surfaces and building components using new materials matching existing materials and experienced Installers. Patch finished surfaces and building components using new materials specified for the original installation and experienced Installers; refer to the materials and methods required for the surface and building components being patched; Refer to Section "DEFINITIONS" for definition of "Installer."

C. Cut, remove and legally dispose of selected mechanical equipment, components, and materials as indicated, including but not limited to removal of mechanical piping, mechanical ducts and HVAC units, and other mechanical items made obsolete by the new Work.

D. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.

E. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.

3.04 WORK SEQUENCE, TIMING, COORDINATION WITH OWNER

A. The Owner will cooperate with the Contractor, however, the following provisions must be observed:

1. A meeting will be held at the project site, prior to any construction, between the Owner's Representative, the General Contractor, the Sub-Contractors and the Engineer to discuss Contractor's employee parking space, access, storage of equipment or materials, and use of the Owner's facilities or utilities. The Owner's decisions regarding such matters shall be final.

2. During the construction of this project, normal facility activities will continue in existing buildings until renovated areas are completed. Plumbing, fire protection, lighting, electrical, communications, heating, air conditioning, and ventilation systems will have to be maintained in service within the occupied spaces of the existing building.

3.05 DEMOLITION AND WORK WITHIN EXISTING BUILDINGS

A. In the preparation of these documents every effort has been made to show the approximate locations of, and connections to the existing piping, duct, equipment and other apparatus related to this phase of the work. However, this Contractor shall be responsible for verifying all of the above information. This Contractor shall visit the existing site to inspect the facilities and related areas. This Contractor shall inspect and verify all details and requirements of all the Contract Documents, prior to the submission of a proposal. All discrepancies between the Contract Documents and actual job-site conditions shall be resolved by his contractor, who shall produce drawings that shall be
B. All equipment and/or systems noted on the Drawings "To Remain" shall be inspected and tested on site to certify its working condition. A written report on the condition of all equipment to remain, including a copy of the test results and recommended remedial actions and costs shall be made by this Contractor to the Architect/Engineer for review.

C. All equipment and/or systems noted on the Drawings "To Be Removed" shall be removed including, associated pipe and duct pipe and duct hangers and/or line supports. Where duct or pipe is to be capped for future or end of line use, it shall be properly tagged with its function or service appropriately identified. Where existing equipment is to be removed or relocated and has an electric motor or connection, the Electrical Contractor shall disconnect motor or connection, remove wiring to a safe point and this Contractor shall remove or relocate motor or connection along with the equipment.

D. During the construction and remodeling, portions of the Project shall remain in service. Construction equipment, material tools, extension cords, etc., shall be arranged so as to present minimum hazard or interruption to the occupants of the building. None of the construction work shall interfere with the proper operation of the existing facility or be so conducted as to cause harm or danger to persons on the premises. All fire exits, stairs or corridors required for proper access, circulation or exit shall remain clear of equipment, materials or debris. The General Contractor shall maintain barricades, other separations in corridors and other spaces where work is conducted.

E. Certain work during the demolition phase of construction may require overtime or night time shifts or temporary evacuation of the occupants. Coordinate and schedule all proposed down time at least seventy-two (72) hours in advance in writing.

F. Any salvageable equipment as determined by the Owner, shall be delivered to the Owner, and placed in storage at the location of his choice. All other debris shall be removed from the site immediately.

G. Equipment, piping or other potential hazards to the working occupants of the building shall not be left overnight outside of the designated working or construction area.

H. Make every effort to minimize damage to the existing building and the owner’s property. Repair, patch or replace as required any damage that might occur as a result of work at the site. Care shall be taken to minimize interference with the Owner’s activities during construction and to keep construction disrupted areas to a minimum. Corporate with the Owner and other trades in scheduling and performance of the work.

I. Include in the contract price all rerouting of existing pipe, duct, etc., and the reconnecting of the existing equipment as necessitated by field conditions to allow the installation of the new systems regardless of whether or not such rerouting, reconnecting or relocating is shown on the drawings. Furnish all temporary pipe, duct, controls, etc., as required to maintain heating, cooling, and ventilation services for the existing areas with a minimum of interruption.

J. All existing pipe, duct, materials, equipment, controls and appurtenances not included in the remodel or alteration areas are to remain in place.

K. Pipe, duct, equipment and controls serving mechanical and owner’s equipment, etc., which is to remain but which is served by pipe, duct, equipment and controls that are submitted to the Architect/Engineer for review. All labor and materials required to perform the work described shall be apart of this Contract.
disturbed by the remodeling work, shall be reconnected in such a manner as to leave this equipment in proper operating condition.

L. It is the intention of this Section of the Specifications to outline minimum requirements to furnish the Owner with a turn-key and operating system in cooperation with other trades with a minimum of disruption or downtime.

M. Refer to Architectural "Demolition and/or Alteration" plans for actual location of walls, ceiling, etc., being removed and/or remodeled.

END OF SECTION 230200
SECTION 23 05 13 – COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.01 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. The Basic Materials and Methods, Section 23 02 00, are included as a part of this Section as though written in full in this document.

1.02 SCOPE

A. Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for owner’s use.

B. WORK SPECIFIED ELSEWHERE:

1. Painting
2. Automatic temperature controls.
3. Power control wiring to motors and equipment.

1.03 WARRANTY

Warrant the Work specified herein for one year and motors for five years beginning on the date of substantial completion against becoming unserviceable or causing an objectionable appearance resulting from either defective or nonconforming materials and workmanship.

1.04 SUBMITTALS

A. SHOP DRAWINGS: Indicate size material, and finish. Show locations and installation procedures. Include details of joints, attachments, and clearances.

B. PRODUCT DATA: Submit schedules, charts, literature, and illustrations to indicate the performance, fabrication procedures variations, and accessories.

C. MOTOR NAMEPLATE INFORMATION: Manufacturer's name, address, utility and operating data.

D. Refer to Division One for additional information.

1.05 DELIVERY AND STORAGE

A. DELIVERY: Deliver clearly labeled, undamaged materials in the manufacturers’ unopened containers.

B. TIME AND COORDINATION: Deliver materials to allow for minimum storage time at the project site. Coordinate delivery with the scheduled time of installation.

C. STORAGE: Store materials in a clean, dry location, protected from weather and abuse.

PART 2 - PRODUCTS
2.01 ELECTRIC MOTORS

A. APPROVED MANUFACTURERS: Provide motors by a single manufacturer as much as possible.
 1. Baldor
 2. Marathon
 3. Siemens-Allis
 4. General Electric
 5. U.S. Motor

B. TEMPERATURE RATING: Provide insulation as follows:
 1. CLASS B: 40 degrees C maximum.
 2. CLASS F: Between 40 degrees C and 65 degrees C maximum.
 a. Totally enclosed motors.

C. STARTING CAPABILITY: As required for service indicated five starts minimum per hour.

D. PHASES AND CURRENT: Verify electrical service compatibility with motors to be used.
 1. UP TO 1/2 HP: Provide permanent split, capacitor-start single phase with inherent overload protection.
 2. 3/4 HP AND LARGER: Provide squirrel-cage induction polyphone.
 3. Provide two separate windings on 2-speed polyphone motors.
 4. Name plate voltage shall be the same as the circuit's normal voltage, serving the motor.

E. SERVICE FACTOR: 1.15 for polyphase; 1.35 for single phase.

F. FRAMES: U-frames 1.5 hp. and larger.

G. BEARINGS: Provide sealed re-greaseable ball bearings; with top mounted zerc lubrication fittings and bottom side drains minimum average life 100,000 hours typically, and others as follows:
 1. Design for thrust where applicable.
 2. PERMANENTLY SEALED: Where not accessible for greasing.
 3. SLEEVE-TYPE WITH OIL CUPS: Light duty fractional hp. motors or polyphase requiring minimum noise level.

H. ENCLOSURE TYPE: Provide enclosures as follows:
 1. CONCEALED INDOOR: Open drip proof.
 2. EXPOSED INDOOR: Guarded.
 3. OUTDOOR TYPICAL: Type II. TEC.
 4. OUTDOOR WEATHER PROTECTED: Type I. TEA.

I. OVERLOAD PROTECTION: Built-in sensing device for stopping motor in all phase legs and signaling where indicated for fractional horse power motors.

J. NOISE RATING: "Quiet" except where otherwise indicated.

K. EFFICIENCY: Minimum full load efficiency listed in the following table, when tested in accordance with IEEE Test Procedure 112A, Method B, including stray load loss measure.
NEMA Efficiency

<table>
<thead>
<tr>
<th>Motor Horsepower</th>
<th>INDEX Letter Minimum Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800 RPM Synchronous Speed</td>
<td></td>
</tr>
<tr>
<td>7.5-10</td>
<td>F 89.5</td>
</tr>
<tr>
<td>15-20</td>
<td>E 91.0</td>
</tr>
<tr>
<td>25-30</td>
<td>E 92.4</td>
</tr>
<tr>
<td>40</td>
<td>D 93.0</td>
</tr>
<tr>
<td>50</td>
<td>C 93.0</td>
</tr>
<tr>
<td>60</td>
<td>C 93.6</td>
</tr>
<tr>
<td>75</td>
<td>C 94.1</td>
</tr>
<tr>
<td>100-125</td>
<td>B 94.5</td>
</tr>
<tr>
<td>150-200</td>
<td>B 95.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1200 RPM Synchronous Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
</tr>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25-30</td>
</tr>
<tr>
<td>40-50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>100-125</td>
</tr>
<tr>
<td>150-200</td>
</tr>
</tbody>
</table>

2.02 MOTOR CONTROLLERS (STARTERS)

A. All motor controllers (for equipment furnished under Division 23) shall be furnished under Division 23 and installed under Division 26 unless otherwise noted on the plans.

1. Starters shall be provided for 3 phase motors 3/4 horsepower and greater.

B. Motor starters shall be furnished as follows.

1. GENERAL: Motor starters shall be Square D Company Class 8536 across-the-line magnetic type, full-voltage, non-reversing (FAVOR) starter. All starters shall be constructed and tested in accordance with the latest NEMA standards, sizes and horsepower. ICE sizes are not acceptable. Starters shall be mounted in a general purpose dead front, painted steel enclosure and surface-mounted. Provide size and number of poles as shown and required by equipment served. Provide two speed, two winding or two speed, single winding motor starter as required for two speed motors.

2. CONTACTS: Magnetic starter contacts shall be double break solid silver alloy. All contacts shall be replaceable without removing power wiring or removing starter from panel. The starter shall have straight-through wiring.

3. OPERATING COILS: Operating coils shall be 120 volts and shall be of molded construction. When the coil fails, the starter shall open and shall not lock in the closed position.

4. OVERLOAD RELAYS: Provide manual reset, trip-free Class 20 overload relays in each phase conductor in of all starters. Overload relays shall be melting alloy type with visual trip indication. All 3 phase and single phase starters shall have
one overload relay in each underground conductor. Relay shall not be field adjustable from manual to automatic reset. Provide 6 overload relays for two speed motor starters.

5. PILOT LIGHTS: Provide a red running pilot light for all motor starters. Pilot lights shall be mounted in the starter enclosure cover. Pilot lights shall be operated from an interlock on the motor starter and shall not be wired across the operating coil.

6. CONTROLS: Provide starters with HAND-OFF-AUTOMATIC switches. Coordinate additional motor starter controls with the requirements of Division 23. Motor starter controls shall be mounted in the starter enclosure cover.

7. CONTROL POWER TRANSFORMER: Provide a single-phase 480 volt control power transformer with each starter for 120 volt control power. Connect the primary side to the line side of the motor starter. The primary side shall be protected by a fuse for each conductor. The secondary side shall have one leg fused and one leg grounded. Arrange transformer terminals so that wiring to terminals will not be located above the transformer.

8. AUXILIARY CONTACTS: Each starter shall have one normally open and one normally closed convertible auxiliary contact in addition to the number of contacts required for the "holding interlock", remote monitoring, and control wiring. In addition, it shall be possible to field-install three more additional auxiliary contacts without removing existing wiring or removing the starter from its enclosure.

9. UNIT Wiring: Unit shall be completely pre-wired to terminals to eliminate any interior field wiring except for line and load power wiring and HVAC control wiring.

10. ENCLOSURES: All motor starter enclosures shall be NEMA 1, general purpose enclosures or NEMA-3R if mounted exposed to high moisture conditions. Provide NEMA 4X when located by cooling towers.

11. POWER MONITOR: Provide a square "D" 8430 MPS phase failure and under-voltage relay, base and wiring required for starters serving motors 5 horsepower and larger. Set the under-voltage setting according to minimum voltage required for the motor to operate within its range.

C. APPROVED MANUFACTURERS: Controller numbers are based on first named manufacturer. Provide one of the following manufacturer's.

1. Siemens.
2. Square D.

2.03 COMBINATION MOTOR STARTERS

A. GENERAL: Combination motor starters shall consist of a magnetic starter and a fusible or non-fusible disconnect switch in a dead front, painted steel NEMA 1 enclosure unless otherwise noted and shall be surface-mounted. Size and number of poles shall as shown and required by equipment served. Combination motor starters shall be as specified for motor starters in Paragraph 2.01/B, except as modified herein.

B. DISCONNECT SWITCH: Disconnect switches shall be as specified in Section 26 28 16.

C. APPROVED MANUFACTURERS: Controller numbers are based on first named manufacturer. Provide one of the following manufacturer's.

1. Siemens.
2. Square D.
PART 3 - EXECUTION

3.01 All equipment shall be installed in accordance with the manufacturers’ recommendations and printed installation instructions.

3.02 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Contractors’ price shall include all items required as per manufacturers’ requirements.

3.03 INSTALLATION

 A. GENERAL: Install in a professional manner. Any part or parts not meeting this requirement shall be replaced or rebuilt without extra expense to Owner.

 B. Install rotating equipment in static and dynamic balance.

 C. Provide foundations, supports, and isolators properly adjusted to allow minimum vibration transmission within the building.

 D. Correct objectionable noise or vibration transmission in order to operate equipment satisfactorily as determined by the Engineer.

END OF SECTION 230513
SECTION 23 05 26 - VARIABLE FREQUENCY MOTOR SPEED CONTROL FOR HVAC EQUIPMENT

PART 1 – GENERAL

1.01 GENERAL REQUIREMENTS

A. Furnish and install a complete adjustable frequency motor speed control for the following item:

1. Variable volume air handling units
2. Chilled water pumps

B. Certified noise data shall be submitted by drive manufacturer. Noise generated by variable frequency motor speed control drive shall not exceed preferred “RC” as listed in 1995 ASHRAE HVAC Applications, Chapter 43 Sound and Vibration Control, Table 2 Criteria For Acceptable HVAC Noise in Unoccupied Rooms.

1.02 RELATED SECTIONS

A. Section 23 02 00 – Basic Materials and Methods
B. Section 23 05 13 – Common Motor Requirements for HVAC Equipment
C. Section 23 05 48 – Vibration and Seismic Controls for HVAC Piping and Equipment
D. Section 23 05 93 – Testing, Adjusting and Balancing
E. Section 23 09 00 – Building Automation and Controls System
F. Section 23 21 23 – Hydronic Pumps
G. Section 23 73 13 – Modular Indoor Central Station Air Handling Units

SUBMITTALS

A. Submit shop drawings and product data under provisions of Division One.

1.03 WARRANTY

A. Warranty shall be 24 months from the date of certified start-up, not to exceed 30 months from the date of shipment. The warranty shall include all parts, labor, travel, time and expenses. There shall be 365/24 support available via a toll free phone number.

1.04 DELIVERY, STORAGE AND HANDLING

A. Equipment shall be stored and handled per manufacturer’s instructions.

PART 2 – PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

A. Yaskawa/Magnetek
2.02 ADJUSTABLE FREQUENCY INVERTER

A. The AFD package as specified herein shall be enclosed in a NEMA 12 enclosure, for interior applications and NEMA 4X stainless steel for exterior applications, completely assembled and tested by the manufacturer in an ISO9001 facility. The AFD shall operate from a line of +30% over nominal, and the undervoltage trip level shall be 35% under the nominal voltage as a minimum.

B. The fused input shall utilize fast acting current limiting type per manufacturer recommendations.

C. The variable frequency power and logic unit shall be completely solid state. The unit shall transform 480 volt, 3 phase, 60 hertz input power into frequency and voltage controlled, 3 phase output power suitable to provide positive speed and torque control to the fan motor. The speed control shall be step-less throughout the speed range under variable torque load on a continuous basis. The adjustable frequency control shall be of a pulse width modulated type utilizing a full wave diode bridge rectifier and shall have a power factor of 0.95 or better at all motor loads.

D. All AFD’s shall have the same customer interface, including a backlit LCD two line digital display, and keypad, regardless of horsepower rating. The keypad is to be used for local control, for setting all parameters, and for stepping through the displays and menus. The keypad shall be removable, capable of remote mounting, and shall have it’s own non-volatile memory. The keypad shall allow for uploading and downloading of parameter settings as an aid for the start-up of multiple AFD’s. The keypad shall include Hand-Off-Auto membrane selections. When in “Hand”, the AFD will be started and the speed will be controlled from the up/down arrows. When in “Off”, the AFD will be stopped. When in “Auto”, the AFD will start via an external contact closure and the AFD speed will be controlled via an external speed reference.

E. The adjustable frequency inverter shall conduct no radio frequency interference (RFI) back to the input power line.

F. The AFD shall have an integral 3% impedance line reactors to reduce the harmonics to the power line and to add protection from AC line transients. The inverter/reactor shall be a single wiring point.

2.03 SELF PROTECTION

A. The following features for self-protection shall be included:

1. The overload rating of the drive shall be 110% of its normal duty current rating for 1 minute every 10 minutes. The minimum FLA rating shall meet or exceed the values in the NEC/UL table 430-150 for 4-pole motors.
2. Limit the output current in under 50 microseconds due to phase to phase short circuits or severe overload conditions.
3. Protect the inverter due to non-momentary power or phase loss. The undervoltage trip shall activate automatically when the line voltage drops 15% below rated input voltage.
4. Protect the inverter due to voltage levels in excess of its rating. The overvoltage trip shall activate automatically when the DC bus in the controller exceeds 1000 VDC.

5. Protect the inverter from elevated temperatures in excess of its rating. An indicating light that begins flashing within 10 degrees C of the trip shall be provided to alert the operator to the increasing temperature condition. When the overtemperature trip point is reached, this light shall be continuously illuminated.

6. The inverter shall be equipped such that a trip condition resulting from overcurrent, undervoltage, overvoltage or overtemperature shall be automatically reset, and the inverter shall be automatically reset, and the inverter shall automatically restart upon removal, or correction of the faulty condition.

7. Status lights for indication of conditions described above shall be provided. A SPDT contact for remote indication shall be provided. Additionally, status lights to show power on, zero speed, and drive enabled shall be provided. All status lights shall be self-contained in the front panel of the unit and shall be duplicated for ease of troubleshooting on the inside of the unit.

8. Current and voltage signals shall be isolated from logic circuitry.

9. Drive logic shall be microprocessor based.

10. In the event of a sustained power loss, the control shall shut down safely without component failure. Upon return of power, the system shall automatically return to normal operation if the start is in the “On” condition.

11. In the event of a momentary power loss, the control shall be shut down safely without component failure. Upon return of power, the system shall automatically return to normal operation (if the start is in the “On” position) being able to restart into a rotating motor regaining positive speed control without shutdown or component failure.

12. In the event of a phase to phase short circuit, the control shall shut down safely without component failure.

13. In the event that an input power contactor is opened or closed while the control is activated, no damage shall result.

14. To facilitate startup and troubleshooting, the control shall operate without a motor or any other equipment connected to the inverter output.

2.04 ELECTRICAL CONSTANT SPEED BYPASS

A. Provide all components and circuitry necessary to provide manual full bypass of the inverter. The bypass package shall be mounted in a cabinet common with the inverter and shall be constructed in such as manner that the inverter can be removed for repair while still operating the motor in the “bypass” mode. Fast-acting semi-conductor with a fuse block shall be provided to isolate the drive for service. Bypass designs that have no such fuses must have a lockable disconnect that isolates the drive while running in bypass mode. Three contactor bypass schemes are not acceptable, as the input contactor is not an NEC approved disconnecting device and poses a safety hazard. A common start/stop signal shall be used for both the variable frequency drive mode and bypass mode. Manual bypass shall contain the following:

1. Two contactors mechanically interlocked via a three position through the door selector switch or keypad to provide the following controls:
 a. “Inverter” mode connects the motor the output of the inverter.
 b. “Bypass” mode connects the motor to the input since wave power. Transfer must occur with input disconnect open. Motor is protected via electronic overload.
 c. “Off” mode disconnects motor from all input power.
d. A molded case circuit breaker with door interlocked handle (lock out type) that interrupts input power to both the bypass circuitry and the drive.

e. Customer Interlock Terminal Strip – provide a separate terminal strip for connection of freeze, fire, smoke contacts, and external start command. All external safety interlocks shall remain fully functional whether the system is Hand, Auto, or Bypass modes. The remote start/stop contact shall operate in AFD and bypass modes.

f. An electronic overload selectable for class 20 or 30 shall provide protection of the motor in bypass mode.

2. The following indicating lights (LED type) shall be provided. A test mode or push to test feature shall be provided.

 a. Power-on
 b. External fault
 c. Drive mode selected
 d. Bypass mode selected
 e. Drive running
 f. Bypass running
 g. Drive fault
 h. Bypass fault
 i. Bypass-H-O-A mode
 j. Automatic transfer to bypass selected

3. The following relay (form C) outputs from the bypass shall be provided:

 a. System started
 b. System running
 c. Bypass override enabled
 d. Drive fault
 e. Bypass fault (motor overload or underload (broken belt))
 f. Bypass H-O-A position

4. The AFD shall include a “run permissive circuit” that will provide a normally open contact any time a run command is provided (local or remote start command in AFD or bypass mode). The AFD system (AFD or bypass) shall not operate the motor until it receives a dry contact closure from a damper or valve end-switch). When the AFD systems safety interlock (fire detector, freezeast, high static pressure switch, etc) opens, the motor shall coast to a stop and the run permissive contact shall open, closing the damper or valve.

5. There shall be an internal switch to select manual or automatic bypass.

6. There shall be an adjustable current sensing circuit for the bypass to provide loss of load indication when in the bypass mode.

7. The bypass mode must include a undervoltage and phase loss relay to protect the motor from single phase power and undervoltage conditions.

 a. Bypass shall be UL listed.
 b. Change: Bypass shall carry a UL 508 label.

2.05 FEATURES AND SPECIFICATIONS
A. Output frequency shall not vary with load nor with any input frequency variations. Output frequency shall not vary with +/-10% input voltage changes. Output frequency shall not vary with temperature changes within the ambient specification.

B. The following functions shall be performed internally by the drive. No auxiliary equipment shall be required. The output frequency shall be adjusted in proportion to 4-20 m.A. signal.

C. A zero to five volt DC signal shall be provided for remote indication. This 0 to 5 volt DC signal shall vary in direct proportion to the controller speed.

D. The controller shall be started or stopped by a contact closure or through serial communications.

E. A single pole, double throw contact shall be provided for remote indication. Contact will change state when any trip condition has occurred. (contact rated for 12-250 VAC-2 AMPS).

F. A second single pole, double throw contact shall be provided for remote indication. Contact will state when the VFD receives a run command (contact rated for 12-250 VAC-24 AMPS).

G. PID Setpoint controller shall be standard in the drive, allowing a pressure or flow signal to be connected to the AFD, using the microprocessor in the AFD for the closed loop control. The AFD shall have 250 ma of 24 VDC auxiliary power and be capable of loop powering a transmitter supplied by others. The PID setpoint shall be adjustable from the AFD keypad, analog inputs, or over the communications bus.

H. Unit to operate from a 4 to 20 m.A. Vdc input signal and shall have hand-off-auto switch and door mounted potentiometer controls for manual speed selection.

I. Acceleration and deceleration times shall be adjustable from 30 to 300 seconds.

J. The drive shall have the ability to invert the speed signal input, as well as having offset and gain controls for speed signal conditioning.

K. Minimum and maximum speeds shall be adjustable in automatic and manual modes.

L. Hazard inputs shall be provided, capable of up to tow inputs (fire, freeze). These shall each be capable of safely shutting down the inverter and illuminating a front panel hazard depicting that a hazard condition, turned the inverter off.

M. The inverter shall be a starter, containing a door interlocked input disconnect switch and manual reset motor electronic overloads, with accessible reset on front door, when a bypass is not specified.

N. Solid state ground fault interrupt circuit.

O. The LED display shall monitor and display four parameters on a single display (i.e. frequency command, output frequency, output current and torque).

P. A N.O. auxiliary run-time contact shall be provided for control signaling to auxiliary equipment. Contact shall close when the pump is brought on line and open when the pump is taken off line. Contact shall be rated 20 amps at 120 volts.
Q. Inverter shall be UL listed.

R. Certified factory start-up shall be provided for each drive by a factory authorized service center. A certified start-up form shall be filled out for each drive with a copy provided to the owner, and a copy kept on file at the manufacturer.

S. Factory trained application engineering and service personnel that are thoroughly familiar with the AFD products offered shall be locally available at both the specifying and installation locations. A 24/365 technical support line shall be available on a toll-free line.

A computer based training CD or 8-hour professionally generated video (VCR format) shall be provided to the owner at the time of project closeout. The training shall include installation, programming and operation of the AFD, bypass and serial communication.

T. Provide a motor end surge control voltage suppressive filter if the VFD manufacturer can not limit their voltage surges to under 1000 volt at 100 feet.

U. Provide a motor acoustic noise reduction filter capable of approximately 12 dBA attenuation, if the VFD raises the dBA level above 3 dBA at a distance of 3 feet from the motor.

V. Provide each unit with a 3% reactor which is mounted on both the positive and negative DC bus. The reactor shall be a single wiring point and mounted internally to the drive.

PART 3 – INSTALLATION

3.01 Install units in accordance with manufacturer’s published installation instructions. Variable frequency speed control shall be located so that wiring to motor does not exceed 100 feet.

END OF SECTION 230526
SECTION 23 05 29 – HANGERS AND SUPPORT FOR PIPING AND EQUIPMENT - HVAC

PART 1 - GENERAL

1.01 WORK INCLUDED
 A. Pipe, and equipment hangers, supports, and associated anchors.
 B. Sleeves and seals.
 C. Flashing and sealing equipment and pipe stacks.

1.02 RELATED WORK
 A. Section 21 00 00 – Fire Suppression.
 B. Section 22 10 00 – Plumbing Piping and Pumps.
 C. Section 23 05 48 – Vibration and Seismic Controls for HVAC Piping and Equipment.
 D. Section 23 07 16 – HVAC Equipment Insulation.
 E. Section 23 07 19 – HVAC Piping Insulation.
 F. Section 23 21 13 – Above Ground Hydronic Piping.
 G. Section 23 21 16 – Underground Hydronic Piping.

1.03 REFERENCES
 C. NFPA 14 - Standard for the Installation of Standpipe and Hose Systems.

1.04 QUALITY ASSURANCE
 A. Supports for Sprinkler Piping: In conformance with NFPA 13.
 B. Supports for Standpipes: In conformance with NFPA 14.

1.05 SUBMITTALS
 A. Submit shop drawings and product data under provisions of Division One.
 B. Indicate hanger and support framing and attachment methods.

PART 2 - PRODUCTS

2.01 PIPE HANGERS AND SUPPORTS
 A. Hangers for Pipe Sizes 1/2 to 1-1/2 Inch Malleable iron, adjustable swivel, split ring.
B. Hangers for Pipe Sizes 2 to 4 Inches Carbon steel, adjustable, clevis.

C. Hangers for Pipe Sizes 6 Inches and Over: Adjustable steel yoke, cast iron roll, double hanger.

D. Multiple or Trapeze Hangers: Steel channels with welded spacers and hanger rods; cast iron roll and stand for pipe sizes 6 inches and over.

E. Wall Support for Pipe Sizes to 3 Inches: Cast iron hook.

F. Wall Support for Pipe Sizes 4 Inches and Over: adjustable steel yoke and cast iron roll.

G. Vertical Support: Steel riser clamp.

H. Floor Support for Pipe Sizes to 4 Inches: Cast iron adjustable pipe saddle, locknut nipple, floor flange, and concrete pier or steel support.

I. Floor Support for Pipe Sizes 6 Inches and Over: Adjustable cast iron roll and stand, steel screws, and concrete pier or steel support.

J. Roof Pipe Supports and Hangers: Galvanized Steel Channel System as manufactured by Portable Pipe Hangers, Inc. or approved equal.

L. For installation of protective shields refer to specification section 22 05 29 - 3.03.

M. Shields for Vertical Copper Pipe Risers: Sheet lead.

N. Pipe Rough-In Supports in Walls/Chases: Provide preformed plastic pipe supports, Sioux Chief “Pipe Titan” or equal.

2.02 HANGER RODS

A. Galvanized Hanger Rods: Threaded both ends, threaded one end, or continuous threaded.

2.03 INSERTS

A. Inserts: Malleable iron case of galvanized steel shell and expander plug for threaded connection with lateral adjustment, top slot for reinforcing rods, lugs for attaching to forms; size inserts to suit threaded hanger rods.

2.04 FLASHING

A. Metal Flashing: 20 gage galvanized steel.

B. Lead Flashing: 4 lb./sq. ft. sheet lead for waterproofing; 1 lb./sq. ft. sheet lead for soundproofing.
C. Caps: Steel, 20 gage minimum; 16 gage at fire resistant elements.
D. Coordinate with roofing contractor/architect for type of flashing on metal roofs.

2.05 EQUIPMENT CURBS
A. Fabricate curbs of hot dipped galvanized steel.

2.06 SLEEVES
A. Sleeves for Pipes Through Non-fire Rated Floors: Form with 18 gage galvanized steel, tack welded to form a uniform sleeve.
B. Sleeves for Pipes Through Non-fire Rated Beams, Walls, Footings, and Potentially Wet Floors: Form with steel pipe, schedule 40.
C. Sleeves for Pipes Through Fire Rated and Fire Resistive Floors and Walls, and Fireproofing: Prefabricated fire rated steel sleeves including seals, UL listed.
D. Sleeves for Round Ductwork: Form with galvanized steel.
E. Sleeves for Rectangular Ductwork: Form with galvanized steel.
F. Fire Stopping Insulation: Glass fiber type, non-combustible, U.L. listed.
G. Caulk: Paintable 25-year acrylic sealant.
H. Pipe Alignment Guides: Factory fabricated, of cast semi-steel or heavy fabricated steel, consisting of bolted, two-section outer cylinder and base with two-section guiding spider that bolts tightly to pipe. Length of guides shall be as recommended by manufacturer to allow indicated travel.

2.07 FABRICATION
A. Size sleeves large enough to allow for movement due to expansion and contraction. Provide for continuous insulation wrapping.
B. Design hangers without disengagement of supported pipe.
C. Design roof supports without roof penetrations, flashing or damage to the roofing material.

2.08 FINISH
A. Prime coat exposed steel hangers and supports. Hangers and supports located in crawl spaces, pipe shafts, and suspended ceiling spaces are not considered exposed.

PART 3 - EXECUTION

3.01 INSERTS
B. Provide hooked rod to concrete reinforcement section for inserts carrying pipe over 4 inches.
C. Where concrete slabs form finished ceiling, provide inserts to be flush with slab surface.

D. Where inserts are omitted, drill through concrete slab from below and provide thru-bolt with recessed square steel plate and nut recessed into and grouted flush with slab. Verify with structural engineer prior to start of work.

3.02 PIPE HANGERS AND SUPPORTS

A. Support horizontal piping as follows:

<table>
<thead>
<tr>
<th>PIPE SIZE</th>
<th>MAX. HANGER SPACING</th>
<th>HANGER DIAM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Steel Pipe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 to 1-1/4 inch</td>
<td>7'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>1-1/2 to 3 inch</td>
<td>10'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>4 to 6 inch</td>
<td>10'-0" 1/2"</td>
<td></td>
</tr>
<tr>
<td>8 to 10 inch</td>
<td>10'-0" 5/8"</td>
<td></td>
</tr>
<tr>
<td>12 to 14 inch</td>
<td>10'-0" 3/4"</td>
<td></td>
</tr>
<tr>
<td>15 inch and over</td>
<td>10'-0" 7/8"</td>
<td></td>
</tr>
<tr>
<td>(Copper Pipe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 to 1-1/4 inch</td>
<td>5'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>1-1/2 to 2-1/2 inch</td>
<td>8'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>3 to 4 inch</td>
<td>10'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>6 to 8 inch</td>
<td>10'-0" 1/2"</td>
<td></td>
</tr>
<tr>
<td>(Cast Iron)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 to 3 inch</td>
<td>5'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>4 to 6 inch</td>
<td>10'-0" 1/2"</td>
<td></td>
</tr>
<tr>
<td>8 to 10 inch</td>
<td>10'-0" 5/8"</td>
<td></td>
</tr>
<tr>
<td>12 to 14 inch</td>
<td>10'-0" 3/4"</td>
<td></td>
</tr>
<tr>
<td>15 inch and over</td>
<td>10'-0" 7/8"</td>
<td></td>
</tr>
<tr>
<td>(PVC Pipe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/2 to 4 inch</td>
<td>4'-0" 3/8"</td>
<td></td>
</tr>
<tr>
<td>6 to 8 inch</td>
<td>4'-0" 1/2"</td>
<td></td>
</tr>
<tr>
<td>10 and over</td>
<td>4'-0" 5/8"</td>
<td></td>
</tr>
</tbody>
</table>
B. Install hangers to provide minimum 1/2 inch space between finished covering and adjacent work.

C. Place a hanger within 12 inches of each horizontal elbow and at the vertical horizontal transition.

D. Use hangers with 1-1/2 inch minimum vertical adjustment.

E. Support horizontal cast iron pipe adjacent to each hub, with 5 feet maximum spacing between hangers.

F. Support vertical piping at every floor. Support vertical cast iron pipe at each floor at hub.

G. Where several pipes can be installed in parallel and at same elevation, provide multiple or trapeze hangers.

H. Support riser piping independently of connected horizontal piping.

I. Install hangers with nut at base and above hanger; tighten upper nut to hanger after final installation adjustments.

J. Portable pipe hanger systems shall be installed per manufactures instructions.

3.03 Insulated Piping: Comply with the following installation requirements.

A. Clamps: Attach galvanized clamps, including spacers (if any), to piping with clamps projecting through insulation; do not exceed pipe stresses allowed by ASME B31.9.

B. Saddles: Install galvanized protection saddles MSS Type 39 where insulation without vapor barrier is indicated. Fill interior voids with segments of insulation that match adjoining pipe insulation.

C. Shields: Install protective shields MSS Type 40 on cold and chilled water piping that has vapor barrier. Shields shall span an arc of 180 degrees and shall have dimensions in inches not less than the following:

<table>
<thead>
<tr>
<th>NPS</th>
<th>LENGTH</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 THROUGH 3-1/2</td>
<td>120.048</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>120.060</td>
<td></td>
</tr>
<tr>
<td>5 & 6</td>
<td>180.060</td>
<td></td>
</tr>
<tr>
<td>8 THROUGH 14</td>
<td>240.075</td>
<td></td>
</tr>
<tr>
<td>16 THROUGH 24</td>
<td>240.105</td>
<td></td>
</tr>
</tbody>
</table>

D. Piping 2” and larger provide galvanized sheet metal shields with calcium silicate at hangers/supports.

E. Insert material shall be at least as long as the protective shield.

F. Thermal Hanger Shields: Install where indicated, with insulation of same thickness as piping.

3.04 EQUIPMENT BASES AND SUPPORTS

A. Provide equipment bases of concrete.

B. Provide templates, anchor bolts, and accessories for mounting and anchoring equipment.
C. Construct support of steel members. Brace and fasten with flanges bolted to structure.

D. Provide rigid anchors for pipes after vibration isolation components are installed.

3.05 FLASHING

A. Provide flexible flashing and metal counter flashing where piping and ductwork penetrate weather or waterproofed walls, floors, and roofs.

B. Flash vent and soil pipes projecting 8 inches minimum above finished roof surface with lead worked one inch minimum into hub, 8 inches minimum clear on sides with 24 x 24 inches sheet size. For pipes through outside walls, turn flanges back into wall and caulk, metal counter flash and seal.

C. Flash floor drains in floors with topping over finished areas with lead, 10 inches clear on sides with minimum 36 x 36 inch sheet size. Fasten flashing to drain clamp device.

D. Seal floor shower mop sink and all other drains watertight to adjacent materials.

E. Provide curbs for mechanical roof installations 8 inches minimum high above roofing surface. Contact architect for all flashing details and roof construction. Seal penetrations watertight.

3.06 SLEEVES

A. Set sleeves in position in formwork. Provide reinforcing around sleeves.

B. Extend sleeves through floors minimum one inch above finished floor level. Caulk sleeves full depth with fire rated thermsfiber and 3M caulking and provide floor plate.

C. Where piping or ductwork penetrates floor, ceiling, or wall, close off space between pipe or duct and adjacent work with U.L. listed fire stopping insulation and caulk seal air tight. Provide close fitting metal collar or escutcheon covers at both sides of penetration.

D. Fire protection sleeves may be flush with floor of stairways.

END OF SECTION 230529
SECTION 23 05 48 – VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.01 WORK INCLUDED
 A. Vibration and sound control products.

1.02 RELATED DOCUMENTS
 A. Drawings and general provisions of Contract including General and Supplementary Conditions and Division One specification sections, apply to work of this section
 B. This section is Division-23 Basic Materials and Methods section, and is part of each Division-23 section making reference to vibration control products specified herein.

1.03 QUALITY ASSURANCE
 A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of vibration control products, of type, size, and capacity required, whose products have been in satisfactory use in similar service for not less than 5 years.
 B. Vibration and sound control products shall conform to ASHRAE criteria for average noise criteria curves for all equipment at full load conditions.
 C. Except as otherwise indicated, sound and vibration control products shall be provided by a single manufacturer.

1.04 SUBMITTALS
 A. SHOP DRAWINGS: Indicate size, material, and finish. Show locations and installation procedures. Include details of joints, attachments, and clearances.
 B. PRODUCT DATA: Submit schedules, charts, literature, and illustrations to indicate the performance, fabrication procedures, product variations, and accessories.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS
 A. Amber/Booth Company, Inc.
 B. Mason Industries, Inc.
 C. Noise Control, Inc.

2.02 GENERAL
 A. Provide vibration isolation supports for equipment, piping and ductwork, to prevent transmission of vibration and noise to the building structures that may cause discomfort to the occupants.
 B. Model numbers of Amber/Booth products are included for identification. Products of the additional manufacturers will be acceptable provided they comply with all of the requirements of this specification.

2.03 FLOOR MOUNTED AIR HANDLING UNITS
 A. Provide Amber/Booth XLW-2, style C aluminum housed isolators sized for 2” static deflection. Cast iron or steel housings may be used provided they are hot-dip galvanized after fabrication
B. If floor mounted air handling units are furnished with internal vibration isolation option, provide 2" thick Amber/Booth type NRC ribbed neoprene pads to address high frequency breakout and afford additional unit elevation for condensate drains. Ribbed neoprene pads shall be located in accordance with the air handling unit manufacturer’s recommendations.

2.04 SUSPENDED AIR HANDLING UNITS
A. Provide Amber/Booth type BSWR-2 combination spring and rubber-in-shear isolation hanger sized for 2" static deflection.
B. If suspended air handling units are furnished with internal vibration isolation option, furnish Amber/Booth type BRD rubber-in-shear or NR AMPAD 3/8" thick neoprene pad isolation hangers sized for approximately ½” deflection to address high frequency break-out.

2.05 SUSPENDED FANS AND FAN COIL UNITS
A. Provide Amber/Booth type BSS spring hangers sized for 1” static deflection.

2.06 BASE MOUNTED PUMPS AND CHILLERS
A. Amber/Booth type SP-NR style E flexplate pad isolators consisting of two layers of 3/8” thick alternate ribbed neoprene pad bonded to a 16 gage galvanized steel separator plate.
B. Pads shall be sized for approximately 40 PSI loading and 1/8” deflection.

2.07 PIPING
A. Provide spring and rubber-in-shear hangers, Amber/Booth type BSR in mechanical equipment rooms, for a minimum distance of 50 feet from isolated equipment for all chilled water and hot water piping 1-1/2” diameter and larger. Springs shall be sized for 1” deflection.
B. Floor supported piping is required to be isolated with Amber/Booth type SW-1 open springs sized for 1” deflection.
C. Furnish line size flexible connectors at supply and return of pumps, amber/booth style 2800 single sphere EPDM construction, connector shall include 150 lb. cadmium plated carbon steel floating flanges.

2.08 CORROSION PROTECTION
A. All vibration isolators shall be designed and treated for resistance to corrosion.
B. Steel components: PVC coated or phosphated and painted with industrial grade enamel. Nuts, bolts, and washers: zinc-electroplated.

PART 3 - EXECUTION

3.01 All equipment shall be installed in accordance with the manufacturers recommendations and printed installation instructions.

3.02 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Provide all items required as per manufacturers requirements.

3.03 If internal isolation option is used on air handling units, the mechanical contractor shall verify proper adjustment and operation of isolators prior to start-up. All shipping brackets and temporary restraint devices shall be removed.

3.04 The vibration isolation supplier shall certify in writing that he has inspected the installation and that all external isolation materials and devices are installed correctly and functioning properly.

END OF SECTION 230548
SECTION 23 05 53 – IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.01 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. The Basic Materials and Methods, Section 23 02 00, are included as a part of this Section as though written in full in this document.

1.02 SCOPE

Scope of the Work shall include the furnishing and complete installation of the equipment covered by this Section, with all auxiliaries, ready for owner’s use.

1.03 Refer to Architectural Sections for additional requirements.

PART 2 - PRODUCTS

2.01 VALVE AND PIPE IDENTIFICATION

A. Valves:

1. All valves shall be identified with a 1-1/2” diameter brass disc wired onto the handle. The disc shall be stamped with 1/2” high depressed black filled identifying numbers. These numbers shall be numerically sequenced for all valves on the job.

2. The number and description indicating make, size, model number and service of each valve shall be listed in proper operational sequence, properly typewritten. Three copies to be turned over to Owner at completion.

3. Tags shall be fastened with approved meter seal and 4 ply 0.018 smooth copper wire. Tags and fastenings shall be manufactured by the Seton Name Plate Company or approved equal.

4. All valves shall be numbered serially with all valves of any one system and/or trade grouped together.

B. Pipe Marking:

1. All interior visible piping located in accessible spaces such as above accessible ceilings, equipment rooms, attic space, under floor spaces, etc., shall be identified with all temperature pipe markers as manufactured by W.H. Brady Company, 431 West Rock Ave., New Haven, Connecticut, or approved equal.

2. All exterior visible piping shall be identified with UV and acid resistant outdoor grade acrylic plastic markers as manufactured by Set Mark distributed by Seton nameplate company. Factory location 20 Thompson Road, Branford, Connecticut, or approved equal.
3. Generally, markers shall be located on each side of each partition, on each side of each tee, on each side of each valve and/or valve group, on each side of each piece of equipment, and, for straight runs, at equally spaced intervals not to exceed 75 feet. In congested area, marks shall be placed on each pipe at the points where it enters and leaves the area and at the point of connection of each piece of equipment and automatic control valve. All markers shall have directional arrows.

4. Markers shall be installed after final painting of all piping and equipment and in such a manner that they are visible from the normal maintenance position. Manufacturer’s installation instructions shall be closely followed.

5. Markers shall be colored as indicated below per ANSI/OSHA Standards:

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>COLOR/LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water</td>
<td>GreenChilled Water Supply</td>
</tr>
<tr>
<td>Chilled Water Return</td>
<td></td>
</tr>
<tr>
<td>Sanitary Sewer</td>
<td>Green Vent</td>
</tr>
<tr>
<td>Sanitary Sewer</td>
<td></td>
</tr>
<tr>
<td>Storm Drain</td>
<td>Green Storm Drain</td>
</tr>
<tr>
<td>Domestic Water</td>
<td>Green Domestic Water</td>
</tr>
<tr>
<td>Domestic Hot Water Supply</td>
<td>Yellow Domestic Hot Water Supply</td>
</tr>
<tr>
<td>Domestic Hot Water Recirculating</td>
<td>Yellow Domestic Hot Water Return</td>
</tr>
<tr>
<td>Fire Protection</td>
<td>Red Fire Sprinkler</td>
</tr>
<tr>
<td>Automatic Sprinkler</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>Yellow Natural Gas</td>
</tr>
<tr>
<td>Condenser Water</td>
<td>Green Condenser Water</td>
</tr>
<tr>
<td>Condenser Water Return</td>
<td></td>
</tr>
<tr>
<td>Compressed Air</td>
<td>Blue Compressed Air</td>
</tr>
<tr>
<td>Pneumatic Control</td>
<td>Yellow Pneumatic Control</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Yellow Oxygen</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Green Nitrogen</td>
</tr>
<tr>
<td>Deionized Water</td>
<td>Green Deionized Water</td>
</tr>
<tr>
<td>Steam</td>
<td></td>
</tr>
<tr>
<td>Steam Return</td>
<td>Yellow Steam Supply</td>
</tr>
</tbody>
</table>

IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT 230553
C. Pipe Painting:

1. All piping exposed to view shall be painted as indicated or as directed by the Architect in the field. Confirm all color selections with Architect prior to installation.

2. The entire fire protection piping system shall be painted red.

3. All piping located in mechanical rooms and exterior piping shall be painted as indicated below:

<table>
<thead>
<tr>
<th>System</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Sewer</td>
<td>White</td>
</tr>
<tr>
<td>Sanitary Sewer Waste and Vent</td>
<td>Light Gray</td>
</tr>
<tr>
<td>Domestic Cold Water</td>
<td>Dark Blue</td>
</tr>
<tr>
<td>Domestic Hot Water Supply and Return</td>
<td>Orange</td>
</tr>
<tr>
<td>Condenser Water Supply and Return</td>
<td>Light Green</td>
</tr>
<tr>
<td>Gas</td>
<td>Yellow</td>
</tr>
<tr>
<td>Chilled Water Supply and Return</td>
<td>Light Blue</td>
</tr>
<tr>
<td>Heating Hot Water Supply and Return</td>
<td>Reddish Orange</td>
</tr>
</tbody>
</table>

PART 3 - EXECUTION

3.01 All labeling equipment shall be installed as per manufacturers printed installation instructions.

3.02 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications. Contractors price shall include all items required as per manufacturers' requirements.

3.03 All piping shall be cleaned of rust, dirt, oil and all other contaminants prior to painting. Install primer and a quality latex paint over all surfaces of pipe.

END OF SECTION 230553
SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING

PART 1 - GENERAL

1.01 GENERAL REQUIREMENTS

A. The requirements of the General Conditions and Supplementary Conditions apply to all work herein.

B. The Basic Materials and Methods, Section 23 02 00, are included as a part of this Section as though written in full in this document.

1.02 RELATED DOCUMENTS

Approved submittal date on equipment installed, to accomplish the test procedures, outlined under Services of the Contractor of this Section, will be provided by the Contractor.

1.03 DESCRIPTION

A. The TAB of the air conditioning systems will be performed by an impartial technical firm whose operations are limited only to the field of professional TAB. The TAB work will be done under the direct supervision of a qualified engineer employed by the TAB firm.

B. The TAB firm will be responsible for inspecting, adjusting, balancing, and logging the date on the performance of fans, dampers in the duct system, and air distribution devices. The Contractor and the various subcontractors of the equipment installed shall cooperate with the TAB firm to furnish necessary data on the design and proper applications of the system components and provide labor and material required to eliminate deficiencies or malperformance.

1.04 QUALITY ASSURANCE

A. QUALIFICATIONS OF CONTRACTOR PERSONNEL: Submit evidence to show that the personnel who shall be in charge of correcting deficiencies for balancing the systems are qualified. The Owner and Engineer reserve the right to require that the originally approved personnel be replaced with other qualified personnel if, in the Owner and Engineer's opinion, the original personnel are not qualified to properly place the system in condition for balancing.

B. QUALIFICATIONS OF TAB FIRM PERSONNEL:

1. A minimum of one registered Professional Engineer licensed in the State, is required to be in permanent employment of the firm.

2. Personnel used on the jobsite shall be either Professional Engineers or technicians, who shall have been permanent, full time employees of the firm for a minimum of six months prior to the start of Work for that specified project.

3. Evidence shall be submitted to show that the personnel who actually balance the systems are qualified. Evidence showing that the personnel have passed the tests required by the Associated Air Balance Council (AABC) shall be required.

C. CALIBRATION LIST: Submit to the Engineer for approval, a list of the gauges, thermometers, velometer, and other balancing devices to be used in balancing the system. Submit evidence to show that the balancing devices are properly calibrated before proceeding with system balancing.
PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.01 SERVICES OF THE CONTRACTOR

A. The Drawings and specifications have indicated valves, dampers, and miscellaneous adjustment devices for the purpose of adjustment to obtain optimum operating conditions, install these devices in a manner that leaves them accessible, provide access as requested by the TAB firm.

B. Have systems complete and in operational readiness prior to notifying the TAB firm that the project is ready for their services, and certify in writing to the Construction Manager that such a condition exists.

C. As a part of the Work of this Section, make changes in the sheaves, belts, and dampers or the addition of dampers required for correct balance of the new work as required by the TAB firm, at no additional cost to the Owner.

D. Fully examine the existing system to be balanced, to determine whether or not sufficient volume dampers, balancing valves, thermometers, gauges, pressure and temperature taps, means of reading static pressure and total pressure in duct systems, means of determining water flow, and other means of taking data needed for proper water and air balancing are existing. Submit to the Engineer in writing a listing of omitted items considered necessary to balance existing systems. Submit the list and proposal as a cost add item.

E. Verify that fresh air louvers are free of blockage, coils are clean and fresh air ducts to each air handling unit has individually adjustable volume regulating dampers.

F. Provide, correct, repair, or replace deficient items or conditions found during the testing, adjusting, and balancing period.

G. In order that systems may be properly tested, balanced, and adjusted as specified, operate the systems at no expense to the Owner for the length of time necessary to properly verify their completion and readiness for TAB period.

H. Project Contract completion schedules shall provide time for allowances to permit the successful completion of TAB services to Owner's final inspection and acceptance. Complete, operational readiness, prior to commencement of TAB services, shall include the following services of the Contractor:

1. Construction status of building shall permit the closing of doors, window, ceilings installed and penetrations complete, to obtain project operating conditions.

2. AIR DISTRIBUTION SYSTEMS:
 a. Verify installation for conformity to design. Supply, return, and exhaust ducts terminated and pressure tested for leakage as specified.
 b. Volume and fire dampers properly located and functional. Dampers serving requirements of minimum and maximum outside air, return and relief shall provide tight closure and full opening, smooth and free operation.
 c. Supply, return, exhaust and transfer grilles, registers and diffusers.
d. Air handling systems, units and associated apparatus, such as heating and cooling coils, filter sections, access doors, etc., shall be blanked and sealed to eliminate excessive bypass or leakage of air.

e. Fans (supply and exhaust) operating and verified for freedom from vibrations, proper fan rotation and belt tension; overload heater elements shall be of proper size and rating; record motor amperage and voltage and verify that these functions do not exceed nameplate ratings.

f. Furnish or revise fan drives or motors as necessary to attain the specified air volumes.

3. AUTOMATIC CONTROLS:

a. Verify that control components are installed in accordance with project documents and functional, electrical interlocks, damper sequences, air and water resets, fire and freeze stats.

b. Controlling instruments shall be functional and set for design operating conditions. Factory precalibration of room thermostats and pneumatic equipment will not be acceptable.

c. The temperature regulation shall be adjusted for proper relationship between the controlling instruments and calibrated by the TAB Contractor. Advise Owner of deficiencies or malfunctions.

3.02 SERVICES OF THE TAB FIRM

A. The TAB firm will act as liaison between the Owner, Engineer, and the Contractor and inspect the installation of mechanical piping system, sheet metal work, temperature controls and other component parts of the heating, air conditioning and ventilating systems being retrofitted, repaired, or added under this Contract. The reinspeccion of the Work will cover that part related to proper arrangement and adequate provision for the testing and balancing and will be done when the Work is 80 percent complete.

B. Upon completion of the installation and start-up of the mechanical equipment, to check, adjust, and balance system components to obtain optimum conditions in each conditioned space in the building. Prepare and submit to the Owner complete reports on the balance and operations of the systems.

C. Measurements and recorded readings of air, water, and electricity that appear in the reports will be done by the permanently employed technicians or engineers of the TAB firm.

D. Make an inspection in the building during the opposite season from that in which the initial adjustments were made. At the time, make necessary modifications to the initial adjustments required to produce optimum operation of system components to affect the proper conditions as indicated on the Drawings. At time of opposite season check-out, the Owner's representative will be notified before readings or adjustments are made.

E. In fan systems, the air quantities indicated on the Drawings may be varied as required to secure a maximum temperature variation of two degrees within each separately controlled space, but the total air quantity indicated for each zone must be obtained. It shall be the obligation of the Contractor to furnish or revise fan drive and motors if necessary, without cost to the Owner, to attain the specified air volumes.

F. The various existing water circulating systems shall be cleaned, filled, purged of air, and put into operation before hydronic balancing.
A. Before the final acceptance of the report is made, the TAB firm will furnish the Owner the following data to be approved by the Owner and Engineer:

1. Summary of main supply, return and exhaust duct pitot tube traverses and fan settings indicating minimum value required to achieve specified air volumes.
2. A listing of the measured air quantities at each outlet corresponding to the temperature tabulation as developed by the Engineer and TAB firm.
3. Air quantities at each return and exhaust air handling device.
4. Static pressure readings entering and leaving each supply fan, exhaust fan, filter, coil, balancing dampers and other components of the systems included in the retrofit work. These readings will be related to performance curves in terms of the CFM handled if available.
5. Motor current readings at each equipment motor on load side of capacitors. The voltages at the time of the reading shall be listed.
6. The final report shall certify test methods and instrumentation used, final velocity reading obtained, temperatures, pressure drops, RPM of equipment, amperage of motors, air balancing problems encountered, recommendations and uncompleted punch list items. The test results will be recorded on standard forms.
7. A summary of actual operating conditions shall be included with each system outlining normal and ventilation cycles of operation. The final report will act as a reference of actual operating conditions for the Owner's operating personnel.

3.04 BALANCING AIR CONDITIONING SYSTEM

A. GENERAL:

1. Place all equipment into full operation, and shall continue the operating during each working day of balancing and testing. If the air conditioning system is balanced during Off-Peak cooling season Balancing Contractor shall return to rebalance air side system as required to put system in proper balance at that time.
2. The Contractor shall submit detailed balancing and recording forms for approval. After the approval by the Architect, prepare complete set of forms for recording test data on each system. All Work shall be done under the supervision of a Registered Professional Engineer. All instruments used shall be accurately calibrated to within 1% of scale and maintained in good working order.
3. Upon completion of the balancing and testing, the Balancing Contractor shall compile the test data in report forms, and forward five copies to the Architect for evaluation.
4. The final report shall contain logged results of all tests, including such data as:
 a. Tabulation of air volume at each outlet.
 b. Outside dry bulb and wet bulb temperature.
 c. Inside dry bulb and wet bulb temperatures in each conditioned space room or area.
 d. Actual fan capacities and static pressures. Motor current and voltage readings at each fan.

B. AIR SYSTEMS: Perform the following operations as applicable to system balance and test:

1. Check fan rotation.
2. Check filters (balancing shall be done with clean filters).
3. Test and adjust blower rpm to design requirements.
4. Test and record motor full load amperes.
5. Test and record system static pressures, suction and discharge.
6. Test and adjust system for design cfm, return air and outside air (+2%). Change-out fan sheaves as required to balance system.
7. Test and record entering air temperatures, db and wb.
8. Test and record leaving air temperatures, db and wb.
9. Adjust all zones to design cfm (+2%).
10. Test and adjust each diffuser, grille, and register to within 5% of design.

C. AIR DUCT LEAKAGE: (From SMACNA Duct Standards 3rd Edition) Test all ductwork (designed to handle over 1000 CFM) as follows:

1. Test apparatus
 The test apparatus shall consist of:
 a. A source of high pressure air—a portable rotary blower or a tank type vacuum cleaner.
 b. A flow measuring device consisting of straightening vanes and an orifice plate mounted in a straight tube with properly located pressure taps. Each orifice assembly shall be accurately calibrated with its own calibration curve. Pressure and flow readings shall be taken with U-tube manometers.

2. Test Procedures
 a. Test for audible leaks as follows:
 1) Close off and seal all openings in the duct section to be tested. Connect the test apparatus to the duct by means of a section of flexible duct.
 2) Start the blower with its control damper closed.
 3) Gradually open the inlet damper until the duct pressure reaches 1.2 times the standard designed duct operating pressure.
 4) Survey all joint for audible leaks. Mark each leak and repair after shutting down blower. Do not apply a retest until sealants have set.
 b. After all audible leaks have been sealed, the remaining leakage should be measured with the orifice section of the test apparatus as follows:
 1) Start blower and open damper until pressure in duct reaches 25% in excess of designed duct operating pressure.
 2) Read the pressure differential across the orifice on manometer No. 2. If there is no leakage, the pressure differential will be zero.
 3) Total allowable leakage shall not exceed one (1) percent of the total system design air flow rate. When partial sections of the duct system are tested, the summation of the leakage for all sections shall not exceed the total allowable leakage.
 4) Even though a system may pass the measured leakage test, a concentration of leakage at one point may result in a noisy leak which, must be corrected.

D. DX SYSTEMS:

1. Test and record suction and discharge pressures at each compressor and record ambient air temperature entering the condensing coils.
2. Test and record unit full load amps and voltage.
3. Test and record staging and unloading of unit required by sequence of operation or drawing schedule.
E. Automatic temperature controls shall be calibrated and all thermostats and dampers, adjusted so that the control system is in proper operating condition, subject to the approval of the Architect.

F. The Air Balance Contractor shall report to Engineer all air distribution devices or other equipment that operate noisily so that corrective measures may be implemented by the Contractor at no additional cost to the Owner or Architect/Engineer.

END OF SECTION 230593
SECTION 23 07 13 - HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Insulation Materials:
 2. Adhesives.
 3. Mastics.
 4. Sealants.
 5. Factory-applied jackets.
 7. Tapes.
 8. Securements.
 9. Corner angles.
B. Related Sections:
 1. Division 22 Section "Plumbing Insulation."
 2. Division 23 Section "Metal Ducts" for duct liners.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
B. Qualification Data: For qualified Installer.
C. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
D. Field quality-control reports.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; All-Service Duct Wrap. Acoustic duct liner to be QuietR, type 200.

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Fibrex Insulations Inc.; FBX.
 c. Johns Manville; 800 Series Spin-Glas.
 d. Knauf Insulation; Insulation Board.
 e. Manson Insulation Inc.; AK Board.
 f. Owens Corning; Fiberglas 700 Series.

H. Cellular Glass Board Insulation: Foamglas as manufactured by Pittsburg Corning. Comply with ASTM 552 "specification for Cellular Glass Thermal Insulation".
 a.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products, Division of ITW; CP-82.
 c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 d. Marathon Industries, Inc.; 225.
 e. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 500 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products, Division of ITW; CP-35.
 b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 c. ITW TACC, Division of Illinois Tool Works; CB-50.
 d. Marathon Industries, Inc.; 590.
 e. Mon-Eco Industries, Inc.; 55-40.
 f. Vimasco Corporation; 749.
2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.

2.4 SEALANTS

A. Joint Sealants:
 1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products, Division of ITW; CP-76.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Pittsburgh Corning Corporation; Pittseal 444.
 f. Vimasco Corporation; 750.

B. FSK and Metal Jacket Flashing Sealants:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products, Division of ITW; CP-76-8.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Vimasco Corporation; 750.

2.5 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
2.6 FIELD–APPLIED JACKETS

A. Aluminum Jacket: Stucco-embossed finished sheets manufactured from 0.016 inch thick aluminum alloy complying with ASTM B209 and having an integrally bonded 1-mil thick, heat-bonded polyethylene and kraft paper moisture barrier over entire surface in contact with insulation.

2.7 TAPES

A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 b. Compac Corp.; 110 and 111.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 2. Width: 3 inches.
 3. Thickness: 6.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

B. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 b. Compac Corp.; 120.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 d. Venture Tape; 3520 CW.
 2. Width: 2 inches.
 3. Thickness: 3.7 mils.
 5. Elongation: 5 percent.
 6. Tensile Strength: 34 lbf/inch in width.

2.8 SECUREMENTS

A. Bands:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products; Bands.
 b. PABCO Metals Corporation; Bands.
 c. RPR Products, Inc.; Bands.
 2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.

B. Insulation Pins and Hangers:
 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
a. Products: Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; CD.
 3) Midwest Fasteners, Inc.; CD.
 4) Nelson Stud Welding; TPA, TPC, and TPS.

2.9 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.

C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation,
install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.

4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.

2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.

4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistant joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.

2. Pipe: Install insulation continuously through floor penetrations.

3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
3.6 QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.7 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return located in nonconditioned space.
 4. Indoor, exposed return located in nonconditioned space.
 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 7. Indoor, concealed oven and warewash exhaust.
 8. Indoor, exposed oven and warewash exhaust.
 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Items Not Insulated:
 1. Fibrous-glass ducts.
 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 3. Factory-insulated flexible ducts.
 5. Flexible connectors.
 7. Factory-insulated access panels and doors.
 8. Return air ductwork within the conditioned building envelope.

C. Items internally insulated for acoustical purposes: antimicrobial type insulation.
 1. Supply and return air ducts and plenums within 15 feet of air handling unit discharge.
 2. Supply ductwork downstream of terminal unit.
 3. Return air sound traps.

3.8 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, round and flat-oval, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

B. Concealed, round and flat-oval, return-air duct insulation shall be one of the following:
1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

C. Concealed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

D. Concealed, rectangular, supply-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

E. Concealed, rectangular, return-air duct not within the conditioned building envelope insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

F. Concealed, rectangular, outdoor-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

G. Concealed, rectangular, exhaust-air duct insulation between isolation damper and penetration of building exterior shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

H. Concealed, supply plenum insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

I. Concealed, return-air plenum insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

J. Concealed, outdoor-air plenum insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

K. Concealed, exhaust-air plenum insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

L. Exposed, round and flat-oval, exhaust-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

M. Exposed, rectangular, supply-air duct insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

N. Exposed, rectangular, return-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

O. Exposed, rectangular, outdoor-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

P. Exposed, rectangular, exhaust-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

3.9 EXTERIOR DUCT AND PLENUM INSULATION SCHEDULE

A. Supply ductwork exposed on the roof or exterior surface, minimum R-8 cellular glass board.
B. Return air and outdoor air plenum exposed on the roof shall have internal duct insulation of minimum of 1" thickness. The external surface shall have mineral fiber board of thickness that together with the internal liner has a minimum of R-8.

C. Install aluminum jacket over all exposed exterior insulated ductwork.

3.6 FIELD APPLIED JACKET APPLICATION

A. Exterior: Apply aluminum jacketing to all external ductwork that is insulated. Cover all fittings and specialties with aluminum jacketing.

B. Apply metal jacket where indicated, with 2-inch overlap at longitudinal seams and end joints. Secure jacket with stainless-steel sheet metal screws 6 inches o.c. and at end joints. Overlap longitudinal seams arranged to shed water and seal end joints with weatherproof mastic.

END OF SECTION 23 07 00
SECTION 23 07 19 - HVAC PIPING INSULATION

1.1 QUALITY ASSURANCE

A. Surface-Burning Characteristics: Flame-spread index of 25, and smoke-developed index of 50 for insulation installed indoors; according to ASTM E 84.

B. Mockup of each type of pipe insulation and finish.

1.2 FIELD QUALITY CONTROL

A. Field Inspections: By Contractor-engaged agency.

1.3 PIPING INSULATION SCHEDULE, GENERAL

A. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Underground piping.

1.4 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F: Flexible elastomeric.

B. Refrigerant Suction and Hot-Gas Piping: Flexible elastomeric.

C. Refrigerant Suction and Hot-Gas Flexible Tubing: Flexible elastomeric.

1.5 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping: Flexible elastomeric.

B. Refrigerant Suction and Hot-Gas Flexible Tubing: Flexible elastomeric.

1.6 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Piping, Exposed, Aluminum.

1.7 PART 2 - PRODUCTS

A. GLASS FIBER

 i. Owens Corning.

 ii. Certain Teed Manson.
iii. Manville.
iv. Knauf.

b. Insulation: ASTM C547; rigid molded, noncombustible.
 i. 'K' value: ASTM C335, 0.23 at 75 degrees F.
 Minimum Service Temperature: 0 degrees F.
 ii. Maximum Service Temperature: 850 degrees F.
 iii. Maximum Moisture Absorption: 0.2 percent by volume.

C. Vapor Barrier Jacket
 ASTM C921, White kraft paper reinforced with glass fiber yarn & bonded to aluminized
 film. Moisture Vapor Transmission: ASTM E96; 0.02 perm inches. Secure all longitudi-
 nal laps & butt strips. All laps to be sealed with lap adhesive. Butt strips to be sealed
 with adhesive.

D. Tie Wire: 18 gage stainless steel with twisted ends on maximum 12 " centers.

E. Vapor Barrier Lap Adhesive, Manufacturers: Foster 85-20, 85-75 or approved equal.
 Compatible with insulation.

F. Insulating Cement/Mastic
2.3 FLEXIBLE ELASTOMERIC

A. Manufacturer: Armstrong AP Armaflex Pipe Insulation.

B. Insulation: Flexible, expanded, closed cell structure, elastomeric.

1. 'K' Valve: ASTM C177 or C518; 0.27 at 75 degrees F.
2. Minimum Service Temperature: -40 degrees F.
3. Maximum Service Temperature: 220 degrees F.
5. Moisture Vapor Transmission: ASTM E96; 0.20 perm inches.

C. Elastomeric Adhesive: Armstrong 520 adhesive.

2.5 SHIELDS

A. Manufacturer: Grinnell figure 167 or approved equal. Shield length & thickness based on pipe size & insulation thickness.

2.6 ALUMINUM JACKET

A. Aluminum Jacket: ASTM B209.

1. Thickness: Minimum 0.016 “ sheet.
2. Finish: Smooth.
4. Fittings: Minimum 0.016 “ thick die shaped fitting covers with factory attached protective liner.
5. Metal Jacket Bands: 3/8 “ wide; minimum 0.015 “ thick aluminum.
A. Verify that piping has been tested before applying insulation materials.

B. Verify that surfaces are clean, foreign material removed, & dry. Rust shall be removed from piping and all piping primed with rust inhibiting paint prior to installing insulation.

3.2 INSTALLATION

A. Install materials in accordance with manufacturer's instructions.

B. On exposed piping, locate insulation & cover seams in least visible locations.

C. Insulated cold pipes conveying fluids below ambient temperature:

2. Insulate fittings, joints, & valves with molded insulation of like material & thickness as adjacent pipe. Wire in place. Fill all open joints with insulating cement.
3. Apply a skim coat of insulating cement. Finish with glass cloth imbedded between two uniform coats of insulating mastic.
4. Continue insulation through walls, sleeves, pipe hangers, & other pipe penetrations.
5. Where piping is interrupted by fittings, flanges, valves or hangers, & at intervals not to exceed 21 feet on continuous runs, provide an insulating vapor seal between the vapor barrier jacket & the pipe by liberal application of flexible vapor barrier joint sealant.
6. Insulate entire system including fittings, valves, unions, flanges, strainers, flexible connections, pump bodies, & expansion joints.

D. For insulated pipes conveying fluids above ambient temperature:
1. Insulate same as specified for cold pipes conveying fluids below ambient temperature.

2. For hot piping conveying fluids 140 degrees F or less, do not insulate flanges & unions at equipment, but bevel & seal ends of insulation.

3. For hot piping conveying fluids over 140 degrees F, or steam, insulate flanges & unions at equipment.

4. This applies to generator exhaust piping.

E. Condensate piping from cooling coils, gauge cocks, & coil drain valves (chilled water side only):

1. Slip over piping prior to installation or slit lengthwise & snap over piping already connected.

3. Apply adhesive to all seams & butt joints.

4. Apply two coats of finish to all insulated pipe, valves & fittings.

F. Inserts & Shields:

1. Application: All insulated piping at each support point.

2. Shields: Galvanized steel between pipe hangers, supports or pipe hanger rolls & inserts.

3. Insert Location: Between support shield & piping & under the finish jacket.

4. Insert Configuration: Minimum 6 “ long, of same thickness & contour as adjoining insulation; may be factory fabricated.

5. Insert Material: ASTM C533 hydrous calcium silicate insulation or other heavy density insulating material suitable for the planned temperature range.

G. Finish insulation at supports, protrusions, & interruptions.

H. For insulated pipe, fittings & valves exposed in mechanical rooms and other areas, finish with 8 ounce canvas jacket.

I. For exterior applications and for insulated pipe exposed inside the building in public areas: Provide vapor barrier jacket.

3.3 TOLERANCE

A. Substituted insulation materials shall provide thermal resistance within 10 percent at normal conditions, as materials indicated.

3.4 GLASS FIBER INSULATION SCHEDULE

A. Plumbing Systems

1. Cold water in unheated areas; in outside walls; and outside the building - 1 “ thick.

2. Domestic hot water - 1 “ thick, except use 1 ½” for hot water pipes 2 ½” and larger.

3. Floor drain bodies & p-traps at drains receiving a/c condensate or drain lines from ice makers or machines - 1 “ thick.

4. Drinking fountain drain lines to connection with vertical riser or 30 feet - 1 “ thick.

5. Floor drain lines as noted above, to connection with vertical riser or 30 feet - 1 “ thick.

HVAC PIPING INSULATION
Copyright 2011 Jones Engineers L.P.
6. Roof drain bodies - 1“ thick.
7. Roof drainage run horizontal including elbows where changing from horizontal to vertical - 1“ thick.
8. Domestic chilled drinking water supply & return - 1“ thick.

FLEXIBLE ELASTOMERIC INSULATION SCHEDULE

I. Cold Condensate Systems: From Chilled Water Coils, Gauge Cocks & Coil Drain Valves (Chilled Water Side Only) - 1” thick.
II. Refrigerant Suction Lines: 1” thick.
III. Refrigerant Liquid Lines at Wall & Roof Penetrations: ½” thick.
IV. Paint insulation exposed outside the building with one coat of white Armaflex paint.

END OF SECTION 23 07 19
SECTION 23 31 13 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Single-wall rectangular ducts and fittings.
2. Single-wall round and flat-oval ducts and fittings.
4. Duct liner.
5. Sealants and gaskets.
6. Hangers and supports.

B. Related Sections:

1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Division 23 Section "Nonmetal Ducts" for fibrous-glass ducts, thermoset fiber-reinforced plastic ducts, thermoplastic ducts, PVC ducts, and concrete ducts.
3. Division 23 Section "HVAC Casings" for factory- and field-fabricated casings for mechanical equipment.
4. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.
1.4 SUBMITTALS

A. Product Data: For each type of the following products:

1. Liners and adhesives.
2. Sealants and gaskets.

B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

D. Welding certificates.

E. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
METAL DUCTS

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

1. Galvanized Coating Designation: G60.
2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation; Insulation Group.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Owens Corning.

2. Maximum Thermal Conductivity:
 a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Insulation Pins and Washers:

1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-19, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or “Z” profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
2. Tape Width: 3 inches.
5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Water-Based Joint and Seam Sealant:
1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:
1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS
A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
D. Trapeze and Riser Supports:
3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round and flat-oval ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."
3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS
A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING
A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.7 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Leakage Tests:
 2. Test the following systems:
a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections totaling no less than 25 percent of total installed duct area for each designated pressure class.
b. Supply Ducts with a Pressure Class of 3-Inch wg or Higher: Test representative duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.
c. Return Ducts with a Pressure Class of 3-Inch wg or Higher: Test representative duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.
d. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.
e. Outdoor Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

4. Test for leaks before applying external insulation.

5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.

6. Give seven days’ advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to “Vacuum Test” in NADCA ACR, “Assessment, Cleaning and Restoration of HVAC Systems.”
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.8 DUCT CLEANING

A. Clean new and existing duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.
C. Particulate Collection and Odor Control:
 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:
 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 6. Provide drainage and cleanup for wash-down procedures.
 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer’s written instructions after removal of surface deposits and debris.

3.9 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."
3.10 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 4-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 3.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

4. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

C. Return Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

3. Ducts Connected to Equipment Not Listed Above:
a. Pressure Class: Positive or negative 2-inch wg.
b. Minimum SMACNA Seal Class: B.
c. SMACNA Leakage Class for Rectangular: 12.
d. SMACNA Leakage Class for Round and Flat Oval: 12.

D. Exhaust Ducts:

1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.
 e.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:

1. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

F. Intermediate Reinforcement:

G. Liner:

1. Supply Air Ducts: Fibrous glass, Type I, 2 inches thick.
2. Return Air Ducts: Fibrous glass, Type I, 2 inches thick.
3. Supply Fan Plenums: Fibrous glass, Type II, 2 inches thick.
4. Return- and Exhaust-Fan Plenums: Fibrous glass, Type II, 2 inches thick.
5. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.

H. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.

b. Velocity 1000 to 1500 fpm:
 1) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

 2) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

c. Velocity 1500 fpm or Higher:
 1) Mitered Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."

 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-3, "Round Duct Elbows."

 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.

 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to-Diameter Ratio: 1.5.

 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

I. Branch Configuration:

 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-6, "Branch Connections."

 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.
2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.

a. Velocity 1000 fpm or Lower: 90-degree tap.
b. Velocity 1000 to 1500 fpm: Conical tap.
c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 23 31 13
SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Backdraft and pressure relief dampers.
 2. Barometric relief dampers.
 4. Control dampers.
 5. Fire dampers.
 6. Ceiling dampers.
 7. Flange connectors.
 8. Duct silencers.
 10. Remote damper operators.
 11. Duct-mounted access doors.
 12. Flexible connectors.
 13. Flexible ducts.
 14. Duct accessory hardware.

B. Related Sections:
 1. Division 23 Section "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
 2. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
a. Special fittings.
c. Control damper installations.
d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
e. Duct security bars.
f. Wiring Diagrams: For power, signal, and control wiring.

C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

D. Source quality-control reports.

E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

1. Galvanized Coating Designation: G60.
2. Exposed-Surface Finish: Mill phosphatized.

C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
D. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. American Warming and Ventilating; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
4. Duro Dyne Inc.
5. Greenheck Fan Corporation.
6. Lloyd Industries, Inc.
7. Nailor Industries Inc.
8. NCA Manufacturing, Inc.
9. Pottorff; a division of PCI Industries, Inc.
10. Ruskin Company.
11. SEMCO Incorporated.

B. Description: Backdraft dampers to be gravity balanced. Pressure relief dampers to be motorized type.

D. Maximum System Pressure: 1-inch wg.

E. Frame: 0.052-inch-thick, galvanized sheet steel or 0.063-inch-thick extruded aluminum, with welded corners and mounting flange.

F. Blades: Multiple single-piece blades, center-pivoted, maximum 6-inch width, [0.025-inch-thick, roll-formed aluminum with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Extruded vinyl, mechanically locked.

I. Blade Axles:

1. Material: Galvanized steel
2. Diameter: 0.20 inch.

J. Tie Bars and Brackets: Galvanized steel.

K. Return Spring: Adjustable tension.

L. Bearings: Steel ball or synthetic pivot bushings.
M. Accessories:

1. Adjustment device to permit setting for varying differential static pressure.
2. Counterweights and spring-assist kits for vertical airflow installations.
3. Electric actuators.
4. Chain pulls.
5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20-gage minimum.
 b. Sleeve Length: 6 inches minimum.

6. Screen Mounting: Rear mounted.
7. Screen Material: Aluminum.
8. Screen Type: Insect.
9. 90-degree stops.

2.3 MOTORIZED RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. American Warming and Ventilating; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
4. Duro Dyne Inc.
5. Greenheck Fan Corporation.
6. Lloyd Industries, Inc.
7. Nailor Industries Inc.
8. NCA Manufacturing, Inc.
9. Pottorff; a division of PCI Industries, Inc.
10. Ruskin Company.
11. SEMCO Incorporated.

B. Suitable for horizontal or vertical mounting.

D. Maximum System Pressure: 2-inch wg.

E. Frame: [0.064-inch thick, galvanized sheet steel with welded corners and mounting flange.

F. Blades:

1. Multiple, [0.025-inch thick, roll-formed aluminum.
3. Action: Parallel.
5. Eccentrically pivoted.
G. Blade Seals: Neoprene.

H. Blade Axles: Galvanized steel.

I. Tie Bars and Brackets:
 1. Material: Galvanized steel.
 2. Rattle free with 90-degree stop.

J. Return Spring: Adjustable tension.

K. Bearings: Synthetic.

L. Accessories:
 1. Flange on intake.
 2. Adjustment device to permit setting for varying differential static pressures.

2.4 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, [provide products by one of
 the following:

 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. Flexmaster U.S.A., Inc.
 d. McGill AirFlow LLC.
 e. METALAIRE, Inc.
 f. Nailor Industries Inc.
 g. Pottorff; a division of PCI Industries, Inc.
 h. Ruskin Company.
 i. Trox USA Inc.
 j. Vent Products Company, Inc.

 2. Standard leakage rating, with linkage outside airstream.
 3. Suitable for horizontal or vertical applications.
 4. Frames:
 a. Hat-shaped, galvanized -steel channels, 0.064-inch minimum thickness.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

 5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.
7. Bearings:
 a. Oil-impregnated bronze.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

B. Standard, Aluminum, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. Flexmaster U.S.A., Inc.
 d. McGill AirFlow LLC.
 e. METALAIRE, Inc.
 f. Nailor Industries Inc.
 g. Pottorf; a division of PCI Industries, Inc.
 h. Ruskin Company.
 i. Trox USA Inc.
 j. Vent Products Company, Inc.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames: Hat-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 e. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.

7. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Aluminum.

C. Low-Leakage, Steel, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Low-leakage rating, with linkage outside airstream, and bearing AMCA’s Certified Ratings Seal for both air performance and air leakage.

3. Suitable for horizontal or vertical applications.

4. Frames:
 a. Hat shaped.
 b. Galvanized-steel channels, 0.064 inch thick.
 c. Mitered and welded corners.
 d. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized, roll-formed steel, 0.064 inch thick.

7. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

10. Tie Bars and Brackets: Galvanized steel.

11. Accessories:
 a. Include locking device to hold single-blade dampers in a fixed position without vibration.

2.5 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Arrow United Industries; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
5. McGill AirFlow LLC.
6. METALAIRE, Inc.
7. Nailor Industries Inc.
8. NCA Manufacturing, Inc.
9. PHL, Inc.
10. Pottorff; a division of PCI Industries, Inc.
11. Prefco; Perfect Air Control, Inc.
12. Ruskin Company.

B. Type: Static; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream, Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream]; fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.052 or 0.138 inch thick, as indicated, and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.6 CEILING DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. Cesco Products; a division of Mestek, Inc.
 3. McGill AirFlow LLC.
 4. METALAIRE, Inc.
 5. Nailor Industries Inc.
6. Prefco; Perfect Air Control, Inc.
7. Ruskin Company.
8. Vent Products Company, Inc.

B. General Requirements:

1. Labeled according to UL 555C by an NRTL.
2. Comply with construction details for tested floor- and roof-ceiling assemblies as indicated in UL's "Fire Resistance Directory."

C. Frame: Galvanized sheet steel, round or rectangular, style to suit ceiling construction.

D. Blades: Galvanized sheet steel with refractory insulation.

F. Fire Rating: 2 hours.

2.7 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ductmate Industries, Inc.
2. Nexus PDQ; Division of Shilco Holdings Inc.

B. Description: Add-on or [roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.8 DUCT SILENCERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide comparable product by one of the following:

1. Industrial Noise Control, Inc.
2. McGill AirFlow LLC.
3. Ruskin Company.
5. Price

C. General Requirements:
AIR DUCT ACCESSORIES

1. Factory fabricated.
2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.
3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

D. Shape:

1. Rectangular straight with splitters or baffles.
2. Round straight with center bodies or pods.
3. Rectangular elbow with splitters or baffles.
4. Round elbow with center bodies or pods.
5. Rectangular transitional with splitters or baffles.

E. Rectangular Silencer Outer Casing: ASTM A 653/A 653M, G90, galvanized sheet steel, 0.034 inch thick.

1. Sheet Metal Thickness for Units up to 24 Inches in Diameter: 0.034 inch thick.
2. Sheet Metal Thickness for Units 26 through 40 Inches in Diameter: 0.040 inch thick.
3. Sheet Metal Thickness for Units 42 through 52 Inches in Diameter: 0.052 inch thick.
4. Sheet Metal Thickness for Units 54 through 60 Inches in Diameter: 0.064 inch thick.

G. Inner Casing and Baffles: ASTM A 653/A 653M G60 (Z180) galvanized sheet metal, 0.034 inch thick, and with 1/8-inch-diameter perforations.

H. Connection Sizes: Match connecting ductwork unless otherwise indicated.

I. Principal Sound-Absorbing Mechanism:

1. Controlled impedance membranes and broadly tuned resonators without absorptive media.
2. Dissipative type with fill material.
 a. Fill Material: Inert and vermin-proof fibrous material, packed under not less than 5 percent compression.
 b. Erosion Barrier: Polymer bag enclosing fill, and heat sealed before assembly.
3. Lining: None.

J. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.

1. Lock form and seal or continuously weld joints.
2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.
3. Reinforcement: Cross or trapeze angles for rigid suspension.

K. Accessories:

1. Factory-installed end caps to prevent contamination during shipping.
2. Removable splitters.
3. Airflow measuring devices.

L. Source Quality Control: Test according to ASTM E 477.
 1. Testing of mockups to be witnessed by Architect.
 2. Record acoustic ratings, including dynamic insertion loss and generated-noise power levels with an airflow of at least 2000-fpm (10-m/s) face velocity.
 3. Leak Test: Test units for airtightness at 200 percent of associated fan static pressure or 6-inch wg (1500-Pa) static pressure, whichever is greater.

M. Capacities and Characteristics:
 2. Shape: Rectangular or Round.
 4. Maximum Pressure Drop: 0.35-inch wg.
 5. Casing:
 b. Outer Material: Galvanized steel.
 c. Inner Material: Galvanized steel.

2.9 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. METALAIRE, Inc.
 4. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."

E. Vane Construction: Double wall.
F. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.10 REMOTE DAMPER OPERATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Pottorff; a division of PCI Industries, Inc.
2. Ventfabrics, Inc.
3. Young Regulator Company.

B. Description: Cable system designed for remote manual damper adjustment.

C. Tubing: Brass.

D. Cable: Stainless steel.

2.11 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a division of Mestek, Inc.
2. Cesco Products; a division of Mestek, Inc.
3. Ductmate Industries, Inc.
5. Greenheck Fan Corporation.
6. McGill AirFlow LLC.
7. Nailor Industries Inc.
8. Pottorff; a division of PCI Industries, Inc.
9. Ventfabrics, Inc.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.
2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.

2.12 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd..
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

 1. Minimum Weight: 24 oz./sq. yd..
 3. Service Temperature: Minus 50 to plus 250 deg F.

 1. Minimum Weight: 16 oz./sq. yd.
 2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
 3. Service Temperature: Minus 67 to plus 500 deg F.

H. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.13 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flexmaster U.S.A., Inc.
2. McGill AirFlow LLC.

B. Noninsulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.

C. Noninsulated, Flexible Duct: UL 181, Class 0, interlocking spiral of aluminum foil.

1. Pressure Rating: 8-inch wg positive or negative.
3. Temperature Range: Minus 100 to plus 435 deg F.

D. Insulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.
4. Insulation R-value: Within a conditioned plenum the R value to be minimum of 6 and flex duct installed in a non-conditioned space shall be a minimum of R-8. Comply with ASHRAE/IESNA 90.1-2004.

E. Insulated, Flexible Duct: UL 181, Class 0, interlocking spiral of aluminum foil; fibrous-glass insulation; polyethylene vapor-barrier film.

1. Pressure Rating: 8-inch wg positive or negative.
3. Temperature Range: Minus 20 to plus 250 deg F.

F. Flexible Duct Connectors:

1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

2.14 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s “HVAC Duct Construction Standards - Metal and Flexible” for metal ducts and in NAIMA AH116, “Fibrous Glass Duct Construction Standards,” for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

1. Install steel volume dampers in steel ducts.
2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire dampers according to UL listing.

H. Install duct security bars. Construct duct security bars from 0.164-inch steel sleeve, continuously welded at all joints and 1/2-inch diameter steel bars, 6 inches o.c. in each direction in center of sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-by-1/4-inch steel angle to 4 sides and both ends of sleeve. Connect duct
security bars to ducts with flexible connections. Provide 12-by-12-inch hinged access panel with cam lock in duct in each side of sleeve.

I. Connect ducts to duct silencers rigidly.

J. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. On both sides of duct coils.
2. Upstream from duct filters.
3. At outdoor-air intakes and mixed-air plenums.
4. At drain pans and seals.
5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
7. Control devices requiring inspection.
8. Elsewhere as indicated.

K. Install access doors with swing against duct static pressure.

L. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

M. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

N. Install flexible connectors to connect ducts to equipment.

O. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

P. Connect terminal units to supply ducts with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

Q. Connect diffusers or light troffer boots to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.

R. Connect flexible ducts to metal ducts with stainless steel draw bands with .

S. Install duct test holes where required for testing and balancing purposes.
T. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 23 33 00
SECTION 23 34 00 – HVAC FANS

PART 1 - GENERAL

1.01 WORK INCLUDED

A. Centrifugal roof ventilators.
B. Ceiling and inline ventilators.
C. Roof supply fans.
D. Utility fans.

1.02 RELATED SECTIONS

A. Section 23 02 00 – Basic Materials and Methods
B. Section 23 05 13 – Common Motor Requirements for HVAC Equipment
C. Section 23 05 48 – Vibration and Seismic Controls for HVAC Piping and Equipment
D. Section 23 09 00 – Building Automation System
E. Section 23 05 93 – Testing, Adjusting and Balancing

1.03 QUALITY ASSURANCE

A. UL Compliance: Fans shall be designed, manufactured, and tested in accordance with UL 705 “Power Ventilators.”

B. UL Compliance: Fans and components shall be UL listed and labeled.

C. Nationally Recognized Testing Laboratory Compliance (NRTL): Fans and components shall be NRTL listed and labeled. The term “NRTL” shall be as defined in OSHA Regulation 1910.7.

D. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.

E. Electrical Component Standard: Components and installation shall comply with NFPA 70 “National Electrical Code.”

G. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings in accordance with AMCA Standard 210/ASHRAE Standard 51 - Laboratory Methods of Testing Fans for Rating.

1.04 SUBMITTALS
1. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections:

2. Product data for selected models, including specialties, accessories, and the following:

RETAIN THE FOLLOWING 2 PARAGRAPHS ONLY WHERE PERFORMANCE IS CRITICAL.

a. Certified fan performance curves with system operating conditions indicated.
b. Certified fan sound power ratings.
c. Motor ratings and electrical characteristics plus motor and fan accessories.
d. Materials gages and finishes, include color charts.
e. Dampers, including housings, linkages, and operators.
f. Full color paint samples.

3. Shop drawings from manufacturer detailing equipment assemblies and indicating dimensions, weights, required clearances, components, and location and size of field connections.

RETAIN BELOW FOR CEILING-MOUNTED UNITS WHERE DRAWINGS DO NOT INCLUDE DETAILED REFLECTIVE CEILING PLANS OR WHERE PROJECT INVOLVES UNUSUAL COORDINATION REQUIREMENTS.

4. Coordination drawings, in accordance with Division 23 Section "Basic Materials and Methods", for roof penetration requirements and for reflected ceiling plans drawn accurately to scale and coordinating penetrations and units mounted above ceiling. Show the following:

5. EDIT BELOW TO SUIT PROJECT.

a. Roof framing and support members relative to duct penetrations.
b. Ceiling suspension members.
c. Method of attaching hangers to building structure.
d. Size and location of initial access modules for acoustical tile.
e. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinkler heads, access panels, and special moldings.

5. Wiring diagrams that detail power, signal, and control wiring. Differentiate between manufacturer-installed wiring and field-installed wiring.

RETAIN BELOW IF PROCEDURES FOR PRODUCT CERTIFICATIONS RETAINED UNDER "QUALITY ASSURANCE" ARTICLE.

6. Product certificates, signed by manufacturer, certifying that their products comply with specified requirements.

7. Maintenance data for inclusion in Operating and Maintenance Manual specified in Division 1 and Division 23 Section "Basic Materials and Methods".

1.05 DELIVERY, STORAGE, AND HANDLING

A. Fans shall be stored and handled in accordance with the unit manufacturer's instructions.

B. Lift and support units with the manufacturer's designated lifting or supporting points.

C. Disassemble and reassemble units as required for movement into the final location following manufacturer's written instructions.
D. Deliver fan units as a factory-assembled unit to the extent allowable by shipping limitations, with protective crating and covering.

1.06 ENVIRONMENTAL REQUIREMENTS

A. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings lubricated, and fan has been test run under observation.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS
DELETE THIS ARTICLE IF OWNER-IMPOSED OR OTHER PROJECT REQUIREMENTS PROHIBIT MENTION OF MANUFACTURERS' NAMES.

A. PennBarry
B. Loren Cook Company
C. Greenheck Fan Corporation
D. ACME
E. Substitutions under provisions of Division 1.

SOUND POWER RATINGS INFORMATION MAY ONLY BE AVAILABLE FROM MANUFACTURERS UPON REQUEST. REFER TO DISCUSSION IN EVALUATIONS ON SOUND AND VIBRATION CONTROL.

2.02 GENERAL DESCRIPTION

A. Provide fans that are factory fabricated and assembled, factory tested, and factory finished with indicated capacities and characteristics.

B. Fans and Shafts shall be statically and dynamically balanced and designed for continuous operation at the maximum rated fan speed and motor horsepower.

C. Provide factory baked-enamel finish coat after assembly. Color shall be verified during the submittal process.

2.03 CENTRIFUGAL ROOF VENTILATORS

A. Fan shall be a spun aluminum, centrifugal, roof mounted, direct driven or belt driven as indicated.

B. Fan shall be listed by Underwriters Laboratories (UL 705). Fan shall bear the AMCA certified ratings seal for sound and air performance.

C. The fan shall be of bolted and welded construction utilizing corrosion resistant fasteners. The spun aluminum structural components shall be constructed of minimum 16 gauge marine alloy aluminum, bolted to a rigid aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. The discharge baffle conduit chase shall be provided through the curb cap and into the motor compartment to facilitate wiring connections. The motor, bearings and drives shall be mounted on a minimum 14 gauge steel power assembly, isolated from the unit structure with rubber vibration isolators. These components shall be enclosed in a weather-tight compartment, separated from the exhaust airstream. Unit shall bear an engraved aluminum nameplate and shall be shipped in transit tested packaging.

D. Wheel shall be centrifugal backward inclined, constructed of 100% aluminum, including a precision machined cast aluminum hub. Wheel inlet shall overlap an aerodynamic aluminum inlet cone to provide maximum performance and efficiency. Wheel shall be
balanced in accordance with AMCA standard 204-96, balance quality and vibration levels for fans.

E. Motor shall be heavy duty type with permanently lubricated sealed ball bearings.

F. Bearings shall be designed and individually tested specifically for use in air handling applications. Construction shall be heavy duty regreasable ball type in a cast iron housing selected for a minimum L50 life in excess of 200,000 hours at maximum cataloged operating speed.

G. Accessories: The following accessories are required.

1. Disconnect Switch: Nonfusible type, with thermal overload protection mounted inside fan housing, factory-wired through an internal aluminum conduit.

2. Bird Screens: Removable ½ inch mesh, 16 gauge, aluminum or brass wire.

3. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base, factory set to close when fan stops.

5. Roof Curbs: Prefabricated, 12 inch high, heavy-gauge, galvanized steel; mitered and welded corners; 2 inch thick, rigid, fiberglass insulation adhered to inside walls; built-in cant and mounting flange for flat roof decks; and 2 inch wood nailer. Size as required to suit roof opening and fan base.

2.04 CEILING AND INLINE VENTILATORS

A. Ceiling and inline ventilators shall be direct drive or belt drive as indicated, centrifugal blower type. Fan wheel shall be constructed of galvanized steel and shall be dynamically balanced. The housing shall be constructed of minimum 20 gauge corrosion resistant galvanized steel and acoustically insulated for quiet operation. Blower and motor assembly shall be easily removable from the housing without disturbing the ductwork. The motor shall be permanently lubricated with built-in thermal overload protection and shall be factory tested prior to shipment. The ceiling ventilators shall be furnished standard with a powder-painted white steel grille.

B. Ventilators shall be certified and licensed to bear the AMCA Seal for Air and Sound Performance. Ventilator performance shall be based on tests and procedures performed in accordance with AMCA publication 211 and comply with the requirements of the AMCA Certified Ratings Program. Fan sound power level ratings shall be based on tests and procedures performed in accordance with AMCA publication 311 and comply with the requirements of the AMCA Certified Ratings Program. Ventilators shall be UL listed and CSA certified.

C. Accessories: The following accessories are required.

1. Dampers:

 a. Aluminum backdraft damper.
b. Motor-operated volume control damper.

c. U.L. listed ceiling radiation damper for ceiling fans comply with NFPA Standard 90A rated for 3 hours.

2. Disconnect Switch: Nonfusible type with thermal overload protection.
3. Speed Controls: Fan mounted, solid state speed controller.

2.05 ROOF SUPPLY FANS

A. Roof-mounted, filtered air supply units are of the belt-driven, double width, double inlet (DWDI), forward curved centrifugal blower type. The unit's blower assembly shall be mounted on vibration isolators. Motor drives shall be machine cast iron and variable pitch and shall be factory set to the specified RPM. Belts shall be non-static and oil resistant. Both motor and blower bearings shall be permanently lubricated with sealed ball bearings. The blower housing shall be fabricated of heavy gauge painted steel.

B. Fan shall be listed by Underwriters Laboratories (UL 705) and shall bear the AMCA certified rating seal for sound and air performance.

C. Units housing shall be minimum 18 gauge extruded aluminum with a removable aluminum cover. The insulated cover shall be held in place with bolts for easy access to fan components.

D. Filters shall be permanent, one inch, washable, aluminum type and shall be easily removed for cleaning. Units carry the AMCA Certified Ratings Seal for air performance with filters in place.

E. Accessories: The following items are required.

1. Disconnect Switch: Nonfusible type, with thermal overload protection mounted inside fan housing, factory-wired through an internal aluminum conduit.
2. Bird Screens: Removable ½ inch mesh, 16 gauge, aluminum or brass wire.
4. Roof Curb: Prefabricated, 12 inch high, heavy gauge, galvanized steel; mitered and welded corners; 2 inch thick, rigid, fiberglass insulation adhered to inside walls; built-in cant and mounting flange for flat roof decks; and 2 inch wood nailer. Size as required to suit roof opening and fan base.

2.06 UTILITY FANS

A. Fans shall be of the direct driven or belt driven utility fan type as indicated with a single width, single inlet housing in AMCA arrangement 10.

B. The housing shall be constructed of minimum 14 gauge steel with continuously welded or lock formed seams permitting no air leakage. The housing shall be field rotatable to any of the eight standard discharge positions. Housing and bearing supports shall be constructed of minimum 10 gauge welded steel members to prevent vibration and rigidly support the shaft and bearings. Side access inspection port shall be provided for access to the motor compartments.

C. The fan wheel shall be of the forward curved type C, centrifugal fan type and constructed of heavy gauge steel. Wheels shall be statically and dynamically balanced. The wheel cone and fan inlet cone shall be carefully matched for maximum performance and operating efficiency.

D. Motors shall be permanently lubricated, heavy duty, ball bearing type carefully matched to the fan load and furnished at the specified voltage, phase and enclosure. The fan
shaft shall be ground and polished solid steel mounted in heavy duty, permanently sealed, pillow block ball bearings. Bearings shall be selected for a minimum L50 life in excess of 200,000 hours at maximum cataloged operating speed. Drives shall be sized for a minimum of 150% of driven horsepower. Pulleys shall be of the fully machined cast iron type, keyed and securely attached to the wheel and motor shafts. The motor pulley shall be adjustable for final system balancing.

E. Fan performance shall be based on tests conducted in accordance with AMCA Standard 210 test code for air moving devices. Fans shall be licensed to bear the AMCA Certified Ratings Seal for air performance.

2.07 PROPELLER WALL AXIAL VENTILATORS AND ASSEMBLIES LOCATED IN POOL ROOMS

A. Unless noted otherwise, all materials shall be of noncorrosive aluminum or stainless steel.

B. Ventilator and assembly shall consist of propeller wall axial ventilator section, motorized damper section and accessories as scheduled.

C. Motorized Damper Section:
 1. Blades and frame shall be of aluminum construction with Air Dry Phenolic (Heresite VR-500) coating.
 2. Blade edge seals shall be Ruskiprene type or equivalent, mechanically locked in extruded blade slots.
 3. Linkage shall be stainless steel, mounted in frame.
 4. Axles shall be square or hexagonal, stainless steel construction.
 5. Bearings shall be non-corrosive molded synthetic.
 6. Shaft shall be stainless steel.
 7. Damper actuator shall be mounted inside NEMA 4 type enclosure, factory wired through an internal aluminum conduit.

D. Gravity Damper Section:
 1. Blades and frame shall be of aluminum construction with Air Dry Phenolic (Heresite VR-500) coating.

E. Propeller Wall Axial Ventilator Section:
 1. Fan motor shall be in TEFC type enclosure.
 2. All steel fan components shall be coated with Air Dry Phenolic (Heresite VR-500) coating.

F. Wall collar shall be of aluminum construction.

G. Accessories: The following items are required:
 1. Disconnect Switch: Nonfusible type, with thermal overload protection mounted inside NEMA 4 enclosure, factory-wired through an internal aluminum conduit.
 2. Bird Screens: Removable ½ inch mesh, 16 gauge, aluminum or brass wire.

PART 3 – EXECUTION

3.01 Install in accordance with manufacturer’s instructions.

3.02 All items required for a complete and proper installation are not necessarily indicated on the plans or in the specifications.
SECTION 23 37 13 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Round ceiling diffusers.
 2. Rectangular and square ceiling diffusers.
 3. Perforated diffusers.
 4. Louver face diffusers.
 5. Linear bar diffusers.

B. Related Sections:
 1. Division 08 Section "Louvers and Vents" for fixed and adjustable louver and wall vents, whether or not they are connected to ducts.
 2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Round Ceiling Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
DIFFUSERS, REGISTERS, AND GRILLES

233713

a. Carnes.
b. METALAIRE, Inc.
c. Nailor Industries Inc.
d. Price Industries.
e. Titus.
f. Krueger.
g. Pottorff

2. Devices shall be specifically designed for variable-air-volume flows.
4. Finish: Baked enamel, white.
5. Face Style: Four cone.

B. Rectangular and Square Ceiling Diffusers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carnes.
b. Hart & Cooley Inc.
c. Krueger.
d. METALAIRE, Inc.
e. Nailor Industries Inc.
f. Price Industries.
g. Titus.
h. Krueger.
i. Pottorff

2. Devices shall be specifically designed for variable-air-volume flows.
4. Finish: Baked enamel, white.
5. Face Size: as specified.
6. Face Style: Four cone.
7. Mounting: to match ceiling.

C. Perforated Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carnes.
b. Hart & Cooley Inc.
c. Krueger.
d. METALAIRE, Inc.
e. Nailor Industries Inc.
f. Price Industries.
g. Titus.
h. Krueger.
i. Pottorff

2. Devices shall be specifically designed for variable-air-volume flows.
3. Material: Steel backpan and pattern controllers, with steel face.
4. Finish: Baked enamel, white.
5. Face Size: As specified.
6. Duct Inlet: Round.
7. Face Style: Drop extended.
8. Mounting: To match ceiling type.

D. Louver Face Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carnes.
 b. METALAIRE, Inc.
 c. Nailor Industries Inc.
 d. Price Industries.
 e. Titus.
 f. Krueger.
 g. Pottorff

2. Devices shall be specifically designed for variable-air-volume flows.
4. Finish: Baked enamel, white.
5. Face Size: As specified.
6. Mounting: To match ceiling.

2.2 CEILING LINEAR SLOT OUTLET

A. Linear Bar Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carnes.
 b. Krueger.
 c. METALAIRE, Inc.
 d. Nailor Industries Inc.
 e. Titus.
 f. Pottorff

2. Devices shall be specifically designed for variable-air-volume flows.
4. Narrow Core Spacing Arrangement: 1/8-inch thick blades spaced 1/4 inch apart, zero-degree deflection.
5. Wide Core Spacing Arrangement: 1/8-inch thick blades spaced 1/2 inch apart, zero-degree deflection.
2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13
SECTION 23 41 00 - PARTICULATE AIR FILTRATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Flat panel filters.
 2. Pleated panel filters.
 4. Filter gages.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include dimensions; operating characteristics; required clearances and access; rated flow capacity, including initial and final pressure drop at rated airflow; efficiency and test method; fire classification; furnished specialties; and accessories for each model indicated.

B. Operation and Maintenance Data: For each type of filter and rack to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:
 1. Comply with applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality"; Section 5 - "Systems and Equipment"; and Section 7 - "Construction and Startup."
 2. Comply with ASHRAE 52.1 for arrestance and ASHRAE 52.2 for MERV for methods of testing and rating air-filter units.

C. Comply with NFPA 90A and NFPA 90B.

1.5 COORDINATION

A. Coordinate sizes and locations of concrete bases. Cast anchor-bolt inserts into bases.
1.6 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Provide one complete set(s) of filters for each filter bank. If system includes prefilters, provide only prefilters.

PART 2 - PRODUCTS

2.1 FLAT PANEL FILTERS

A. Description: Factory-fabricated, self-supported, flat, nonpleated, panel-type, disposable air filters with holding frames.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. AAF International.
b. Airguard.
c. Camfil Farr.
d. Columbus Industries, Inc.
e. CRS Industries, Inc.; CosaTron Division.
f. D-Mark.
g. Filtration Group.
h. Flanders-Precisionaire.
i. Koch Filter Corporation.
j. Purafil, Inc.
k. Research Products Corp.
l. Tri-Dim Filter Corporation.

B. Filter Unit Class: UL 900, Class 1.

C. Media: Interlaced glass or synthetic fibers coated with nonflammable adhesive.

1. Adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Media shall be coated with an antimicrobial agent.

D. Filter-Media Frame: Cardboard with perforated metal retainer sealed or bonded to the media.

E. Mounting Frames: Welded galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.
2.2 PLEATED PANEL FILTERS

A. Description: Factory-fabricated, self-supported, extended-surface, pleated, panel-type, disposable air filters with holding frames.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AAF International.
 b. Airguard.
 c. Camfil Farr.
 d. Columbus Industries, Inc.
 e. CRS Industries, Inc.; CosaTron Division.
 f. D-Mark.
 g. Filtration Group.
 h. Flanders-Precisionaire.
 i. Koch Filter Corporation.
 j. Purafil, Inc.
 k. Research Products Corp.
 l. Tri-Dim Filter Corporation.

B. Filter Unit Class: UL 900, Class 1.

C. Media: Interlaced glass or synthetic fibers coated with nonflammable adhesive.

1. Adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Media shall be coated with an antimicrobial agent.
3. Separators shall be bonded to the media to maintain pleat configuration.
4. Welded wire grid shall be on downstream side to maintain pleat.
5. Media shall be bonded to frame to prevent air bypass.
6. Support members on upstream and downstream sides to maintain pleat spacing.

D. Filter-Media Frame: Cardboard frame with perforated metal retainer sealed or bonded to the media.

E. Mounting Frames: Welded galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.

2.3 SIDE-SERVICE HOUSINGS

A. Description: Factory-assembled, side-service housings, constructed of galvanized steel with flanges to connect to duct or casing system.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AAF International.
 b. Airguard.
 c. Camfil Farr.
 d. Columbus Industries, Inc.
PARTICULATE AIR FILTRATION

PART 3 - EXECUTION

3.1 INSTALLATION

A. Position each filter unit with clearance for normal service and maintenance. Anchor filter holding frames to substrate.

B. Install filters in position to prevent passage of unfiltered air.

C. Install filter gage for each filter bank.

D. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.

E. Install filter-gage, static-pressure taps upstream and downstream from filters. Install filter gages on filter banks with separate static-pressure taps upstream and downstream from filters. Mount filter gages on outside of filter housing or filter plenum in an accessible position. Adjust and level inclined gages.

F. Coordinate filter installations with duct and air-handling-unit installations.

3.2 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
1. Operate automatic roll filters to demonstrate compliance with requirements.
2. Test for leakage of unfiltered air while system is operating.

D. Air filter will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.3 CLEANING

A. After completing system installation and testing, adjusting, and balancing of air-handling and air-distribution systems, clean filter housings and install new filter media.

END OF SECTION 23 41 00
SECTION 238130 – VARIABLE REFRIGERANT FLOW HVAC SYSTEM

Part 1 – General

1.01 System Description

The variable capacity, heat pump heat recovery air conditioning system shall be a Mitsubishi Electric CITY MULTI VRF (Variable Refrigerant Flow) zoning system. The R2-Series system shall consist of a PURY outdoor unit, BC (Branch Circuit) Controller, multiple indoor units, and M-NET DDC (Direct Digital Controls). Each indoor unit or group of indoor units shall be capable of operating in any mode independently of other indoor units or groups. System shall be capable of changing mode (cooling to heating, heating to cooling) with no interruption to system operation. To ensure owner comfort, each indoor unit or group of indoor units shall be independently controlled and capable of changing mode automatically when zone temperature strays 1.8 degrees F from set point for ten minutes. The sum of connected capacity of all indoor air handlers shall range from 50% to 150% of outdoor rated capacity.

The PU*Y-P**KMU-U CITY MULTI system shall be capable of qualifying for the Buy American Act with a waiver under the non-availability exception based on the determination by the U.S. Customs and Border Protection that the key components, the ODUs, are a “product of the US” for the purposes of U.S. Government procurement. (*Federal Register / Vol. 79, No. 220 / Friday, November 14, 2014 pages 68284-68246*)

1.02 Quality Assurance

A. The units shall be listed by Electrical Testing Laboratories (ETL) and bear the ETL label.
B. All wiring shall be in accordance with the National Electrical Code (N.E.C.).
C. The units shall be manufactured in a facility registered to ISO 9001 and ISO14001 which is a set of standards applying to environmental protection set by the International Standard Organization (ISO).
D. All units must meet or exceed the 2010 Federal minimum efficiency requirements and the ASHRAE 90.1 efficiency requirements for VRF systems. Efficiency shall be published in accordance with the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 1230.
E. A full charge of R-410A for the condensing unit only shall be provided in the condensing unit.

1.03 Delivery, Storage and Handling

A. Unit shall be stored and handled according to the manufacturer’s recommendation.

1.04 Controls

A. The control system shall consist of a low voltage communication network of unitary built-in controllers with on-board communications and a web-based operator interface. A web controller with a network interface card shall gather data from this system and generate web pages accessible through a conventional web browser on each PC connected to the network. Operators shall be able to perform all normal operator functions through the web browser interface.
B. System controls and control components shall be installed in accordance with the manufacturer’s written installation instructions.
C. Furnish energy conservation features such as optimal start, night setback, request-based logic, and demand level adjustment of overall system capacity as specified in the sequence.
D. System shall provide direct and reverse-acting on and off algorithms based on an input condition or group conditions to cycle a binary output or multiple binary outputs.
E. Provide capability for future system expansion to include monitoring and use of occupant card access, lighting control and general equipment control.
F. System shall be capable of email generation for remote alarm annunciation.
G. Control system start-up shall be a required service to be completed by the manufacturer or a duly authorized, competent representative that has been factory trained in Mitsubishi Electric controls system configuration and operation. The representative shall provide proof of certification for Mitsubishi Electric Controls Applications Training indicating successful completion of no more than two (2) years prior to system installation. This certification shall be included as part of the
equipment and/or controls submittals. This service shall be equipment and system count dependent and shall be a minimum of one (1) eight (8) hour period to be completed during normal working hours.
Section 1.01 Part 2 – Warranty

2.01 The CITY MULTI units shall be covered by the manufacturer’s limited warranty for a period of one (1) year parts and seven (7) year compressor to the original owner from date of installation. If the systems are:

1) designed by a certified CITY MULTI Diamond Designer using Diamond System Builder,
2) installed by a contractor that has successfully completed the Mitsubishi Electric three day service course, AND
3) verified with required materials submitted to and approved by the Mitsubishi Electric Service Department, which include:

- As built Diamond System Builder file,
- A one (1) hour Maintenance Tool record with system information, in Ordinary Control Mode (not initial),
- Outdoor and Indoor unit dip switch settings
- Outdoor unit(s) function settings,

then the units shall be covered by an extended manufacturer’s limited warranty for a period of ten (10) years to the original owner from date of installation.

In addition the compressor shall have a manufacturer’s limited warranty for a period of ten (10) years to the original owner from date of installation.

If, during this period, any part should fail to function properly due to defects in workmanship or material, it shall be replaced or repaired at the discretion of the manufacturer. This warranty shall not include labor.

2.02 Manufacturer shall have a minimum of thirty-three (33) years of HVAC experience in the U.S. market.

2.03 All manufacturer technical and service manuals must be readily available for download by any local contractor should emergency service be required. Registering and sign-in requirements which may delay emergency service reference are not allowed.

2.04 The CITY MULTI VRF system shall be installed by a contractor with extensive CITY MULTI install and service training. The mandatory contractor service and install training should be performed by the manufacturer.

Section 1.02 Part 3 – Products

Section 1.03

3.01 R2-SERIES Outdoor Unit

A. General:

The R2-Series PURY outdoor unit shall be used specifically with CITY MULTI VRF components. The PURY outdoor units shall be equipped with multiple circuit boards that interface to the M-NET controls system and shall perform all functions necessary for operation. Each outdoor unit module shall be completely factory assembled, piped and wired and run tested at the factory.

1. The model nomenclature and unit requirements are shown below. All units requiring a factory supplied twinning kits shall be piped together in the field, without the need for equalizing line(s). If an alternate manufacturer is selected, any additional material, cost, and labor to install additional lines shall be incurred by the contractor.

<table>
<thead>
<tr>
<th>Outdoor Unit Model Nomenclature</th>
<th>208/230 Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number</td>
<td>Units</td>
</tr>
<tr>
<td>PURY-P144TKMU</td>
<td>(1) PURY-P144TKMU</td>
</tr>
<tr>
<td>Twinning Kit</td>
<td>None</td>
</tr>
</tbody>
</table>
2. Outdoor unit shall have a sound rating no higher than 60 dB(A) individually or 64 dB(A) twinned. Units shall have a sound rating no higher than 50 dB(A) individually or 53 dB(A) twinned while in night mode operation. If an alternate manufacturer is selected, any additional material, cost, and labor to meet published sound levels shall be incurred by the contractor.

3. Both refrigerant lines from the outdoor unit to the BC (Branch Circuit) Controller (Single or Main) shall be insulated in accordance with the installation manual.

4. There shall be no more than 3 branch circuit controllers connected to any one outdoor unit.

5. Outdoor unit shall be able to connect to up to 50 indoor units depending upon model.

6. The outdoor unit shall have an accumulator with refrigerant level sensors and controls.

7. The outdoor unit shall have a high pressure safety switch, over-current protection, crankcase heater and DC bus protection.

8. The outdoor unit shall have the ability to operate with a maximum height difference of 164 feet and have total refrigerant tubing length of 1804-2625 feet. The greatest length is not to exceed 541 feet between outdoor unit and the indoor units without the need for line size changes or traps.

9. The outdoor unit shall be capable of operating in heating mode down to -4°F ambient temperatures or cooling mode down to 23°F ambient temperatures, without additional low ambient controls. If an alternate manufacturer is selected, any additional material, cost, and labor to meet low ambient operating condition and performance shall be incurred by the contractor.

10. The outdoor unit shall be capable of operating in cooling mode down to -10°F with optional manufacturer supplied low ambient kit.

11. Manufacturer supplied low ambient kit shall be provided with predesigned control box rated for outdoor installation and capable of controlling kit operation automatically in all outdoor unit operation modes.

12. Manufacturer supplied low ambient kit shall be listed by Electrical Laboratories (ETL) and bear the ETL label.

13. Manufacturer supplied low ambient kit shall be factory tested in low ambient temperature chamber to ensure operation. Factory performance testing data shall be available when requested.

14. The outdoor unit shall have a high efficiency oil separator plus additional logic controls to ensure adequate oil volume in the compressor is maintained.

15. The outdoor unit shall be provided with a manufacturer supplied 20 gauge hot dipped galvanized snow/hail guard. The snow/hail guard protects the outdoor coil surfaces from hail damage and snow build-up in severe climates.

16. Unit must defrost all circuits simultaneously in order to resume full heating more quickly. Partial defrost which may extend “no or reduced heating” periods shall not be allowed.

17. Equipment must be labeled “Assembled in USA” on equipment nameplate. Manufacturer must provide documentation from U.S. Customs and Border Protection indicating the equipment is a product of the U.S.

B. Unit Cabinet:

1. The casing(s) shall be fabricated of galvanized steel, bonderized and finished. Units cabinets shall be able to withstand 960 hours per ASTM B117 criteria for seacoast protected models (–BS models)

C. Fan:

1. Each outdoor unit module shall be furnished with one direct drive, variable speed propeller type fan. The fan shall be factory set for operation under 0 in. WG external static pressure, but capable of normal operation under a maximum of 0.24 in. WG external static pressure via dipswitch.

2. All fan motors shall have inherent protection, have permanently lubricated bearings, and be completely variable speed.

3. All fan motors shall be mounted for quiet operation.
4. All fans shall be provided with a raised guard to prevent contact with moving parts.
5. The outdoor unit shall have vertical discharge airflow.

D. Refrigerant
1. R410A refrigerant shall be required for PURY-P-T/Y(S)KMU-A outdoor unit systems.
2. Polyolester (POE) oil shall be required. Prior to bidding, manufacturers using alternate oil types shall submit material safety data sheets (MSDS) and comparison of hygroscopic properties for alternate oil with list of local suppliers stocking alternate oil for approval at least two weeks prior to bidding.

E. Coil:
1. The outdoor coil shall be of nonferrous construction with lanced or corrugated plate fins on copper tubing.
2. The coil fins shall have a factory applied corrosion resistant blue-fin finish.
3. The coil shall be protected with an integral metal guard.
4. Refrigerant flow from the outdoor unit shall be controlled by means of an inverter driven compressor.
5. The outdoor coil shall include 4 circuits with two position valves for each circuit, except for the last stage.

F. Compressor:
1. Each outdoor unit module shall be equipped with one inverter driven scroll hermetic compressor. Non inverter-driven compressors, which cause inrush current (demand charges) and require larger wire sizing, shall not be allowed.
2. A crankcase heater(s) shall be factory mounted on the compressor(s).
3. The outdoor unit compressor shall have an inverter to modulate capacity. The capacity shall be completely variable with a turndown of 19%-5% of rated capacity, depending upon unit size.
4. The compressor will be equipped with an internal thermal overload.
5. The compressor shall be mounted to avoid the transmission of vibration.
6. Field-installed oil equalization lines between modules are not allowed. Prior to bidding, manufacturers requiring equalization must submit oil line sizing calculations specific to each system and module placement for this project.

G. Controls:
1. The outdoor unit shall have the capability of up to 8 levels of demand control for each refrigerant system

H. Electrical:
1. The outdoor unit electrical power shall be 208/230 volts, 3-phase, 60 hertz.
2. The outdoor unit shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz), 207-253V (230V/60Hz).
3. The outdoor unit shall be controlled by integral microprocessors.
4. The control circuit between the indoor units, BC Controller and the outdoor unit shall be 24VDC completed using a 2-conductor, twisted pair shielded cable to provide total integration of the system.

3.02 Branch CIRCUIT (BC) controllers FOR R2-SERIES SYSTEMS

A. General
The BC (Branch Circuit) Controllers shall include multiple branches to allow simultaneous heating and cooling by allowing either hot gas refrigerant to flow to indoor unit(s) for heating or subcooled liquid refrigerant to flow to indoor unit(s) for cooling. Refrigerant used for cooling must always be subcooled for optimal indoor unit LEV performance; alternate branch devices with no subcooling risk bubbles in liquid supplied to LEV and are not allowed.
The BC (Branch Circuit) Controllers shall be specifically used with R410A R2-Series systems.
These units shall be equipped with a circuit board that interfaces to the M-NET controls system and shall perform all functions necessary for operation. The unit shall have a galvanized steel finish.
The BC Controller shall be completely factory assembled, piped and wired. Each unit shall be run tested at the factory. This unit shall be mounted indoors, with access and service clearance provided for each controller. The sum of connected capacity of all indoor air handlers shall range
from 50% to 150% of rated capacity. The BC Controller shall be suitable for use in plenums in accordance with UL1995 ed 4.

B. BC Unit Cabinet:
 1. The casing shall be fabricated of galvanized steel.
 2. Each cabinet shall house a liquid-gas separator and multiple refrigeration control valves.
 3. The unit shall house two tube-in-tube heat exchangers.

C. Refrigerant
 1. R410A refrigerant shall be required.

D. Refrigerant Branches
 1. All BC Controller refrigerant pipe connections shall be brazed or flared.

E. Refrigerant valves:
 1. The unit shall be furnished with multiple branch circuits which can individually accommodate up to 54,000 BTUH and up to three indoor units. Branches may be twinned to allow more than 54,000 BTUH.
 2. All branches shall have
 3. Each branch shall have multiple two-position valves to control refrigerant flow.
 4. Service shut-off valves shall be field-provided/installed for each branch to allow service to any indoor unit without field interruption to overall system operation.
 5. Linear electronic expansion valves shall be used to control the variable refrigerant flow.

F. Future Use
 1. Each VRF system shall include at least one (1) unused branches or branch devices for future use.
 Branches shall be fully installed & wired in central location with capped service shutoff valve & service port.

G. Integral Drain Pan:
 1. An Integral resin drain pan and drain shall be provided.

H. Electrical:
 1. The unit electrical power shall be 208/230 volts, 1 phase, 60 Hertz.
 2. The unit shall be capable of satisfactory operation within voltage limits of 187-228 (208V/60Hz) or 207-253 (230/60Hz).
 3. The BC Controller shall be controlled by integral microprocessors.
 4. The control circuit between the indoor units and outdoor units shall be 24VDC completed using a 2-conductor, twisted pair shielded cable to provide total integration of the system.
3.03 PKFY (Wall Mounted) INDOOR UNIT

A. General:
The PKFY shall be a wall-mounted indoor unit section and shall have a modulating linear expansion device and a flat front. The PKFY shall be used with the R2-Series outdoor unit and BC Controller, Y-Series outdoor unit, or S-Series outdoor unit. The PKFY shall support individual control using M-NET DDC controllers.

B. Indoor Unit
The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, and a test run switch. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.

C. Unit Cabinet:
1. All casings, regardless of model size, shall have the same white finish
2. Multi directional drain and refrigerant piping offering four (4) directions for refrigerant piping and two (2) directions for draining shall be standard.
3. There shall be a separate back plate which secures the unit firmly to the wall.

D. Fan:
1. The indoor fan shall be an assembly with one or two line-flow fan(s) direct driven by a single motor.
2. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings.
3. A manual adjustable guide vane shall be provided with the ability to change the airflow from side to side (left to right).
4. A motorized air sweep louver shall provide an automatic change in airflow by directing the air up and down to provide uniform air distribution.

E. Filter:
1. Return air shall be filtered by means of an easily removable, washable filter.

F. Coil:
1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing.
2. The tubing shall have inner grooves for high efficiency heat exchange.
3. All tube joints shall be brazed with phos-copper or silver alloy.
4. The coils shall be pressure tested at the factory.
5. A condensate pan and drain shall be provided under the coil.
6. Both refrigerant lines to the PKFY indoor units shall be insulated in accordance with the installation manual.

G. Electrical:
1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz)

H. Controls:
1. This unit shall use controls provided by Mitsubishi Electric Cooling & Heating to perform functions necessary to operate the system. Please refer to Part 4 of this guide specification for details on controllers and other control options.
2. The unit shall be able to control external backup heat.
3. The unit shall have a factory built in receiver for wireless remote control
4. Indoor unit shall compensate for the higher temperature sensed by the return air sensor compared to the temperature at level of the occupant when in HEAT mode. Disabling of compensation shall be possible for individual units to accommodate instances when compensation is not required.
5. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with 1.8°F – 9.0°F adjustable deadband from set point.
6. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.
7. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.

3.04 PMFY (1-WAY CEILING-RECESSED CASSETTE WITH GRILLE) INDOOR UNIT

A. **General:**
The PMFY shall be a one-way cassette indoor unit that recesses into the ceiling with a ceiling grille and shall have a modulating linear expansion device. The PMFY shall be used with the R2-Series outdoor unit and BC Controller, Y-Series outdoor unit, or S-Series outdoor unit. The PMFY shall support individual control using M-NET DDC controllers.

B. **Indoor Unit:**
The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, an emergency operation function and a test run switch. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.

C. **Unit Cabinet:**
1. The cabinet shall be space-saving ceiling recessed.
2. The cabinet panel shall have provisions for a field installed filtered outside air intake.
3. Branch ducting shall be allowed from cabinet.
4. The one-way grille shall be fixed to bottom of cabinet allowing for one-way airflow.

D. **Fan:**
1. The indoor fan shall be an assembly with one line-flow fan direct driven by a single motor.
2. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings.
3. The indoor fan shall consist of four (4) speeds, Low, Mid1, Mid2, and High.

E. **Filter:**
1. Return air shall be filtered by means of a long-life washable permanent filter.

F. **Coil:**
1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing.
2. The tubing shall have inner grooves for high efficiency heat exchange.
3. All tube joints shall be brazed with phos-copper or silver alloy.
4. The coils shall be pressure tested at the factory.
5. A condensate pan and drain shall be provided under the coil.
6. The unit shall be provided with an integral condensate lift mechanism able to raise drain water 23 inches above the condensate pan.
7. Both refrigerant lines to the PMFY indoor units shall be insulated in accordance with the installation manual.

G. **Electrical:**
1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz).

H. **Controls:**
1. This unit shall use controls provided by Mitsubishi Electric to perform functions necessary to operate the system. Please refer to Part 5 of this guide specification for details on controllers and other control options.
2. Indoor unit shall compensate for the higher temperature sensed by the return air sensor compared to the temperature at level of the occupant when in HEAT mode. Disabling of compensation shall be possible for individual units to accommodate instances when compensation is not required.
3. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with 1.8°F – 9.0°F adjustable deadband from set point.
4. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.
5. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.

3.05 PVFY VERTICAL AIR HANDLER

A. General
The PVFY shall be a multiposition indoor fan coil design with a fixed bottom return, a fixed vertical discharge supply, and a modulating linear expansion device. The unit shall have the capability to be mounted in either the vertical or horizontal (left or right) and have the capability to integrate into systems with various types of indoor units connected. The PVFY shall be used with the R2-Series outdoor unit and BC Controller, Y-Series outdoor unit, or S-Series outdoor unit. The PVFY shall support individual control using M-NET DDC controllers. Units shall have the ability to control supplemental heat or humidifier via a control board connector and a 12 VDC output. Units shall have ability to output fan speed via a relay kit. The PVFY shall be suitable for use in air handling spaces in accordance with Section 18.2 of UL 1995 4th Edition. The PVFY shall be tested in accordance with ANSI/ASHRAE 193 and have less than 2% air leakage at maximum airflow setting.

B. Indoor Unit.
The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, and an auto restart function. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.

C. Unit Cabinet:
1. The cabinet shall be pre-painted, pre-insultated, 22 gauge galvanized steel.

D. Fan:
1. The indoor unit fan shall be an assembly with a single direct drive fan with a high efficiency DC motor.
2. The indoor fan shall be statically and dynamically balanced and run on a motor with permanently lubricated bearings.
3. The indoor unit shall have a ducted air outlet system and ducted return air system.
4. The fan shall have 3-speeds with the capability to operate between 0.3-0.8 In.W.G. selectable.

E. Filter:
1. The unit shall have a 1" filter rack with a reusable filter.

F. Coil:
1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing.
2. The tubing shall have inner grooves for high efficiency heat exchange.
3. All tube joints shall be brazed with phos-copper or silver alloy.
4. The coils shall be pressure tested at the factory.
5. A condensate pan and drain shall be provided under the coil.
6. The condensate shall be gravity drained from the fan coil.
7. Both refrigerant lines to the PVFY indoor units shall be insulated in accordance with the installation manual.

G. Electrical:
1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz).

H. Controls:
1. This unit shall use controls provided by Mitsubishi Electric to perform functions necessary to operate the system. Please refer to Part 5 of this guide specification for details on controllers and other control options.
2. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with 1.8 degree F deadband from set point.

Part 4 – Controls
4.01 Overview
A. General:
 The CITY MULTI Controls Network (CMCN) shall be capable of supporting remote controllers, centralized controllers, an integrated web based interface, graphical user workstation, and system integration to Building Management Systems via BACnet® and LonWorks®.

4.02 Electrical Characteristics
A. General:
 The CMCN shall operate at 30VDC. Controller power and communications shall be via a common non-polar communications bus.
B. Wiring:
 1. Control wiring shall be installed in a daisy chain configuration from indoor unit to indoor unit, to the BC controller (main and subs, if applicable) and to the outdoor unit. Control wiring to remote controllers shall be run from the indoor unit terminal block to the controller associated with that unit.
 2. Control wiring for the Smart ME remote controller shall be from the remote controller to the first associated indoor unit (TB-5) M-NET connection. The Smart ME remote controller shall be assigned an M-NET address.
 3. Control wiring for the Simple MA and Wireless MA remote controllers shall be from the remote controller (receiver) to the first associated indoor unit (TB-15) then to the remaining associated indoor units (TB-15) in a daisy chain configuration.
 4. Control wiring for centralized controllers shall be installed in a daisy chain configuration from outdoor unit to outdoor unit, to the system controllers (centralized controllers and/or integrated web based interface), to the power supply.
 5. The AE-200, AE-50, and EB-50GU centralized controller shall be capable of being networked with other AE-200, AE-50, and EB-50GU centralized controllers for centralized control.
C. Wiring type:
 1. Wiring shall be 2-conductor (16 AWG), twisted, stranded, shielded wire as defined by the Diamond System Builder output.
 2. Network wiring shall be CAT-5 with RJ-45 connection.

4.03 CITY MULTI Controls Network
The CITY MULTI Controls Network (CMCN) consists of remote controllers, centralized controllers, and/or integrated web based interface communicating over a high-speed communication bus. The CITY MULTI Controls Network shall support operation monitoring, scheduling, occupancy, error email distribution, personal web browsers, tenant billing, online maintenance support, and integration with Building Management Systems (BMS) using either LonWorks® or BACnet® interfaces. The below figure illustrates a sample CMCN System Configuration.
CMCN System Configuration

4.04 CMCN: Remote Controllers

A. Smart ME Remote Controller (PAR-U01MEDU)

The Smart ME Remote Controller (PAR-U01MEDU) shall be capable of controlling up to 16 indoor units (defined as 1 group). The Smart ME Remote Controller shall be approximately 5.5” x 5” in size and white in color with an auto-timeout touch screen LCD display. The Smart ME Remote Controller shall support a selection from multiple languages (English, Spanish or French) for display information. The Smart ME supports temperature display selection of Fahrenheit or Celsius. The Smart ME Remote Controller shall control the following grouped operations: On/Off, Operation Mode (cool, heat, auto*, dry, fan and setback* (*R2/WR2-Series Simultaneous Heating and Cooling only)), temperature set point, fan speed setting, and airflow direction setting. The Smart ME Remote Controller shall be able to limit the set temperature range from the Smart ME Remote Controller, or via a PC through a licensed EB-50GU. Also, the temperature range can be set from a touch screen panel on the TC-24. The room temperature shall be sensed at either the Smart ME Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Smart ME Remote Controller shall display a four-digit error code in the event of system abnormality or error.

The ME Remote Controller shall only be used in same group with other ME Remote Controllers with a maximum of two ME Remote Controllers per group.

The ME Remote Controller shall require manual addressing using rotary dial switch to the M-NET communication bus. The ME Remote Controller shall connect using two-wire, stranded, non-polar control wire to TB5 connection terminal on the indoor unit.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON/OFF</td>
<td>Run and stop operation for a single group</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Backlight</td>
<td>Turns on when screen is touched. Timeout duration is adjustable.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Operation</td>
<td>Display</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Operation Mode</td>
<td>Switches between Cool/Dry/Auto/Fan/Heat/Setback. Operation modes vary depending on the air conditioner unit. Auto and Setback mode are available for the R2/WR2-Series only.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Temperature Setting</td>
<td>Sets the temperature from 40°F – 95°F depending on operation mode and indoor unit. Separate COOL and HEAT mode set points available depending on central controller and connected mechanical equipment.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Fan Speed Setting</td>
<td>Available fan speed settings depending on indoor unit.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Air Flow Direction Setting</td>
<td>Air flow direction settings vary depending on the indoor unit model.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Room Temp and Humidity Display</td>
<td>Displays the room temperature and humidity on the Home screen. Temperature and Humidity sensed can be calibrated using the sensor offset in 1 °F or 1% RH increments.</td>
<td>N/A</td>
<td>Each Group</td>
</tr>
<tr>
<td>Occupancy Sensor</td>
<td>Detects occupancy using an infrared motion sensor. Occupancy status is indicated on the remote controller and through the web interface depending on connected equipment. Sensitivity is adjustable.</td>
<td>N/A</td>
<td>Each Group</td>
</tr>
<tr>
<td>Brightness Sensor</td>
<td>Detects brightness in the space and indicates brightness on the remote controller and through the web browser interface depending on connected equipment. Sensitivity is adjustable.</td>
<td>N/A</td>
<td>Each Group</td>
</tr>
<tr>
<td>Status Monitor</td>
<td>Displays the status of general equipment control points connected to the Advanced HVAC Controller (DC-A2IO)</td>
<td>N/A</td>
<td>Each Group</td>
</tr>
<tr>
<td>Humidity Setting</td>
<td>Sets the relative humidity set point in 1% increments for any humidifier connected to the Advanced HVAC Controller (DC-A2IO)</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>LED Indicator</td>
<td>Can be set to indicate the operation status by lighting and flashing with different colors and brightness or by turning off to signal operation mode, stopped unit, error, occupancy, or home screen button pushes. Color can be set to indicate the current mode selected or room temp range being sensed. *Available colors include blue, light blue, yellow, white, green, red, and lime.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Schedule</td>
<td>Set up to 8 operations per day, 7 days per week. Operations include time on/off, mode and room temperature set point.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Permit / Prohibit Local Operation</td>
<td>Individually prohibit operation of each local remote control function (Start/Stop, Change operation mode, Set temperature, Fan Speed, Air Direction, Reset filter). *1: Operation icon lights up on the remote controller for prohibited functions.</td>
<td>N/A</td>
<td>Each Group</td>
</tr>
</tbody>
</table>

*1: Operation icon lights up on the remote controller for prohibited functions.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy-Save control during vacancy</td>
<td>When vacancy is detected by the occupancy sensor 5 control options are available for selection:</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td></td>
<td>Stop/Setback Mode/Set Temperature Offset/Low Fan Speed/Thermo-off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brightness sensor can be used in conjunction with the occupancy sensor to increase accuracy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>When an error is currently occurring on an air conditioner unit, the afflicted unit and the error code are displayed</td>
<td>N/A</td>
<td>Each Unit</td>
</tr>
<tr>
<td>Test Run</td>
<td>Operates air conditioner units in test run mode.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Ventilation Equipment</td>
<td>Up to 16 indoor units can be connected to an interlocked system that has one LOSSNAY unit. LOSSNAY items that can be set are “Hi”, “Low”, and “Stop”. Ventilation mode switching is not available.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Set Temperature Range Limit</td>
<td>Set temperature range limit for auto, cool (drying) and heat modes.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Operation Lock Out Function</td>
<td>Locking of ON/OFF, Mode, Set Temp, Hold button and Air Direction.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Password</td>
<td>User and Service password protections are available</td>
<td>Each Group</td>
<td>N/A</td>
</tr>
<tr>
<td>Hold</td>
<td>Hold Prohibits the scheduled operation from being executed</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td></td>
<td>a. ON/OFF timer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Auto-OFF timer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Weekly timer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Automatic return to the preset temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* While an operation is prohibited by Hold function, the operation icon lights up.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Backlit Simple MA Remote Controller (PAC-YT53CRAU)

The Backlit Simple MA Remote Controller (PAC-YT53CRAU) shall be capable of controlling up to 16 indoor units (defined as 1 group). The Backlit Simple MA Remote Controller shall be compact in size, approximately 3" x 5" and have limited user functionality. The Backlit Simple MA supports temperature display selection of Fahrenheit or Celsius. The Backlit Simple MA Remote Controller shall allow the user to change on/off, mode (cool, heat, auto (R2/WR2-Series only), dry, setback (R2/WR2-Series only) and fan), temperature setting, and fan speed setting and airflow direction. The Backlit Simple MA Remote Controller shall be able to limit the set temperature range from the Backlit Simple MA. The Backlit Simple MA Remote controller shall be capable of night setback control with upper and lower set temperature settings. The room temperature shall be sensed at either the Backlit Simple MA Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Backlit Simple MA Remote Controller shall display a four-digit error code in the event of system abnormality/error.

The Backlit Simple MA Remote Controller shall only be used in same group with Wireless MA Remote Controllers (PAR-FL32MA-E / PAR-FA32MA-E) or with other Backlit Simple MA Remote Controllers (PAC-YT53CRAU), with up to two remote controllers per group.
The Backlit Simple MA Remote Controller shall require no addressing. The Backlit Simple MA Remote Controller shall connect using two-wire, stranded, non-polar control wire to TB15 connection terminal on the indoor unit. The Simple MA Remote Controller shall require cross-over wiring for grouping across indoor units.

PAC-YT53CRAU (Backlit Simple MA Remote Controller)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON/OFF</td>
<td>Run and stop operation for a single group</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Operation Mode</td>
<td>Switches between Cool/Drying/Auto/Fan/Heat/Setback. Operation modes vary depending on the air conditioner unit. Auto and Setback mode are available for the R2/WR2-Series only.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Temperature Setting</td>
<td>Sets the temperature from 40°F – 95°F depending on operation mode and indoor unit. Separate COOL and HEAT mode set points available depending on central controller and connected mechanical equipment.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Fan Speed Setting</td>
<td>Available fan speed settings depending on indoor unit.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Air Flow Direction Setting</td>
<td>Air flow direction settings vary depending on the indoor unit model.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
<tr>
<td>Permit / Prohibit Local Operation</td>
<td>Individually prohibit operation of each local remote control function (Start/Stop, Change operation mode, Set temperature, Reset filter). *1: Centrally Controlled is displayed on the remote controller for prohibited functions.</td>
<td>N/A</td>
<td>Each Group *1</td>
</tr>
<tr>
<td>Display Indoor Unit Intake Temp</td>
<td>Measures and displays the intake temperature of the indoor unit when the indoor unit is operating.</td>
<td>N/A</td>
<td>Each Group</td>
</tr>
<tr>
<td>Display Backlight</td>
<td>Pressing the button lights up a backlight. The light automatically turns off after a certain period of time. (The brightness settings can be selected from Bright, Dark, and Light off.)</td>
<td>N/A</td>
<td>Each Unit</td>
</tr>
<tr>
<td>Error</td>
<td>When an error is currently occurring on an air conditioner unit, the afflicted unit and the error code are displayed</td>
<td>N/A</td>
<td>Each Unit</td>
</tr>
<tr>
<td>Test Run</td>
<td>Operates air conditioner units in test run mode. *2 The display for test run mode will be the same as for normal start/stop (does not display “test run”).</td>
<td>Each Group</td>
<td>Each Group *2</td>
</tr>
<tr>
<td>Ventilation Equipment</td>
<td>Up to 16 indoor units can be connected to an interlocked system that has one LOSSNAY unit.</td>
<td>Each Group</td>
<td>N/A</td>
</tr>
<tr>
<td>Set Temperature Range Limit</td>
<td>Set temperature range limit for cooling, heating, or auto mode.</td>
<td>Each Group</td>
<td>Each Group</td>
</tr>
</tbody>
</table>

4.05 Centralized Controller (Web-enabled)
 A. AE-200 Centralized Controller
The AE-200A Centralized Controller shall be capable of controlling a maximum of two hundred (200) indoor units across multiple CITY MULTI outdoor units with the use of three (3) AE-50A expansion controllers. The AE-200A Centralized Controller shall be approximately 11-5/32” x 7-55/64” x 2-17/32” in size and shall be powered with an integrated 100-240 VAC power supply. The AE-200A Centralized Controller shall support system configuration, daily/weekly scheduling, monitoring of operation status, night setback settings, free contact interlock configuration and malfunction monitoring. When being used alone without the expansion controllers, the AE-200A Centralized Controller shall have five basic operation controls which can be applied to an individual indoor unit, a collection of indoor units (up to 50 indoor units), or all indoor units (collective batch operation). This basic set of operation controls for the AE-200 Centralized Controller shall include on/off, operation mode selection (cool, heat, auto (R2/WR2-Series only), dry, setback (R2/WR2-Series only) and fan), temperature setting, fan speed setting, and airflow direction setting. Since the AE-200A provides centralized control it shall be able to enable or disable operation of local remote controllers. In terms of scheduling, the AE-200A Centralized Controller shall allow the user to define both daily and weekly schedules (up to 24 scheduled events per day) with operations consisting of ON/OFF, mode selection, temperature setting, air flow (vane) direction, fan speed, and permit/prohibit of remote controllers.

<table>
<thead>
<tr>
<th>AE-200 (Centralized Controller)</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>ON/OFF</td>
<td>Run and stop operation.</td>
<td></td>
</tr>
<tr>
<td>Operation Mode</td>
<td>Switches between Cool/Dry/Auto/Fan/Heat.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Group of Lossnay unit: automatic ventilation/vent-heat/interchange/normal ventilation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation modes vary depending on the air conditioner unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto mode is available for the R2/WR2-Series only.</td>
<td></td>
</tr>
<tr>
<td>Temperature Setting</td>
<td>Sets the temperature from 57°F – 87°F depending on operation mode and indoor unit.</td>
<td></td>
</tr>
<tr>
<td>Fan Speed Setting</td>
<td>Available fan speed settings depending on indoor unit.</td>
<td></td>
</tr>
<tr>
<td>Air Flow Direction Setting</td>
<td>Air flow direction settings vary depending on the indoor unit model.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*1. Louver cannot be set.</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Operation</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Schedule Operation</td>
<td>Annual/weekly/today schedule can be set for each group of air conditioning units. Optimized start setting is also available.</td>
<td>*2 Each Block, Group or Collective</td>
</tr>
<tr>
<td></td>
<td>*1. The system follows either the current day, annual schedule, or weekly, which are in the descending order of overriding priority. Twenty-four events can be scheduled per day, including ON/OFF, Mode, Temperature Setting, Air Direction, Fan Speed and Operation Prohibition. Five types of weekly schedule (seasonal) can be set. Settable items depend on the functions that a given air conditioning unit supports.</td>
<td></td>
</tr>
<tr>
<td>Optimized Start</td>
<td>Unit starts 5 - 60 minutes before the scheduled time based on the operation data history in order to reach the scheduled temperature at the scheduled time.</td>
<td>Each Block, Group or Collective</td>
</tr>
<tr>
<td>Night Setback Setting</td>
<td>The function helps keep the indoor temperature in the temperature range while the units are stopped and during the time this function is effective.</td>
<td>Each Group</td>
</tr>
<tr>
<td>Permit / Prohibit Local Operation</td>
<td>Individually prohibit operation of each local remote control function (Start/Stop, Change operation mode, Set temperature, Reset filter). *3. Centrally Controlled is displayed on the remote controller for prohibited functions.</td>
<td>Each Block, Group or Collective</td>
</tr>
<tr>
<td>Room Temp</td>
<td>Displays the room temperature of the group. Space temperature displayed on the indoor unit icon on the touch screen interface.</td>
<td>N/A</td>
</tr>
<tr>
<td>Error</td>
<td>When an error is currently occurring on an air conditioner unit, the afflicted unit and the error code are displayed *4. When an error occurs, the LED flashes. The operation monitor screen shows the abnormal unit by flashing it. The error monitor screen shows the abnormal unit address, error code and source of detection. The error log monitor screen shows the time and date, the abnormal unit address, error code and source of detection</td>
<td>N/A</td>
</tr>
<tr>
<td>Outdoor Unit Status</td>
<td>Compressor capacity percentage and system pressure (high and low) pressure (excludes S-Series)</td>
<td>Each ODU</td>
</tr>
<tr>
<td>Connected Unit Information</td>
<td>MNET addresses of all connected systems</td>
<td>Each IDU, ODU and BC</td>
</tr>
<tr>
<td>Ventilation Equipment</td>
<td>This interlocked system settings can be performed by the master system controller. When setting the interlocked system, use the ventilation switch the free plan LOSSNAY settings between “Hi”, “Low” and “Stop”. When setting a group of only free plan LOSSNAY units, you can switch between “Normal ventilation”, “Interchange ventilation” and “Automatic ventilation”.</td>
<td>Each Group</td>
</tr>
</tbody>
</table>
AE-200 (Centralized Controller)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Language</td>
<td>Other than English, the following language can be chosen. Spanish, French, Japanese, Dutch, Italian, Russian, Chinese, and Portuguese are available.</td>
<td>N/A</td>
<td>Collective</td>
</tr>
</tbody>
</table>
| External Input / Output | By using accessory cables you can set and monitor the following. Input
By level: "Batch start/stop", "Batch emergency stop"
By pulse: "batch start/stop", "Enable/disable remote controller"
Output: "start/stop", "error/Normal"
*5. Requires the external I/O cables (PAC-YG10HA-E) sold separately. | *5 Collective | *5 Collective |

All AE-200A Centralized Controllers shall be equipped with two RJ-45 Ethernet ports to support interconnection with a network PC via a closed/direct Local Area Network (LAN) or to a network switch for IP communication to up to three AE-50A expansion controllers for display of up to two hundred (200) indoor units on the main AE-200A interface.

The AE-200A Centralized Controller shall be capable of performing initial settings via the high-resolution, backlit, color touch panel on the controller or via a PC browser using the initial settings.

Standard software functions shall be available so that the building manager can securely log into each AE-200A via the PC’s web browser to support operation monitoring, scheduling, error email, interlocking and online maintenance diagnostics. Additional optional software functions of personal browser for PCs and MACs and Tenant Billing shall be available but are not included. The Tenant Billing function shall require TG-2000 Integrated System software in conjunction with the Centralized Controllers.

B. AE-50A Expansion Controller

The AE-50A Expansion Controller shall serve as a standalone centralized controller or as an expansion module to the AE-200A Centralized Controller for the purpose of adding up to 50 indoor units to either the main touch screen interface of the AE-200A. Up to three (3) AE-50A expansion controllers can be connected to the AE-200A via a local IP network (and their IP addresses assigned on the AE-200A) to the AE-200A to allow for up to two hundred (200) indoor units to be monitored and controlled from the AE-200A interface.

The AE-50A expansion controllers have all of the same capabilities to monitor and control their associated indoor units as the features specified above. Even when connected to the AE-200A and configured to display their units on the main controller, the individual indoor units connected to the AE-50A can still be monitored and controlled from the interface of the AE-50. The last command entered will take precedence, whether at the wall controller, the AE-50A or the AE-200A Centralized Controller.

4.11 Power Supply (PAC-SC51KUA)

The power supply shall supply 24VDC (TB3) for the AE-200/AE-50/EB-50GU centralized controller and 30VDC (TB2) voltage for the central control transmission.
Energy Recovery Ventilator (ERV) Systems
Mitsubishi Electric Model: LGH – Lossnay® Energy Recovery Ventilator

Part 1 - General

1.01 System Description
The fresh air ventilation system(s) shall utilize the Mitsubishi Electric LOSSNAY total heat exchanger with outside air bypass damper and energy recovery ventilation. These units shall be selected in accordance with the building ventilation requirements.

The ventilation equipment shall be Energy Recovery Ventilator(s) (ERV) as manufactured by Mitsubishi Electric (From now on referred to as “Lossnay® ERV”).

Option: The Lossnay® ERV equipment shall form part of the Mitsubishi Electric CITY MULTI HVAC system and will supply ventilation air to all indicated indoor zones served by the CITY MULTI HVAC system.

The Lossnay® ERV shall be equipped with an M-Net data network control and will be directly connectable to the CITY MULTI M-Net Data communication control network and will be able to be electronically interlocked with CITY MULTI indoor units.

1.02 Quality Assurance
A. The units shall be tested by a Nationally Recognized Testing Laboratory (NRTL) and shall bear the UL label.
B. All wiring shall be in accordance with the National Electrical Code (N.E.C.).
C. The units shall be rated in accordance with Air-conditioning Refrigeration Institute’s (ARI) Standard 1060 and bear the ARI Certification label.
D. The units shall be manufactured in a facility registered to ISO 9001 and ISO 14001, which is a set of standards applying to environmental protection set by the International Standard Organization (ISO).

1.03 Installation
a. The installation of all Lossnay® units, duct work, all interconnecting control and power wiring, commissioning and testing shall be carried out by licensed installers in accord with all Codes and requirements.

1.04 Delivery, Storage and Handling
A. Unit shall be stored and handled according to the manufacturer’s recommendations.
B. The unit will be able to withstand 105°F storage temperatures and 95% relative humidity without adverse effect.

Part 2 - Warranty
2.01 The Lossnay® units shall have a manufacturer’s parts and defects warranty for a period one (1) year from date of installation. If, during this period, any part should fail to function properly due to defects in workmanship or material, it shall be replaced or repaired at the discretion of the manufacturer. This warranty does not include labor.
2.02 The Lossnay® Energy Transfer Core shall have an additional nine (9) year warranty against defects in material or workmanship. The total warranty period shall be ten (10) years from date of installation.

Part 3 – Products
3.01

General:
The ERV unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, control circuit board and blowers with motors, filters, and insulated foam air guides. Each unit will have an automatic by-pass damper system for economic operation under certain conditions. The unit shall have factory installed control board with functions for local, remote, and optional control modes.

A. Unit Cabinet:
 1. The cabinet shall be fabricated of galvanized steel, and covered with polyurethane foam insulation as necessary with steel mounting points securely attached

B. Blowers:
 1. The unit shall be furnished with two (2) [LGH-F1200RX5-E = four (4)] direct drive centrifugal blowers running simultaneously supplying and extracting air at the same rate for balanced ventilation air flow.
 2. The blower motors shall be a directly connected to the blower wheels and have permanently lubricated bearings.

 3. The blowers and motors shall be mounted for quiet operation.

C. Heat Exchanger
 1. The Lossnay® heat exchanger element shall be constructed of specially treated cellulosic fiber membrane separated by corrugated layers to allow total heat (sensible and latent) energy recovery from the exhaust air to the supply air or from the supply air to the exhaust air as determined by design conditions.

2. The Lossnay® element shall have protective filters installed at both the supply and exhaust sides with an access cover to allow easy maintenance.

D. Bypass Damper
 1. The ERV shall have an automatic supply side by-pass damper to allow inbound ventilation air to by-pass the Lossnay® energy transfer core when outside weather conditions warrant.

 2. The mechanism for opening and closing the bypass damper shall be a 208V-230V synchronous electric motor through an actuator. The motor will drive a steel cable connected to a mechanical damper flap to allow fresh air to bypass the Lossnay® element.

3. Supply and return air thermistor shall control the damper and may be interlocked with a Mitsubishi Electric PZ Series LCD remote controller.

E. Filter
 1.
he ERV shall be equipped with factory installed air filters located at each intake face (both supply and exhaust sides) of the Lossnay® core to clean the air and prevent clogging.

Mounting

Mounting of the Lossnay® ERV shall be as indicated in the plans and drawings. The ERV shall not require and condensate pan or receptacle nor condensate drain or piping. Mounting may be horizontal or vertical and the unit may be inverted as required by ductwork connection.

G. Electrical

1. The units will require a 208-230Volt, 1 Phase, 60Hz power supply.

H. Control

1. A 30vdc fuzzy logic signal generated by a CITY MULTI System via a 2 conductor non polar shielded, jacketed control wire to a PZ-60DR-E Mitsubishi Electric LCD remote controller or interlocked with a CITY MULTI indoor unit.

 ALTERNATE: The ERV unit may be interlocked with a Mr Slim A-control indoor unit via a 2 conductor non polar shielded, jacketed control wire.

 ALTERNATE: Independent control by contact closure from other sensor driven controllers, switch, or timers.

3.02 Performance:

A. The ERV units shall have the following nominal capacities:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Nominal Airflow</th>
<th>External Static Capacity (In. W.G.) at Nominal Airflow (208/230V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGH-F600RX5-E</td>
<td>600 CFM</td>
<td>0.56/0.80</td>
</tr>
<tr>
<td>LGH-F1200RX5-E</td>
<td>1200 CFM</td>
<td>0.43/0.75</td>
</tr>
</tbody>
</table>

C. The temperature recovery efficiency at extra low fan speed will be as follows:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Temperature Recovery (208/230V)</th>
<th>Enthalpic Recovery (208/230V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heating</td>
<td>Cooling</td>
</tr>
<tr>
<td>LGH-F600RX5-E</td>
<td>80/78%</td>
<td>79/77%</td>
</tr>
<tr>
<td>LGH-F1200RX5-E</td>
<td>73/75%</td>
<td>71/68%</td>
</tr>
</tbody>
</table>

Performance Certified to ARI Standard 1060

D. ERV operating sound level shall not exceed the following levels at maximum fan speed:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Sound Level dBA 59in Under Center of Unit (208/230V)</th>
</tr>
</thead>
</table>

VARIABLE REFRIGERANT FLOW HVAC SYSTEM
3.03

Ductwork:
A. The installer shall supply, install, test and commission all interconnecting ductwork for the Lossnay® ERV units.
B. Ductwork sizing, layout, fittings, etc shall be in strict accordance with the design requirements.
C. The two outdoor ducts must be covered with heat insulating material in order to prevent condensation from forming.
D. The two outdoor ducts must be tilted at a gradient (1/30 or more) down toward the outdoor area from Lossnay® unit.

Execution

Part 1 - Installation
A. General:
Rig and install in full accordance with manufacturer’s requirements, project drawings, and contract documents. Refer to the manufacturer’s installation manual for full requirements.

B. Location:
Locate indoor and outdoor units as indicated on drawings. Provide service clearance per manufacturer’s installation manual. Adjust and level outdoor units on support structure.

For climates that experience snowfall, mount the outdoor unit a minimum of 12” above the average snowfall line. In climates where this height requirement proves unfeasible, the outdoor units may be installed at the average snowfall line provided regular snow removal in the area surrounding the units keeps the snow line below the bottom of the units.

C. Components / Piping:
Installing contractor shall provide and install all accessories and piping for a fully operational system. Refer to manufacturer’s installation manual for full instructions.

Traps, filter driers, and sight glasses are NOT to be installed on the refrigerant piping or condensate lines.

Standard ACR fittings rated for use with R410A are to be used for all connections. Proprietary manufacturer-specific appurtenances are not allowed.

Refrigerant pipe for CITY MULTI shall be made of phosphorus deoxidized copper, and has two types.
A. ACR “Annealed”: Soft copper pipe, can be easily bent with human’s hand.
B. ACR “Drawn Temper”: Hard copper pipe (Straight pipe), being stronger than Type-O pipe of the same radical thickness.

The maximum operation pressure of R410A air conditioner is 4.30 MPa [623psi]. The refrigerant piping should ensure the safety under the maximum operation pressure. Refer to recommend piping specifications in Mitsubishi Electric’s engineering manual. Pipes of radical thickness 0.7mm or less shall not be used.

Flare connection should follow dimensions provided in manufacturer’s installation manuals.

D. Insulation:
Refrigerant lines, as well as any valves, shall be insulated end to end with ½” closed-cell pipe insulation for piping up to 1”in diameter, or ¾” for piping 1-1/8” and larger, with a thermal conductivity no greater than 0.27 BTU-in/hr sq.ft °F. If state or local codes require insulation other than that specified above, the greater insulation shall be used.

E. Electrical:
Installing contractor shall coordinate electrical requirements and connections for all power feeds with electrical contractor. Refer to Division 26 (Master Format 2004) or Division Section 16 (Master Format 1995) for additional information.

F. Third Party Controls:
Installing contractor shall coordinate all BAS/BMS control requirements and connections with controls contractor.
Service
Part – 1 Maintenance Tool Software and MN-Converter (CMS-MNG-E)

A. The Maintenance Tool, via the MN-Converter (CMS-MNG-E), shall enable the user to monitor and record the following parameters in a centralized system.
 i. Outdoor Unit
 1. Operation Mode (Cooling Only, Heating Only, Cooling Main, Heating Main)
 2. Compressor Frequency, amperages, and voltages
 3. Compressor high- and low-side pressure
 4. System Temperatures
 5. Outdoor temperature
 6. Status of reversing valve

 ii. BC Controller
 1. Valve ON/OFF status
 2. Temperatures
 3. Pressures

 iii. Indoor Unit
 1. Entering Air Temperature
 2. Entering/Leaving Refrigerant Temperature
 3. Superheat/Subcool temperatures
 4. LEV position
 5. Room temperature setpoint
 6. Unit Mode and Status (Heat, Cool, Dry, Auto, Fan)

B. The Maintenance Tool shall have the additional feature of controlling the following system components manually:
 i. Indoor Unit
 1. Indoor Unit ON/OFF
 2. Mode (Heat, Cool, Dry, Auto, Fan)
 3. Room Temperature Setpoint
 4. Fan speed
 5. LEV Position

 ii. BC Controller
 1. Valve OPEN/CLOSE
 2. LEV Position

C. The Maintenance Tool shall be connectable to either the TB3 or TB7 communication bus lines on the MNET via alligator connectors.

D. The Maintenance Tool shall be connectable to a PC via a USB cable.

E. Trended data from Maintenance Tool shall be available to export to a data file for offline analysis.
PART 1 – VRF Project Supervision

1.01 General
 A. VRF Manufacturer shall provide on-site Project Supervision as outlined in this specification section, providing: onsite technical review of installed VRF systems, review of activities related to the installation of the VRF system, VRF system components and associated controls.

 B. All Project Supervision field activities shall be completed by an employee of the VRF manufacturer whose primary job responsibilities are to provide direct technical support of their product; sales staff or in-house support staff are not permitted to complete this scope of work.

 C. A factory certified representative may assist the VRF manufacturer’s personnel in the completion of certain elements of work contained within this specification. Activities completed by a Factory Certified Representative shall be supervised onsite by the VRF manufacturer. Certified representatives shall not be used in lieu of the manufacturer’s personnel.

 D. The installing contractor shall assist the VRF manufacturer, in their completion of the system review and have available onsite a technician with appropriate diagnostic tools, materials and equipment, as required, for the duration of the inspection process. The technician assisting the VRF manufacturer shall be fully licensed and insured to complete necessary duties as directed by the VRF manufacturer.

 E. The installing contractor shall have been certified by the manufacturer to install VRF systems, having attended and successfully completed a minimum 3-day VRF Service & Installation course at an approved training facility. A copy of this certificate shall be presented to the VRF manufacturer prior to the commencement of installation activity.

 F. VRF manufacturer shall provide [4] onsite visits during the course of the project’s completion. Additional site visits, if requested, shall require approval by the owner’s representative and will be billed accordingly.

 G. Onsite visits shall be conducted at installation milestones noted below. The installing contractor is responsible to coordinate each visit at the appropriate milestone, giving the VRF manufacturer a minimum 2-week notice prior to each visit.

 a. Project milestones
 i. Project Kick Off meeting
 ii. Site Visit at 25% project completion
 iii. Site Visit at 50% project completion
 iv. Final Inspection prior to Commissioning of the VRF System

1.02 Project Kick-Off

 A. A project kick off meeting will be conducted with the installing contractor and appropriate parties with the sole purpose to review the installation of VRF systems being installed.

 B. Kick off meeting shall consisting of a single [4] hour meeting with the installing contractor. This meeting shall be completed at the project site and be executed at the beginning stages of the installation of VRF systems.

 a. Items to be reviewed during the Project kick-off meeting are:
 i. Presentation of Best Practices & Installation Requirements specific to the VRF system(s) being installed under this scope of work.
 ii. Review of the project’s mechanical design drawings related to the VRF systems being installed. Documents to be provided by the mechanical contractor.
 iii. Review of VRF Manufacturer’s design selection software and system design schematic drawings for the system being installed Documents to be provided by the mechanical contractor.
 iv. Discuss project activity related to the installation of VRF system components
v. Establish clear path of communication and project support. Mechanical contractor shall designate an onsite point of contact for all field coordination activities.

C. The installing contractor shall obtain from the Engineer/Designer of the VRF system a copy of the most current electronic design file used in the design and engineering process of the VRF system being installed. This electronic design file shall have been completed on the VRF Manufacturers software and is the mechanical contractor’s responsibility to provide the most current as-built version of this file during the course of the projects installation.

D. The installing contractor shall provide the VRF manufacturer, for their use, a complete set of HVAC mechanical plans prior to the Kick off meeting. The mechanical contractor is responsible to updates these plans during the course of the project.

1.03 Site Visit

A. Each site visit shall consist of a single visit, not exceeding an [8] hour period. All visits shall occur during regular business hours of 8:30AM-4PM, Monday thru Friday.

B. Activates to be completed during each Site-Visit are as follows:
 a. Meet with designated representative from the VRF installation contractor to discuss field activities and provide technical support related to the VRF systems.
 b. Review installed VRF systems for compliance with manufacturer’s installation, service and engineering specifications.
 c. Assist the contractor in updating the VRF Design software for as-built purposes and for calculating the appropriate refrigerant charge.
 d. Provide a field report identifying any installation issues requiring attention. Report shall provide detailed information containing:
 i. Issue reference number
 ii. Priority Level of issue
 iii. Equipment M# & Reference TAG#
 iv. Status of issue
 v. Description of issue being identified
 vi. Recommendation for corrective action
 vii. Follow-up requirements, if required

1.04 Project Close Out Documents

A. Documents completed during the project Supervision process shall be compiled and presented to the owner’s representative at the completion of field activities.

B. Close out documentation shall include
 a. Project Supervision report outlining activities completed under this scope of work
 b. As-built VRF design file depicting Model numbers and BTU capacity ratings of equipment installed, refrigerant pipe size & connection lengths between each system component, calculated refrigerant charge.
 c. Issue report

1.05 Professional Solutions Contact information

A. Contact your regions Mitsubishi Electric Professional Solutions Manager for information and pricing related to services required under this projects scope of work.

Part 2 - VRF System Commissioning
2.01 General
A. The VRF Manufacturer shall oversee and assist the installing contractor with the start up and commissioning of VRF equipment as outlined below. This process will be completed in two phases. Phase one shall cover the Pre-Start-Up inspection process, Phase two will cover the Physical Start-Up & Commissioning of Equipment.
B. All VRF System Commissioning activities shall be completed by an employee of the VRF manufacturer whose primary job responsibilities are to provide start up and commissioning of their products; sales staff or in-house support staffs are not permitted to complete this scope of work.
C. A factory certified representative may assist the VRF manufacturer’s personnel in the completion of certain elements of work contained within this specification. Activities completed by a Factory Certified Representative shall be supervised onsite by the VRF manufacturer. Certified representatives shall not be used in lieu of the manufacturer’s personnel.
D. The installing contractor shall have been certified by the manufacturer to install VRF systems, having attended a minimum 3-day VRF Service & Installation course at an approved training center. A copy of this certificate shall be presented as part of the VRF equipment submittal process.
E. The installing contractor shall assist the VRF manufacturer in their completion of the system review and have available a technician with appropriate diagnostic tools, materials and equipment, as required, for the duration of the inspection process. The technician shall be fully licensed and insured to complete necessary duties as directed under the supervision of the VRF manufacturer.
F. Upon completion of the Equipment Start-Up & VRF Commissioning process, the VRF manufacturer shall provide a formal report outlining the status of the system, in electronic format only. Contained within this report shall be copies of all field inspection reports, required action items and status, Manufacturers design software As-Built, equipment model & serial numbers.
G. Completion of the Equipment Start-Up and VRF Commissioning process shall verify that the VRF system has been installed per the Engineer’s design intent and complies with the VRF manufacturers engineering and installation specifications related to their equipment.
H. Compliance with federal, state and local codes as well as other authorities having jurisdictions are not part of this process and are the responsibility of the installing contractor.
I. Contact your regions Mitsubishi Electric Professional Solutions Manager for information and pricing related to services required under this projects scope of work.

2.02 Pre Start-Up Inspection
A. Contractor shall employ the services of the VRF manufacturer to provide a comprehensive field review of the completed VRF system installation, prior to the physical start up and operation of equipment. Upon satisfaction that the system meets the VRF manufacturer’s installation requirements and
specifications, the contractor shall be allowed to proceed with the physical start up and operation of equipment.

B. Prior to the pre-start-up inspection, all systems components shall be in a final state of readiness having been fully installed and awaiting inspection.

C. The installing contractor shall provide the VRF manufacturer a copy of the electronic design file used in the design and engineering process of the system being inspected. This electronic design file shall have been completed on software approved by the specified VRF manufacturer and shall have been updated to reflect as-built conditions.

D. The installing contractor shall have prepared the refrigeration piping systems per equipment installation and service manuals. All refrigerant piping systems, upon completion of assembly, shall have been pressurized to a minimum 600 PSI, using dry nitrogen, and held for an uninterrupted 24HR period, with acceptable change due to atmospheric conditions.
 a. A record of the pressure check process shall be recorded and tagged at the outdoor unit. The tag shall contain the following information: date & time of pressure check start, fill pressure, outdoor temperature at start & stop, date & time of pressure check completion, and the person’s full name & company information completing the pressure check.
 b. The installing contractor shall engage the General Contractor as a witness of the pressure check process, confirming that all steps and procedures related to the pressure check where properly followed and that the system held the holding pressure of 600PSI for a period of 24hr hours, with acceptable change due to atmospheric conditions. Witness information, including full name, company name, title, phone number and signature shall be recorded on same pressure tag used by installing contractor.

E. Upon completion of the 600 PSI pressure check, the system shall be evacuated to a level of 500 microns, where it will be held for a period of 1HR with no deflection. The installing contractor shall utilize the triple evacuation method per the equipment install and service manuals.
 a. Evacuation start & stop dates, times, and persons involved shall be recorded and tagged at the outdoor equipment.
 b. Installing contractor shall digitally capture a photo of the micron gauge reading, at the conclusion of the 1hr holding period, for each system and provide a copy to the VRF manufacturer. Each photo shall contain a tag providing the outdoor units Serial number.

F. Upon the completion of the 500-micron hold, the calculated additional refrigerant charge can be added. The calculated refrigerant charge shall have been calculated using the VRF manufacturers design software.
 a. Total refrigerant charge of the system shall be recorded and displayed at the outdoor unit by permanent means.

G. A review of the equipment settings shall be completed, with recommendations provided to improve system performance, if applicable. Physical changes of system settings will be completed by the contractor. Electronic recording of final DIP switches shall be provided as part of the commissioning report.

H. A comprehensive review and visual inspection shall be completed for each piece of equipment following a detailed check list, specific to the equipment being reviewed. A copy of the inspection report shall be provided as part of the manufacturers close out documentation. Any deficiencies found during the inspection process shall be brought to the attention of the installing contractor for corrective action. Any system components that are not accessible for proper inspection shall be noted as such.

I. Indoor Equipment report shall contain
 o Model & Serial Number
 o Equipment location
 o Equipment Tag/Identification number
 o Network Address & Port Assignment
 o Digital recording of equipment settings
 o Mounting/support method
 o Seismic restraints used
 o Proper service clearance provided
 o Wiring and connection points are correct
o High voltage reading(s) within acceptable range
o Low voltage reading(s) within acceptable range
o Type of Remote Controller used and its location
o Occupied space temperature sensing location
o Air temperature readings within acceptable range
o Condensate pump interlock method
o Fan E.S.P. setting
o Air Filter condition
o Height differential setting in heat mode
o Noise level acceptable
o Refrigerant pipe connected and insulated properly
o Condensate pipe connected and insulated properly
o Condition of connected ductwork
o Fresh air connected
o Humidifier connected and checked
o Review of air balance report complete
o Other interlocked systems, i.e. baseboard heat, booster fan etc.

J. Outdoor Air Cooled equipment report shall contain
o Model & Serial Number
o Equipment location
o Equipment Tag/Identification number
o Network Address & Port Assignment
o Digital recording of equipment settings
o Mounting/support method
o Seismic restraints used
o High Wind Tethering method
o Proper service clearance provided
o Defrost Condensate removal addressed
o Wiring and connection points are correct
o High voltage reading(s) within acceptable range
o Low voltage reading(s) within acceptable range
o Control Network settings
o Noise level setting
o Refrigerant pipe installed and insulated properly
o Low ambient operation settings

K. Lossnay/CFM/CFMR
o Model & Serial Number
o Equipment location
o Equipment Tag/Identification number
o Network Address & Port Assignment
o Digital recording of equipment settings
o Mounting/support method
o Seismic restraints used
o Proper service clearance provided
o Wiring and connection points are correct
o High voltage reading(s) within acceptable range
o Low voltage reading(s) within acceptable range
o Type of Remote Controller used and its location
o Occupied space temperature sensing location
o Air temperature readings @ Supply & Return of unit
o Condensate pump interlock method
o Fan speed setting
o Air Filter condition
o Noise level acceptable
o Refrigerant pipe connected and insulated properly
o Condition of connected ductwork
o Fresh air connected
o Review of air balance report complete
o Other interlocked system

2.03 Physical Start-Up & Commissioning of Equipment

A. Upon proper equipment start up by the contractor, following the manufacturers guidelines and specifications, an employee of the VRF manufacturer shall complete a review of the system performance and complete the following tasks:
 B. Check and confirm all communication addressing of system components.
 C. Check and confirm each indoor unit, individually, is properly piped and wired by commanding the indoor unit on, in either heat or cool mode and verifying proper response.
 a. This process shall be digitally recorded and included as part of the close out documentation.
 D. Electronically record a minimum of one-hour of operational data per refrigeration system.
 E. Electronically record selector switch positions on all indoor and outdoor equipment.
 F. The VRF manufacturer shall retain the electronically recorded data, collected during the start-up and equipment commissioning process, at a designated location within the US for future reference.

2.04 Close-Out Information

A. The VRF manufacturer shall issue a System Performance report at the completion of all fieldwork. Contained within this report shall be an overview of the system performance, recommendations, field reports, all electronic data, and as-built design file.

2.05 VRF Equipment Warranty

A. Having successfully completed the Pre-Inspection, Start-Up & Equipment Commissioning processes and fulfilling all requirements, as outlined in the VRF manufacturers Extended Warranty Process. Along with installing contractor being certified by the VRFR manufacturer to install VRF systems, having attended a minimum 3- day VRF Service & Installation course at an authorized training center.

B. The equipment shall be provided with the following warranty per the VRF manufacturer’s warranty policy:
 o Compressor: 7-year part only
 o Parts: 5-years part only
 o Labor: no labor coverage provided by VRF Manufacturer

Part 3 - Owner Training and Technical Support

3.01 GENERAL

A. The VRF manufacturer shall provide the owner’s representative a minimum []-hour VRF Operation and Maintenance training class covering systems installed under this scope of work.
B. Training program is to be provided at the time of owner occupancy.
C. Owner shall provide a suitable location, onsite, to conduct the VRF Operation and Maintenance class.
D. Training material shall be provided to participants in electronic format.
E. Contact your region’s Mitsubishi Electric Professional Solutions Manager for information and pricing related to services required under this projects scope of work.
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:
1. Electrical equipment coordination and installation.
2. Sleeves for raceways and cables.
3. Sleeve seals.
5. Common electrical installation requirements.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.
B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For sleeve seals.

1.5 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.
 1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.
 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 3. Pressure Plates: Carbon steel. Include two for each sealing element.
 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.
PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable
penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 260500
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 3. Sleeves and sleeve seals for cables.
B. Related Sections include the following:
 1. Division 26 Section "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 2001 to 35,000 V.
 2. Division 26 Section "Undercarpet Electrical Power Cables" for flat cables for undercarpet installations.
 3. Division 27 Section "Communications Horizontal Cabling" for cabling used for voice and data circuits.

1.3 DEFINITIONS
A. EPDM: Ethylene-propylene-diene terpolymer rubber.
B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Qualification Data: For testing agency.
C. Field quality-control test reports.

1.5 QUALITY ASSURANCE
A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
1. Testing Agency's Field Supervisor: Person currently certified by the International Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

1.6 COORDINATION

A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alcan Products Corporation; Alcan Cable Division.
 3. General Cable Corporation.
 4. Senator Wire & Cable Company.
 5. Southwire Company.

B. Copper Conductors: Comply with NEMA WC 70.

C. Conductor Insulation: Comply with NEMA WC 70 for Types THW THHN-THWN XHHW and SO.

D. Multiconductor Cable: Comply with NEMA WC 70 for metal-clad cable, Type MC with ground wire.

2.2 CONNECTORS AND SPLICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 3. O-Z/Gedney; EGS Electrical Group LLC.
 4. 3M; Electrical Products Division.
 5. Tyco Electronics Corp.
C. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.4 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Carbon steel. Include two for each sealing element.
 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-THWN, single conductors in raceway.

B. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

C. Feeders Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway.

D. Exposed Branch Circuits, Including in Crawlspace: Type THHN-THWN, single conductors in raceway.

E. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway. MC Cable may be used where concealed in partitions and Walls only.

F. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

G. Branch Circuits Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."

F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.
C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both wall surfaces.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and cable unless sleeve seal is to be installed.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants."

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between cable and sleeve for installing mechanical sleeve seals.
3.6 SLEEVE-SEAL INSTALLATION

A. Install to seal underground exterior-wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Perform tests and inspections and prepare test reports.

C. Tests and Inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test for compliance with requirements.
 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.
 a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

D. Test Reports: Prepare a written report to record the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

E. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 260519
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes methods and materials for grounding systems and equipment.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Qualification Data: For testing agency and testing agency's field supervisor.
 C. Field quality-control test reports.
 D. Operation and Maintenance Data: For grounding to include the following in emergency, operation, and maintenance manuals:
 a. Tests shall be to determine if ground resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if they do not.
 b. Include recommended testing intervals.

1.4 QUALITY ASSURANCE
 A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the International Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 1. Testing Agency's Field Supervisor: Person currently certified by the International Electrical Testing Association to supervise on-site testing specified in Part 3.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 C. Comply with UL 467 for grounding and bonding materials and equipment.
PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:
 4. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 5. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 2 inches in cross section, unless otherwise indicated; with insulators.

2.2 CONNECTORS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet in diameter.
 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
 2. Backfill Material: Electrode manufacturer’s recommended material.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.

B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus on insulated spacers 1 inch, minimum, from wall 6 inches above finished floor, unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, down to specified height above floor, and connect to horizontal bus.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Lighting circuits.
 3. Receptacle circuits.
 5. Three-phase motor and appliance branch circuits.
 6. Flexible raceway runs.
 7. Armored and metal-clad cable runs.
 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway
fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

G. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Common Ground Bonding with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

D. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

E. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:

B. Perform the following tests and inspections and prepare test reports:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
 3. Prepare dimensioned drawings locating each test well, ground rod and ground rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

C. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).

D. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

B. Related Sections include the following:
 1. Division 26 Section "Vibration And Seismic Controls For Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. IMC: Intermediate metal conduit.

C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 SUBMITTALS

A. Product Data: For the following:
1. Steel slotted support systems.
2. Nonmetallic slotted support systems.

1.6 QUALITY ASSURANCE
A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Comply with NFPA 70.

1.7 COORDINATION
A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS
A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.
 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 5. Channel Dimensions: Selected for applicable load criteria.
B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 5) .
2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.
 6) .
3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.
PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1 EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Existing Concrete: Expansion anchor fasteners.
 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 6. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

B. Related Sections include the following:
1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. ENT: Electrical nonmetallic tubing.

C. EPDM: Ethylene-propylene-diene terpolymer rubber.

D. FMC: Flexible metal conduit.

E. IMC: Intermediate metal conduit.

F. LFMC: Liquidtight flexible metal conduit.

G. LFNC: Liquidtight flexible nonmetallic conduit.

H. NBR: Acrylonitrile-butadiene rubber.

I. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
1. Custom enclosures and cabinets.
2. For handholes and boxes for underground wiring, including the following:
a. Duct entry provisions, including locations and duct sizes.
b. Frame and cover design.
c. Grounding details.
d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
e. Joint details.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 2. Alflex Inc.
 3. Allied Tube & Conduit; a Tyco International Ltd. Co.
 4. Anamet Electrical, Inc.; Anaconda Metal Hose.
 5. Electri-Flex Co.
 7. Maverick Tube Corporation.

B. Rigid Steel Conduit: ANSI C80.1.

C. Aluminum Rigid Conduit: ANSI C80.5.

D. IMC: ANSI C80.6.

E. EMT: ANSI C80.3.

F. FMC: Zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket.

H. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 2. Fittings for EMT: Steel compression type.
 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch, with overlapping sleeves protecting threaded joints.
I. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 METAL WIREWAYS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper B-Line, Inc.
 2. Hoffman.
 3. Square D; Schneider Electric.

C. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.

D. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

E. Wireway Covers: Hinged type.

F. Finish: Manufacturer's standard enamel finish.

2.3 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 2. EGS/Appleton Electric.
 7. RACO; a Hubbell Company.
 10. Spring City Electrical Manufacturing Company.

B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: NEMA OS 2.

E. Metal Floor Boxes: Cast metal, rectangular.
F. Nonmetallic Floor Boxes: Nonadjustable, round.

G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

H. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, galvanized, cast iron with gasketed cover.

I. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

J. Cabinets:
 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.

2.4 SLEEVES FOR RACEWAYS

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.5 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Carbon steel. Include two for each sealing element.
 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.6 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 1. Tests of materials shall be performed by a independent testing agency.
2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Comply with the following indoor applications, unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: RNC identified for such use.
 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 6. Damp or Wet Locations: Rigid steel conduit.

B. Minimum Raceway Size: 3/4-inch trade size.

C. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.

D. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

E. Do not install aluminum conduits in contact with concrete.

3.2 INSTALLATION

A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."

E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.

G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.

H. Raceways Embedded in Slabs:
1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
3. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor.

I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

L. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where otherwise required by NFPA 70.

M. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

N. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

O. Set metal floor boxes level and flush with finished floor surface.

P. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve cross-section rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both surfaces of walls.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway unless sleeve seal is to be installed.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work.

M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between raceway and sleeve for installing mechanical sleeve seals.

3.4 SLEEVE-SEAL INSTALLATION

A. Install to seal underground, exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.5 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.6 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
5. Warning labels and signs.
6. Instruction signs.
7. Equipment identification labels.
8. Miscellaneous identification products.

1.3 SUBMITTALS

A. Product Data: For each electrical identification product indicated.
B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

A. Comply with ANSI A13.1.
B. Comply with NFPA 70.
C. Comply with ANSI Z535.4 for safety signs and labels.
D. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.2 ARMORED AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Colors for Raceways Carrying Circuits at 600 V and Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.5 FLOOR MARKING TAPE

A. 2-inch- wide, 5-mil pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

2.6 WARNING LABELS AND SIGNS

A. Comply with NFPA 70.

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 7 by 10 inches.

D. Warning label and sign shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.7 INSTRUCTION SIGNS

A. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

2.8 EQUIPMENT IDENTIFICATION LABELS

2.9 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self extinguishing, UV stabilized, one piece, self locking.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.10 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
F. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

G. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

H. Painted Identification: Comply with requirements in Division 09 painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
2. Power.
3. UPS.

C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

D. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.

G. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

H. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

I. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

J. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch high letters on 1-1/2-inch high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 2. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchboards.
e. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.

f. Motor-control centers.

g. Enclosed switches.

h. Enclosed circuit breakers.

i. Enclosed controllers.

j. Variable-speed controllers.

k. Push-button stations.

l. Contactors.

m. Remote-controlled switches, dimmer modules, and control devices.

n. Battery racks.

o. Power-generating units.

p. Monitoring and control equipment.

END OF SECTION 260553
SECTION 260573 - OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes computer-based, fault-current and overcurrent protective device coordination studies. Protective devices shall be set based on results of the protective device coordination study.
 1. Coordination of series-rated devices is permitted where indicated on Drawings.

1.3 SUBMITTALS

A. Product Data: For computer software program to be used for studies.
B. Product Certificates: For coordination-study and fault-current-study computer software programs, certifying compliance with IEEE 399.
C. Qualification Data: For coordination-study specialist.
D. Other Action Submittals: The following submittals shall be made after the approval process for system protective devices has been completed. Submittals shall be in digital form.
 1. Coordination-study input data, including completed computer program input data sheets.
 2. Study and Equipment Evaluation Reports.

1.4 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.

B. Coordination-Study Specialist Qualifications: An entity experienced in the application of computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
 1. Professional engineer, licensed in the state where Project is located, shall be responsible for the study. All elements of the study shall be performed under the direct supervision and control of engineer.

C. Comply with IEEE 242 for short-circuit currents and coordination time intervals.

D. Comply with IEEE 399 for general study procedures.
PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Computer Software Developers: Subject to compliance with requirements, provide products by one of the following:
 1. CGI CYME.
 2. EDSA Micro Corporation.
 3. ESA Inc.
 4. Operation Technology, Inc.
 5. SKM Systems Analysis, Inc.

2.2 COMPUTER SOFTWARE PROGRAM REQUIREMENTS

A. Comply with IEEE 399.

B. Analytical features of fault-current-study computer software program shall include "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
 1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.
 1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

A. Gather and tabulate the following input data to support coordination study:
 1. Product Data for overcurrent protective devices specified in other Division 26 Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Impedance of utility service entrance.
3. Electrical Distribution System Diagram: In hard-copy and electronic-copy formats, showing the following:
 a. Circuit-breaker and fuse-current ratings and types.
 b. Relays and associated power and current transformer ratings and ratios.
 c. Transformer kilovolt amperes, primary and secondary voltages, connection type, impedance, and X/R ratios.
 d. Generator kilovolt amperes, size, voltage, and source impedance.
 e. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length.
 f. Busway ampacity and impedance.
 g. Motor horsepower and code letter designation according to NEMA MG 1.
4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Generator thermal-damage curve.
 e. Ratings, types, and settings of utility company's overcurrent protective devices.
 f. Special overcurrent protective device settings or types stipulated by utility company.
 g. Time-current-characteristic curves of devices indicated to be coordinated.
 h. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 j. Panelboards, switchboards, motor-control center ampacity, and interrupting rating in amperes rms symmetrical.

3.3 FAULT-CURRENT STUDY

A. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuit-breaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:
 1. Switchgear and switchboard bus.
 2. Medium-voltage controller.
 3. Motor-control center.
 4. Distribution panelboard.
 5. Branch circuit panelboard.

B. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.

C. Calculate momentary and interrupting duties on the basis of maximum available fault current.
D. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 141 and IEEE 242.
 1. Transformers:
 a. ANSI C57.12.10.
 b. ANSI C57.12.22.
 c. ANSI C57.12.40.
 d. IEEE C57.12.00.
 e. IEEE C57.96.
 4. Low-Voltage Fuses: IEEE C37.46.

E. Study Report:
 1. Show calculated X/R ratios and equipment interrupting rating (1/2-cycle) fault currents on electrical distribution system diagram.
 2. Show interrupting (5-cycle) and time-delayed currents (6 cycles and above) on medium-voltage breakers as needed to set relays and assess the sensitivity of overcurrent relays.

F. Equipment Evaluation Report:
 1. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 2. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
 3. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3.4 COORDINATION STUDY

 1. Calculate the maximum and minimum 1/2-cycle short-circuit currents.
 2. Calculate the maximum and minimum interrupting duty (5 cycles to 2 seconds) short-circuit currents.
 3. Calculate the maximum and minimum ground-fault currents.

B. Comply with IEEE 141 recommendations for fault currents and time intervals.

C. Transformer Primary Overcurrent Protective Devices:
 1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
 2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

D. Motors served by voltages more than 600 V shall be protected according to IEEE 620.

E. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242. Demonstrate that
equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

F. Coordination-Study Report: Prepare a written report indicating the following results of coordination study:
1. Tabular Format of Settings Selected for Overcurrent Protective Devices:
 a. Device tag.
 b. Relay-current transformer ratios; and tap, time-dial, and instantaneous-pickup values.
 c. Circuit-breaker sensor rating; and long-time, short-time, and instantaneous settings.
 d. Fuse-current rating and type.
 e. Ground-fault relay-pickup and time-delay settings.
2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company’s upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 a. Device tag.
 b. Voltage and current ratio for curves.
 c. Three-phase and single-phase damage points for each transformer.
 d. No damage, melting, and clearing curves for fuses.
 e. Cable damage curves.
 f. Transformer inrush points.
 g. Maximum fault-current cutoff point.

G. Completed data sheets for setting of overcurrent protective devices.

END OF SECTION 260573
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Load centers.
 4. Electronic-grade panelboards.

1.3 DEFINITIONS

A. SVR: Suppressed voltage rating.

B. TVSS: Transient voltage surge suppressor.

1.4 PERFORMANCE REQUIREMENTS

1.5 SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Qualification Data: For qualified testing agency.

C. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Panelboard Schedules: For installation in panelboards.

E. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from a single source from a single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 1.

F. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NECA 407.

1.8 PROJECT CONDITIONS

A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.
C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Architect no fewer than two days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without Owner's written permission.
 3. Comply with NFPA 70E.

1.9 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

1.11 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two spares for each type of panelboard cabinet lock.
 2. Circuit Breakers Including GFCI and Ground Fault Equipment Protection (GFEP) Types: Two spares for each panelboard.
 3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Enclosures: Flush- and surface-mounted cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5.
2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
6. Finishes:
 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.

B. Incoming Mains Location: Top and bottom.

C. Phase, Neutral, and Ground Buses:
2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
4. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.

D. Conductor Connectors: Suitable for use with conductor material and sizes.
2. Main and Neutral Lugs: Compression type.
3. Ground Lugs and Bus-Configured Terminators: Compression type.
4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
5. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
6. Gutter-Tap Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
7. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.

E. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices.

F. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

G. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, listed and labeled for series-connected short-circuit rating by an NRTL.

2.2 DISTRIBUTION PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches high, provide two latches, keyed alike.

D. Mains: Lugs only.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

G. Branch Overcurrent Protective Devices: Fused switches.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

F. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.
2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.
5. Insert manufacturer's name.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with series-connected rating interrupting capacity to meet available fault currents.
3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I^2t response.
4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Shunt Trip: 24-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 f. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.
 g. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.
 h. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.
 i. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 j. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.
k. Multipole units enclosed in a single housing or factory assembled to operate as a single unit.

l. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.

m. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.5 PANELBOARD SUPPRESSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Current Technology; a subsidiary of Danahar Corporation.
 2. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Liebert Corporation.
 5. Siemens Energy & Automation, Inc.
 6. Square D; a brand of Schneider Electric.

B. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, solid-state, parallel-connected, non-modular type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories:
 1. Accessories:
 a. LED indicator lights for power and protection status.
 b. Audible alarm, with silencing switch, to indicate when protection has failed.
 c. One set of dry contacts rated at 5 A and 250-V ac, for remote monitoring of protection status.

C. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, wired-in, solid-state, parallel-connected, modular (with field-replaceable modules) type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories:
 1. Accessories:
 a. Fuses rated at 200-kA interrupting capacity.
 b. Fabrication using bolted compression lugs for internal wiring.
 c. Integral disconnect switch.
 d. Redundant suppression circuits.
 e. Redundant replaceable modules.
 f. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 g. LED indicator lights for power and protection status.
 h. Audible alarm, with silencing switch, to indicate when protection has failed.
 i. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
 j. Six-digit, transient-event counter set to totalize transient surges.

 a. Line to Neutral: 70,000 A.
 b. Line to Ground: 70,000 A.
 c. Neutral to Ground: 50,000 A.
4. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.

2.6 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NECA 407.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install panelboards and accessories according to NECA 407.

B. Equipment Mounting: Install panelboards on concrete bases, 4-inch nominal thickness. Comply with requirements for concrete base specified in Division 03 Section "Cast-in-Place Concrete."
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.
 2. For panelboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to panelboards.
 5. Attach panelboard to the vertical finished or structural surface behind the panelboard.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

D. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

E. Mount top of trim 90 inches above finished floor unless otherwise indicated.
F. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

G. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.

H. Install filler plates in unused spaces.

I. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

J. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

K. Comply with NECA 1.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

F. Panelboards will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section "Overcurrent Protective Device Coordination Study."

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 1. Measure as directed during period of normal system loading.
 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.6 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Twist-locking receptacles.
 3. Receptacles with integral surge suppression units.
 5. Isolated-ground receptacles.
 6. Hospital-grade receptacles.
 7. Snap switches and wall-box dimmers.
 8. Solid-state fan speed controls.
 9. Wall-switch and exterior occupancy sensors.
 10. Communications outlets.
 12. Cord and plug sets.
 13. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

B. Related Sections include the following:
 1. Division 27 Section "Communications Horizontal Cabling" for workstation outlets.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.

B. GFCI: Ground-fault circuit interrupter.

C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.

D. RFI: Radio-frequency interference.

E. TVSS: Transient voltage surge suppressor.

F. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing label warnings and instruction manuals that include labeling conditions.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

1.6 COORDINATION

A. Receptacles for Owner-Furnished Equipment: Match plug configurations.

1. Cord and Plug Sets: Match equipment requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers’ Names: Shortened versions (shown in parentheses) of the following manufacturers’ names are used in other Part 2 articles:

1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper).
2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

2.2 STRAIGHT BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

B. 1. Products: Subject to compliance with requirements, provide one of the following:

a. Cooper; 5351 (single), 5352 (duplex).

b. Hubbell; HBL5351 (single), CR5352 (duplex).

c. Leviton; 5891 (single), 5352 (duplex).
d. Pass & Seymour; 5381 (single), 5352 (duplex).

C. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

D.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; CR 5253IG.
 b. Leviton; 5362-IG.
 c. Pass & Seymour; IG6300.
2. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

E. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; TR8300.
 b. Hubbell; HBL8300SG.
 c. Leviton; 8300-SGG.
 d. Pass & Seymour; 63H.
3. Description: Labeled to comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.3 GFCI RECEPTACLES

A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; GF20.
 b. Pass & Seymour; 2084.

C. Hospital-Grade, Duplex GFCI Convenience Receptacles, 125 V, 20 A: Comply with UL 498 Supplement SD.
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; HGF20.
 b. Hubbell; HGF8300.
 c. Leviton; 6898-HG.
 d. Pass & Seymour; 2091-SHG.
2.4 TVSS RECEPTACLES

A. General Description: Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 1449, with integral TVSS in line to ground, line to neutral, and neutral to ground.
 1. TVSS Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 volts and minimum single transient pulse energy dissipation of 240 J, according to IEEE C62.41.2 and IEEE C62.45.
 2. Active TVSS Indication: Visual and audible, with light visible in face of device to indicate device is "active" or "no longer in service."

B. Duplex TVSS Convenience Receptacles:

C. 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 5362BLS.
 b. Hubbell; HBL5362SA.
 c. Leviton; 5380.
 2. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R.

D. Isolated-Ground, Duplex Convenience Receptacles:

E. 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; IG5362BLS.
 b. Hubbell; IG5362SA.
 c. Leviton; 5380-IG.
 2. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

F. Hospital-Grade, Duplex Convenience Receptacles: Comply with UL 498 Supplement SD.

G. 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 8300BLS.
 b. Hubbell; HBL8362SA.
 c. Leviton; 8380.
 2. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R.

2.5 SNAP SWITCHES

A. Comply with NEMA WD 1 and UL 20.

B. Switches, 120/277 V, 20 A:

C. 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221 (single pole), 2222 (two pole), 2223 (three way), 2224 (four way).
 b. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way).
c. Leviton; 1221-2 (single pole), 1222-2 (two pole), 1223-2 (three way), 1224-2 (four way).
d. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way),
20AC4 (four way).

D. Pilot Light Switches, 20 A:
1. Available Products: Subject to compliance with requirements, products that may be
incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221PL for 120 V and 277 V.
 b. Hubbell; HPL1221PL for 120 V and 277 V.
 c. Leviton; 1221-PLR for 120 V, 1221-7PLR for 277 V.
 d. Pass & Seymour; PS20AC1-PLR for 120 V.
3. Description: Single pole, with neon-lighted handle, illuminated when switch is “ON.”

E. Key-Operated Switches, 120/277 V, 20 A:
1. Available Products: Subject to compliance with requirements, products that may be
incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221L.
 b. Hubbell; HBL1221L.
 c. Leviton; 1221-2L.
 d. Pass & Seymour; PS20AC1-L.
3. Description: Single pole, with factory-supplied key in lieu of switch handle.

F. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use
with mechanically held lighting contactors.
1. Available Products: Subject to compliance with requirements, products that may be
incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 b. Hubbell; HBL1557.
 c. Leviton; 1257.
 d. Pass & Seymour; 1251.

G. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches,
120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in
lieu of switch handle.
1. Available Products: Subject to compliance with requirements, products that may be
incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 1995L.
 b. Hubbell; HBL1557L.
 c. Leviton; 1257L.
 d. Pass & Seymour; 1251L.

2.6 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with
audible frequency and EMI/RFI suppression filters.
B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
1. 600 W; dimmers shall require no derating when ganged with other devices. Illuminated when “OFF.”

D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.7 FAN SPEED CONTROLS

A. Modular, 120-V, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters. Comply with UL 1917.
1. Continuously adjustable slider.
2. Three-speed adjustable slider, 1.5 A.

2.8 OCCUPANCY SENSORS

A. Wall-Switch Sensors:
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 6111 for 120 V, 6117 for 277 V.
 b. Hubbell; WS1277.
 c. Leviton; ODS 10-ID.
 d. Pass & Seymour; WS3000.
 e. Watt Stopper (The); WS-200.
3. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft..

B. Wall-Switch Sensors:
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; AT120 for 120 V, AT277 for 277 V.
 b. Leviton; ODS 15-ID.
3. Description: Adaptive-technology type, 120/277 V, adjustable time delay up to 20 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft..

C. Long-Range Wall-Switch Sensors:
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; ATP1600WRP.
 b. Leviton; ODWWV-IRW.
 c. Pass & Seymour; WA1001.
 d. Watt Stopper (The); CX-100.
3. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, with a minimum coverage area of 1200 sq. ft..

D. Long-Range Wall-Switch Sensors:
 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 2. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; ATD1600WRP.
 b. Leviton; ODW12-MRW.
 c. Watt Stopper (The); DT-200.
 3. Description: Dual technology, with both passive-infrared- and ultrasonic-type sensing, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, and a minimum coverage area of 1200 sq. ft..

E. Wide-Range Wall-Switch Sensors:
 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 2. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; ATP120HBRP.
 b. Leviton; ODWHB-IRW.
 c. Pass & Seymour; HS1001.
 d. Watt Stopper (The); CX-100-3.
 3. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 150-degree field of view, with a minimum coverage area of 1200 sq. ft..

2.9 WALL PLATES

A. Single and combination types to match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: 0.035-inch thick, satin-finished stainless steel.
 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in “wet locations.”

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable cover.

2.10 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, dual-service units suitable for wiring method used.

B. Compartments: Barrier separates power from voice and data communication cabling.

C. Service Plate: Rectangular, with satin finish.

D. Power Receptacle: NEMA WD 6 configuration 5-20R, gray finish, unless otherwise indicated.

E. Voice and Data Communication Outlet: Blank cover with bushed cable opening.
2.11 POKE-THROUGH ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hubbell Incorporated; Wiring Device-Kellems.
 2. Pass & Seymour/Legrand; Wiring Devices & Accessories.
 3. Square D/ Schneider Electric.
 4. Thomas & Betts Corporation.
 5. Wiremold Company (The).

B. Description: Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service outlet assembly.
 1. Service Outlet Assembly: Flush type with four simplex receptacles and space for four RJ-45 jacks.
 2. Size: Selected to fit nominal 3-inch cored holes in floor and matched to floor thickness.
 3. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
 4. Closure Plug: Arranged to close unused 3-inch cored openings and reestablish fire rating of floor.
 5. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, 4-pair, Category 5e voice and data communication cables.

2.12 MULTIOUTLET ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hubbell Incorporated; Wiring Device-Kellems.
 2. Wiremold Company (The).

B. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

C. Raceway Material: Metal, with manufacturer’s standard finish.

D. Wire: No. 12 AWG.

2.13 FINISHES

A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 1. Wiring Devices Connected to Normal Power System: As selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing.
 3. TVSS Devices: Blue.
 4. Isolated-Ground Receptacles: Orange.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

B. Coordination with Other Trades:
 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:
 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 8. Tighten unused terminal screws on the device.
 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.
F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
 1. Install dimmers within terms of their listing.
 2. Verify that dimmers used for fan speed control are listed for that application.
 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

A. Comply with Division 26 Section "Identification for Electrical Systems."
 1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 2. Test Instruments: Use instruments that comply with UL 1436.
 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

B. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Test straight blade for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz..

END OF SECTION 262726
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
B. 1. Nonfusible switches.
2. Molded-case circuit breakers (MCCBs).
4. Enclosures.

1.3 DEFINITIONS
A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 SUBMITTALS
A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Field quality-control reports.
1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

C. Manufacturer's field service report.

D. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Owner’s written permission.
4. Comply with NFPA 70E.

1.8 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

1. powered; 24-V ac.

2.2 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 4. Lugs: Compression type, suitable for number, size, and conductor material.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I²t response.

F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

J. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.

2.4 MOLDED-CASE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

C. Features and Accessories:
 1. Standard frame sizes and number of poles.
2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.

2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 2. Outdoor Locations: NEMA 250, Type 3R.
 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section “Overcurrent Protective Device Coordination Study”.

ENCLOSED SWITCHES AND CIRCUIT BREAKERS 262816
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

END OF SECTION 262816
SECTION 263213 - ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged engine-generator sets for standby power supply with the following features:
 1. Gas engine.
 2. Unit-mounted cooling system.
 4. Outdoor enclosure.

B. Related Sections include the following:
 1. Division 26 Section "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.3 DEFINITIONS

A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 SUBMITTALS

A. Product Data: For each type of packaged engine generator indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. In addition, include the following:
 1. Thermal damage curve for generator.
 2. Time-current characteristic curves for generator protective device.

B. Source quality-control test reports.
 1. Certified summary of prototype-unit test report.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.
E. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 200 miles of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.

B. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with ASME B15.1.

E. Comply with NFPA 37.

F. Comply with NFPA 70.

G. Comply with NFPA 99.

H. Comply with NFPA 110 requirements for Level 2 emergency power supply system.

I. Comply with UL 2200.

J. Engine Exhaust Emissions: Comply with applicable state and local government requirements.

K. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Owner no fewer than two days in advance of proposed interruption of electrical service.

2. Do not proceed with interruption of electrical service without Owner's written permission.

B. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:

1. Ambient Temperature: 5 to 40 deg C.

2. Relative Humidity: 0 to 95 percent.

3. Altitude: Sea level to 100 feet.
1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: 1 year from date of Substantial Completion.

1.8 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, provide 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include quarterly exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Provide parts and supplies same as those used in the manufacture and installation of original equipment.

1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
 2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
 3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Caterpillar; Engine Div.
 2. Generac Power Systems, Inc.
 3. Kohler Co.; Generator Division.
 4. Magnetek, Inc.

2.2 ENGINE-GENERATOR SET

A. Factory-assembled and -tested, engine-generator set.

B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.
 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and generator-set center of gravity.

C. Capacities and Characteristics:
1. Power Output Ratings: Nominal ratings as indicated, on drawings.
2. Output Connections: Three-phase, four wire.
3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.

D. Generator-Set Performance:
1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
7. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
8. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.3 ENGINE

A. Fuel: Natural gas.

B. Rated Engine Speed: 1800 rpm.

C. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm.

D. Lubrication System: The following items are mounted on engine or skid:
1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.

E. Engine Fuel System:
1. Dual Natural Gas with LP-Gas Backup (Vapor-Withdrawal) System:
 a. Carburetor.
 b. Secondary Gas Regulators: One for each fuel type.
 c. Fuel-Shutoff Solenoid Valves: One for each fuel source.
 d. Flexible Fuel Connectors: One for each fuel source.
F. Coolant Jacket Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity.

G. Governor: Adjustable isochronous, with speed sensing.

H. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine-generator-set mounting frame and integral engine-driven coolant pump.
 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 3. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.
 4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
 a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and noncollapsible under vacuum.
 b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.

I. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 1. Minimum sound attenuation of 25 dB at 500 Hz.
 2. Sound level measured at a distance of 10 feet from exhaust discharge after installation is complete shall be 85 dBA or less.

K. Starting System: 12-V electric, with negative ground.
 1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in Part 1 "Project Conditions" Article.
 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 4. Battery: Adequate capacity within ambient temperature range specified in Part 1 "Project Conditions" Article to provide specified cranking cycle at least three times without recharging.
 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 10 deg C regardless of external ambient temperature within range specified in Part 1 "Project Conditions" Article. Include accessories required to support and fasten batteries in place.
 8. Battery Charger: Current-limiting, automatic-equalizing and float-charging type. Unit shall comply with UL 1236 and include the following features:
2.4 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.

B. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common wall-mounted control and monitoring panel.

C. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level 2 system, and the following:
 1. AC voltmeter.
 2. AC ammeter.
 3. AC frequency meter.
 4. DC voltmeter (alternator battery charging).
 5. Engine-coolant temperature gage.
 6. Engine lubricating-oil pressure gage.
 7. Running-time meter.
 9. Generator-voltage adjusting rheostat.

D. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.

E. Connection to Data Link: A separate terminal block, factory wired to Form C dry contacts, for each alarm and status indication is reserved for connections for data-link transmission of indications to remote data terminals.
F. Common Remote Audible Alarm: Comply with NFPA 110 requirements for Level 1 systems. Include necessary contacts and terminals in control and monitoring panel.
 1. Overcrank shutdown.
 2. Coolant low-temperature alarm.
 3. Control switch not in auto position.
 4. Battery-charger malfunction alarm.
 5. Battery low-voltage alarm.

G. Common Remote Audible Alarm: Signal the occurrence of any events listed below without differentiating between event types. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset.
 1. Engine high-temperature shutdown.
 2. Lube-oil, low-pressure shutdown.
 3. Overspeed shutdown.
 5. Engine high-temperature prealarm.
 6. Lube-oil, low-pressure prealarm.
 7. Fuel tank, low-fuel level.
 8. Low coolant level.

H. Remote Alarm Annunciator: Comply with NFPA 99. An LED labeled with proper alarm conditions shall identify each alarm event and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.

I. Remote Emergency-Stop Switch: Flush; wall mounted, unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.5 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Generator Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with NEMA AB 1 and UL 489.
 1. Tripping Characteristic: Designed specifically for generator protection.
 2. Trip Rating: Matched to generator rating.
 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 4. Mounting: Adjacent to or integrated with control and monitoring panel.

B. Generator Disconnect Switch: Molded-case type, 100 percent rated.
 1. Rating: Matched to generator output rating.

C. Ground-Fault Indication: Comply with NFPA 70, "Emergency System" signals for ground-fault. Integrate ground-fault alarm indication with other generator-set alarm indications.

2.6 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Comply with NEMA MG 1.
B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.

C. Electrical Insulation: Class H or Class F.

D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.

E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

F. Enclosure: Dripproof.

G. Instrument Transformers: Mounted within generator enclosure.

H. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 1. Adjusting rheostat on control and monitoring panel shall provide plus or minus 5 percent adjustment of output-voltage operating band.

I. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

J. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

K. Subtransient Reactance: 12 percent, maximum.

2.7 OUTDOOR GENERATOR-SET ENCLOSURE

A. Description: Vandal-resistant, weatherproof steel housing, wind resistant up to 100 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.

B. Description: Prefabricated or preengineered walk-in enclosure with the following features:
 2. Structural Design and Anchorage: Comply with ASCE 7 for wind loads.
 3. Space Heater: Thermostatically controlled and sized to prevent condensation.
 4. Louvers: Equipped with bird screen and filter arranged to permit air circulation when engine is not running while excluding exterior dust, birds, and rodents.
 6. Ventilation: Louvers equipped with bird screen and filter arranged to permit air circulation while excluding exterior dust, birds, and rodents.
 7. Thermal Insulation: Manufacturer's standard materials and thickness selected in coordination with space heater to maintain winter interior temperature within operating limits required by engine-generator-set components.
 8. Muffler Location: Within enclosure.

C. Convenience Outlets: Factory wired GFCI. Arrange for external electrical connection.
2.8 VIBRATION ISOLATION DEVICES

A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized-steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.
 3. Number of Layers: Three.

2.9 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer’s standard finish over corrosion-resistant pretreatment and compatible primer.

2.10 SOURCE QUALITY CONTROL

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine-generator performance.

B. Examine roughing-in of piping systems and electrical connections. Verify actual locations of connections before packaged engine-generator installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with packaged engine-generator manufacturers’ written installation and alignment instructions and with NFPA 110.

B. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.

C. Install packaged engine generator with elastomeric isolator pads on 4-inch- high concrete base. Secure sets to anchor bolts installed in concrete bases.

D. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.
3.3 CONNECTIONS

A. Piping installation requirements are specified in Division 23 Sections. Drawings indicate general arrangement of piping and specialties.

B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow service and maintenance.

C. Connect engine exhaust pipe to engine with flexible connector.

D. Connect fuel piping to engines with a gate valve and union and flexible connector.
 1. Natural-gas piping, valves, and specialties for gas distribution are specified in Division 23 Section "Facility Natural-Gas Piping."

E. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Perform tests recommended by manufacturer and each electrical test and visual and mechanical inspection for "AC Generators and for Emergency Systems" specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test.
 3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 c. Verify acceptance of charge for each element of the battery after discharge.
 d. Verify that measurements are within manufacturer's specifications.
 4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.
 5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.
6. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg. Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer's written allowable limits for the engine.

7. Exhaust Emissions Test: Comply with applicable government test criteria.

8. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.

9. Harmonic-Content Tests: Measure harmonic content of output voltage under 25 percent and at 100 percent of rated linear load. Verify that harmonic content is within specified limits.

10. Noise Level Tests: Measure A-weighted level of noise emanating from generator-set installation, including engine exhaust and cooling-air intake and discharge, at four locations on the property line, and compare measured levels with required values.

D. Coordinate tests with tests for transfer switches and run them concurrently.

E. Test instruments shall have been calibrated within the last 12 months, traceable to standards of NIST, and adequate for making positive observation of test results. Make calibration records available for examination on request.

F. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

G. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

H. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

I. Remove and replace malfunctioning units and retest as specified above.

J. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

K. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators. Refer to Division 01 Section “Demonstration and Training.”

END OF SECTION 263213
SECTION 26 41 13 - LIGHTNING PROTECTION FOR STRUCTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes lightning protection for structure elements and the building site components.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For air terminals and mounting accessories.
 1. Layout of the lightning protection system, along with details of the components to be used in the installation.
 2. Include indications for use of raceway, data on how concealment requirements will be met, and calculations required by NFPA 780 for bonding of grounded and isolated metal bodies.
C. Qualification Data: For qualified Installer and manufacturer. Include data on listing or certification by UL.
D. Certification, signed by Contractor, that roof adhesive is approved by manufacturer of roofing material.
E. Field quality-control reports.
F. Comply with recommendations in NFPA 780, Annex D, "Inspection and Maintenance of Lightning Protection Systems," for maintenance of the lightning protection system.
G. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features, including the following:
 1. Ground rods.
 2. Ground loop conductor.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Certified by NRTL or certified by LPI as a Master Installer/Designer, trained and approved for installation of units required for this Project.
B. System Certificate:
 1. UL Master Label.
2. LPI System Certificate.
3. UL Master Label Recertification.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 780, "Definitions" Article.

1.5 COORDINATION

A. Coordinate installation of lightning protection with installation of other building systems and components, including electrical wiring, supporting structures and building materials, metal bodies requiring bonding to lightning protection components, and building finishes.

B. Coordinate installation of air terminals attached to roof systems with roofing manufacturer and Installer.

C. Flashings of through-roof assemblies shall comply with roofing manufacturers’ specifications.

PART 2 - PRODUCTS

2.1 LIGHTNING PROTECTION SYSTEM COMPONENTS

A. Comply with UL 96 and NFPA 780.

B. Roof-Mounted Air Terminals: NFPA 780, Class I, aluminum unless otherwise indicated.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. a. ERICO International Corporation.
 b. Harger.
 d. Independent Protection Co.
 e. Preferred Lightning Protection.
 f. Robbins Lightning, Inc.
 g. Thompson Lightning Protection, Inc.
 h. Automatic Lightning Protection.
 3. Air Terminals More than 24 Inches Long: With brace attached to the terminal at not less than half the height of the terminal.

C. Main and Bonding Conductors: Aluminum.

D. Ground Loop Conductor: The same size and type as the main conductor except tinned.

E. Ground Rods: Copper-clad, sectional type; 3/4 inch in diameter by 10 feet.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install lightning protection components and systems according to UL 96A and NFPA 780.

B. Install conductors with direct paths from air terminals to ground connections. Avoid sharp bends.

C. Conceal the following conductors:
 1. System conductors.
 2. Down conductors.
 3. Interior conductors.
 4. Conductors within normal view of exterior locations at grade within 200 feet of building.

D. Cable Connections: Use crimped or bolted connections for all conductor splices and connections between conductors and other components. Use exothermic-welded connections in underground portions of the system.

E. Cable Connections: Use exothermic-welded connections for all conductor splices and connections between conductors and other components.
 1. Exception: In single-ply membrane roofing, exothermic-welded connections may be used only below the roof level.

F. Air Terminals on Single-Ply Membrane Roofing: Comply with roofing membrane and adhesive manufacturer’s written instructions.

G. Bond extremities of vertical metal bodies exceeding 60 feet in length to lightning protection components.

H. Ground Loop: Install ground-level, potential equalization conductor and extend around the perimeter of structure, area or item indicated.
 1. Bury ground ring not less than 24 inches from building foundation.
 2. Bond ground terminals to the ground loop.
 3. Bond grounded building systems to the ground loop conductor within 12 feet of grade level.

I. Bond lightning protection components with intermediate-level interconnection loop conductors to grounded metal bodies of building at 60-foot intervals.

3.2 CORROSION PROTECTION

A. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.

B. Use conductors with protective coatings where conditions cause deterioration or corrosion of conductors.
3.3 FIELD QUALITY CONTROL

A. Notify Architect at least 48 hours in advance of inspection before concealing lightning protection components.

B. UL Inspection: Meet requirements to obtain a UL Master Label for system.

C. LPI System Inspection: Meet requirements to obtain an LPI System Certificate.
SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Interior lighting fixtures, lamps, and ballasts.
 2. Emergency lighting units.
 3. Exit signs.
 4. Lighting fixture supports.

B. BF: Ballast factor.

C. CCT: Correlated color temperature.

D. CRI: Color-rendering index.

E. HID: High-intensity discharge.

F. LER: Luminaire efficacy rating.

G. Lumen: Measured output of lamp and luminaire, or both.

H. Luminaire: Complete lighting fixture, including ballast housing if provided.

1.3 SUBMITTALS

A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
 1. Physical description of lighting fixture including dimensions.
 2. Emergency lighting units including battery and charger.
 3. Ballast, including BF.
 5. Air and Thermal Performance Data: For air-handling lighting fixtures. Furnish data required in "Submittals" Article in Division 23 Section "Diffusers, Registers, and Grilles."
 6. Sound Performance Data: For air-handling lighting fixtures. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Division 23 Section "Diffusers, Registers, and Grilles."
 7. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
 8. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type.
The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.

a. Testing Agency Certified Data: For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by manufacturer.

b. Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Installation instructions.

C. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.

D. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, from manufacturer.

E. Field quality-control reports.

F. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.

1.4 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910, complying with the IESNA Lighting Measurements Testing & Calculation Guides.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70.

E. FM Global Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

1.5 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.
1.6 WARRANTY

A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.
1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.
2. Warranty Period for Emergency Fluorescent Ballast and Self-Powered Exit Sign Batteries: Seven years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining six years.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide product indicated on Drawings.

2.2 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A.
C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
D. HID Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5B.
E. Metal Parts: Free of burrs and sharp corners and edges.
F. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.
G. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
H. Diffusers and Globes:
 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 a. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
 b. UV stabilized.
 2. Glass: Annealed crystal glass unless otherwise indicated.
I. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp and ballast characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter code (T-4, T-5, T-8, T-12, etc.), tube configuration (twin, quad, triple, etc.), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.
 c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
 d. Start type (preheat, rapid start, instant start, etc.) for fluorescent and compact fluorescent luminaires.
 e. ANSI ballast type (M98, M57, etc.) for HID luminaires.
 f. CCT and CRI for all luminaires.

J. Electromagnetic-Interference Filters: Factory installed to suppress conducted electromagnetic interference as required by MIL-STD-461E. Fabricate lighting fixtures with one filter on each ballast indicated to require a filter.

K. Air-Handling Fluorescent Fixtures: For use with plenum ceiling for air return and heat extraction and for attaching an air-diffuser-boot assembly specified in Division 23 Section "Diffusers, Registers, and Grilles."
 1. Air-Supply Units: Slots in one or both side trims join with air-diffuser-boot assemblies.
 2. Heat-Removal Units: Air path leads through lamp cavity.
 3. Combination Heat-Removal and Air-Supply Unit: Heat is removed through lamp cavity at both ends of the fixture door with air supply same as for air-supply units.
 4. Dampers: Operable from outside fixture for control of return-air volume.
 5. Static Fixture: Air-supply slots are blanked off, and fixture appearance matches active units.

2.3 BALLASTS FOR LINEAR FLUORESCENT LAMPS

A. General Requirements for Electronic Ballasts:
 1. Comply with UL 935 and with ANSI C82.11.
 2. Designed for type and quantity of lamps served.
 3. Ballasts shall be designed for full light output unless another BF, dimmer, or bi-level control is indicated.
 4. Sound Rating: Class A.
 5. Total Harmonic Distortion Rating: Less than 10 percent.
 6. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 7. Operating Frequency: 42 kHz or higher.
 8. Lamp Current Crest Factor: 1.7 or less.
 9. BF: 0.88 or higher.
 10. Power Factor: 0.98 or higher.
 11. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail.

B. Luminaires controlled by occupancy sensors shall have programmed-start ballasts.

C. Electronic Programmed-Start Ballasts for T8 Lamps: Comply with ANSI C82.11 and the following:
 1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
2. Automatic lamp starting after lamp replacement.

D. Ballasts for Dimmer-Controlled Lighting Fixtures: Electronic type.
 1. Dimming Range: 100 to 5 percent of rated lamp lumens.
 2. Ballast Input Watts: Can be reduced to 20 percent of normal.
 3. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.
 4. Control: Coordinate wiring from ballast to control device to ensure that the ballast, controller, and connecting wiring are compatible.

E. Ballasts for Bi-Level Controlled Lighting Fixtures: Electronic type.
 1. Operating Modes: Ballast circuit and leads provide for remote control of the light output of the associated lamp between high- and low-level and off.
 a. High-Level Operation: 100 percent of rated lamp lumens.
 b. Low-Level Operation: 30 percent of rated lamp lumens.
 2. Ballast shall provide equal current to each lamp in each operating mode.
 3. Compatibility: Certified by manufacturer for use with specific bi-level control system and lamp type indicated.

2.4 BALLASTS FOR COMPACT FLUORESCENT LAMPS

A. Description: Electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated:
 1. Lamp end-of-life detection and shutdown circuit.
 2. Automatic lamp starting after lamp replacement.
 3. Sound Rating: Class A.
 4. Total Harmonic Distortion Rating: Less than 20 percent.
 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 6. Operating Frequency: 20 kHz or higher.
 7. Lamp Current Crest Factor: 1.7 or less.
 8. BF: 0.95 or higher unless otherwise indicated.
 9. Power Factor: 0.98 or higher.
 10. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.

2.5 EMERGENCY FLUORESCENT POWER UNIT

A. Internal Type: Self-contained, modular, battery-inverter unit, factory mounted within lighting fixture body and compatible with ballast. Comply with UL 924.
 1. Emergency Connection: Operate one fluorescent lamp(s) continuously at an output of 1100 lumens each. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 2. Nightlight Connection: Operate one fluorescent lamp continuously.
 3. Test Push Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
5. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.

6. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.

7. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

B. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more fluorescent lamps, remote mounted from lighting fixture. Comply with UL 924.
 1. Emergency Connection: Operate one fluorescent lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 2. Nightlight Connection: Operate one fluorescent lamp in a remote fixture continuously.
 5. Housing: NEMA 250, Type 1 enclosure.
 6. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 7. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 8. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.6 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:
 1. Lamps for AC Operation: Fluorescent, two for each fixture, 20,000 hours of rated lamp life.
 2. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.
 3. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 a. Battery: Sealed, maintenance-free, nickel-cadmium type.
 b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 f. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
INTERIOR LIGHTING

receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.

4. Master/Remote Sign Configurations:
 a. Master Unit: Comply with requirements above for self-powered exit signs, and provide additional capacity in LED power supply for power connection to remote unit.
 b. Remote Unit: Comply with requirements above for self-powered exit signs, except omit power supply, battery, and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system.

C. Self-Luminous Signs: Powered by tritium gas, with universal bracket for flush-ceiling, wall, or end mounting. Signs shall be guaranteed by manufacturer to maintain the minimum brightness requirements in UL 924 for 10 years.

D. Self-Luminous Signs: Using strontium oxide aluminate compound to store ambient light and release the stored energy when the light is removed. Provide with universal bracket for flush-ceiling, wall, or end mounting.

2.7 EMERGENCY LIGHTING UNITS

A. General Requirements for Emergency Lighting Units: Self-contained units complying with UL 924.
 1. Battery: Sealed, maintenance-free, lead-acid type.
 2. Charger: Fully automatic, solid-state type with sealed transfer relay.
 3. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 4. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 5. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 6. Wire Guard: Heavy-chrome-plated wire guard protects lamp heads or fixtures.
 7. Integral Time-Delay Relay: Holds unit on for fixed interval of 15 minutes when power is restored after an outage.
 8. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.
2.8 FLUORESCENT LAMPS

A. T8 rapid-start lamps, rated 32 W maximum, nominal length of 48 inches, 2800 initial lumens (minimum), CRI 75 (minimum), color temperature 3500 K, and average rated life 20,000 hours unless otherwise indicated.

B. T8 rapid-start lamps, rated 17 W maximum, nominal length of 24 inches, 1300 initial lumens (minimum), CRI 75 (minimum), color temperature 3500 K, and average rated life of 20,000 hours unless otherwise indicated.

C. Compact Fluorescent Lamps: 4-Pin, CRI 80 (minimum), color temperature 3500 K, average rated life of 10,000 hours at three hours operation per start, and suitable for use with dimming ballasts unless otherwise indicated.
 1. 13 W: T4, double or triple tube, rated 900 initial lumens (minimum).
 2. 18 W: T4, double or triple tube, rated 1200 initial lumens (minimum).
 3. 26 W: T4, double or triple tube, rated 1800 initial lumens (minimum).
 4. 32 W: T4, triple tube, rated 2400 initial lumens (minimum).
 5. 42 W: T4, triple tube, rated 3200 initial lumens (minimum).
 6. 57 W: T4, triple tube, rated 4300 initial lumens (minimum).
 7. 70 W: T4, triple tube, rated 5200 initial lumens (minimum).

2.9 LIGHTING FIXTURE SUPPORT COMPONENTS

A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.

C. Twin-Stem Hangers: Two, 1/2-inch steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.

E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage.

F. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.

2.10 RETROFIT KITS FOR FLUORESCENT LIGHTING FIXTURES

A. Reflector Kit: UL 1598, Type I. Suitable for two- to four-lamp, surface-mounted or recessed lighting fixtures by improving reflectivity of fixture surfaces.

B. Ballast and Lamp Change Kit: UL 1598, Type II. Suitable for changing existing ballast, lamps, and sockets.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Lighting fixtures:
 1. Set level, plumb, and square with ceilings and walls unless otherwise indicated.
 2. Install lamps in each luminaire.

B. Temporary Lighting: If it is necessary, and approved by Architect, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall.

C. Remote Mounting of Ballasts: Distance between the ballast and fixture shall not exceed that recommended by ballast manufacturer. Verify, with ballast manufacturers, maximum distance between ballast and luminaire.

D. Lay-in Ceiling Lighting Fixtures Supports: Use grid as a support element.
 1. Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each fixture. Locate not more than 6 inches from lighting fixture corners.
 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch metal channels spanning and secured to ceiling tees.
 4. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.

E. Suspended Lighting Fixture Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
 4. Do not use grid as support for pendant luminaires. Connect support wires or rods to building structure.

F. Air-Handling Lighting Fixtures: Install with dampers closed and ready for adjustment.

G. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.2 IDENTIFICATION

A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
3.3 FIELD QUALITY CONTROL

A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.

B. Verify that self-luminous exit signs are installed according to their listing and the requirements in NFPA 101.

C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.4 STARTUP SERVICE

A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed, for at least 100 hours at full voltage.

3.5 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting aimable luminaires to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose. Some of this work may be required after dark.

1. Adjust aimable luminaires in the presence of Architect.

END OF SECTION 265100
SECTION 28 31 11 – DIGITAL, ADDRESSABLE FIRE ALARM SYSTEM

PART 1 - GENERAL

1.1 SCOPE

A. This specification document provides the requirements for the installation, programming and configuration of a complete Silent Knight 5820XL digital protocol addressable fire alarm system. This system shall include, but not be limited to, system cabinet, power supply, built in Signaling Line Circuit (SLC), 80 character LCD annunciator, six programmable “Flexput” circuits, built in dual line Digital Communicator associated peripheral devices, batteries, wiring, conduit and other relevant components and accessories required to furnish a complete and operational Life Safety System.

1.2 WORK INCLUDED

A. General Requirements

1. The contractor shall furnish and install a complete 24 VDC, electrically supervised, analog addressable fire alarm system as specified herein and indicated on the drawings. The system shall include but not be limited to all control panels, power supplies, initiating devices, audible and visual notification appliances, alarm devices, and all accessories required to provide a complete operating fire alarm system.

B. Labeling

1. All fire alarm system equipment shall be listed for its intended purpose and be compatibility listed to assure the integrity of the complete system.

C. Standards

1. The fire alarm equipment and installation shall comply with the current provisions of the following standards and shall be listed for its intended purpose and be compatibility listed to insure integrity of the complete system.

 a. National Electric Code, Article 760
 b. National Fire Protection Association Standards:

 (1) NFPA 72 National Fire Alarm Code
 (2) NFPA 101 Life Safety Code

 c. Local and State Building Codes
 d. Local Authorities Having Jurisdiction
 e. Underwriters Laboratories Inc.

 (1) All equipment shall be approved by Underwriters Laboratories, Inc. for its intended purpose, listed as power limited by Underwriters Laboratories, Inc., for the following standards as applicable:
1.3 MANUFACTURERS

A. General Requirements

1. The installing contractor shall be an authorized factory distributor of the manufacturer Silent Knight. All equipment shall be purchased directly from Silent Knight in lieu of a local distributor.

B. Acceptable manufactures:

1. Silent Knight by Convergint Technologies LLC contact Tony Stalter (832) 327-3700
2. Silent Knight by Texas Commercial Technology (TCT)
3. Silent Knight by Johnson Controls
4. Silent Knight by Wilson Fire, Contact Scott Tudor or Waylan Gandy, 713-896-4747

1.4 SUBMITTALS

A. The contractor shall submit three (10) complete sets of documentation within thirty (30) calendar days after award of the purchase order. Indicated in the document will be the type, size, rating, style, catalog number, manufacturers names, photos, and/or catalog data sheets for all items proposed to meet these specifications. The proposed equipment shall be subject to the approval of the Architect/Engineer and no equipment shall be ordered or installed on the premises without that approval.

B. NOTE: DOCUMENTATION - Submittal of shop drawings shall contain at least three (3) copies of original manufacturer specification and installation instruction sheets. Subsequent information
may be copies. All equipment and devices on the shop drawings to be furnished under this con-
tact shall be clearly marked in the specification sheets.

C. Supplier’s qualifications shall be submitted indicating years in business, service policies, warranty
definitions, NICET certification, completion of factory training program and a list of similar installa-
tions. Contractor qualifications shall be supplied indicating years in business and prior experience
with installations that include the type of equipment that is to be supplied.

D. The contractor shall provide hourly Service Rates, performed by a factory certified technician for
this installed Life Safety System with the submittal. Proof of training and authorization shall be
included with the submittal. These hourly service rates shall be guaranteed for a 1-year period.

E. Contract Close-Out Submittals

1. Deliver two (2) copies of the following to the owner’s representative within Thirty (30) days of
system acceptance. The closeout submittals shall include:

 a. Installation and Programming manuals for the installed Life Safety System.
 b. Point to point diagrams of the entire Life Safety System as installed. This shall include all
 connected Smoke Detectors and addressable field modules.
 c. All drawings must reflect device address as verified in the presence of the engineer
 and/or end user.

F. Warranty

1. Warranty all materials, installation and workmanship for a one (1) year period, unless other-
wise specified. A copy of the manufacturer warranty shall be provided with the close out
documentation.

1.5 PRODUCTS

A. This Life Safety System Specification must be conformed to in its entirety to ensure that the in-
stalled and programmed Life Safety System will accommodate all of the requirements and opera-
tions required by the building owner. Any specified item or operational feature not specifically
addressed prior to the bid date will be required to be met without exception.

B. Submission of product purported to be equal to those specified herein will be considered as pos-
sible substitutes only when all of the following requirements have been met:

1. Any deviation from the equipment, operations, methods, design or other criteria specified
 herein must be submitted in detail to the specifying Architect or Engineer a minimum of ten
 (10) working days prior to the scheduled submission of bids. Each deviation from the opera-
tion detailed in these specifications must be documented in detail, including page number
and section number, which lists the system function for which the substitution is being pro-
posed.
2. A complete list of such substituted products with three (3) copies of working drawings thereof
 shall be submitted to the approved Architect and/or Consulting Engineer not less than ten
 (10) working days prior to the scheduled submission of bids.
3. The contractor or substitute bidder shall functionally demonstrate that the proposed substitute
 products are in fact equal in quality and performance to those specified herein.
C. General Equipment and Materials Requirements

1. All equipment furnished for this project shall be new and unused. All components shall be designed for uninterrupted duty. All equipment, materials, accessories, devices and other facilities covered by this specification or noted on the contract drawings and installation specification shall be best suited for the intended use and shall be provided by a single manufacturer. If any of the equipment provided under this specification is provided by different manufacturers, then that equipment shall be "Listed" as to its compatibility by Underwriters Laboratories (UL), if such compatibility is required by UL standards.

D. Satisfying the Entire Intent of These Specifications

1. It is the contractor’s responsibility to meet the entire intent of these specifications. Deviations from the specified items shall be at the risk of the contractor until the date of final acceptance by the architect, engineer, and owner’s representative. All costs for removal, relocation, or replacement of a substituted item shall be at the risk of the electrical contractor.

PART 2 - SPECIFICATIONS

2.1 GENERAL

A. Control Panel

1. The fire alarm control panel (FACP) shall be the Silent Knight 5820XL analog addressable control panel. The FACP must have a 5 amp power supply and be capable of expansion to a maximum of 45 total amps via bus connected expander modules that supervise low battery, loss of AC and loss of communication.
2. The FACP must have Day/Night sensitivity capabilities on detectors and be capable of supporting 127 addressable points and expandable to a maximum of 381 addressable points. This shall be accomplished via three signaling line circuits (SLC) capable of supporting a minimum of 127 devices each. The communication protocol on the SLC loop must be digital.
3. The FACP must support a minimum of six programmable "Flexput" circuits. The panel must have a built in 80 character LCD annunciator with the capability of having an additional eight supervised remote annunciators connected in the field.
4. The FACP must have a built in UL approved digital communicator. The communicator must allow local and remote up/downloading of system operating options, event history, and detector sensitivity data. The FACP must automatically test the smoke detectors in compliance with NFPA standards to ensure that they are within listed sensitivity parameters and be listed with Underwriters Laboratories for this purpose.
5. The FACP must compensate for the accumulation of contaminants that affect detector sensitivity. The FACP must have day/night sensitivity adjustments, maintenance alert feature (differentiated from trouble condition), detector sensitivity selection, auto-programming mode (Jumpstart) and the ability to upgrade the core operating software on site or over the telephone.
6. The FACP shall have a Jumpstart feature that can automatically enroll all properly connected accessories into a functional system within 60 seconds of powering up the panel. Panels that do not have these capabilities will not be accepted.
7. The main communication bus (S-Bus RS485) shall be capable of class A or class B configuration with a total Bus length of 6,000 feet.

B. System Wiring

1. The SLC and Data Communication Bus shall be wired with standard NEC 760 compliant wiring, no twisted, shielded or mid capacitance wiring is required for standard installations. All FACP screw terminals shall be capable of accepting 14-18 AWG wire.

C. Signaling Line Circuits

1. Each SLC shall be capable of a wiring distance of 10,000 feet from the SLC driver module and be capable of supporting 127 devices. The communication protocol to SLC devices must be digital. Any SLC loop device, which goes into alarm, must interrupt the polling cycle for priority response from the FACP. The FACP must respond consistently to a device that goes into alarm on an SLC in under 3 seconds. The auxiliary 5815XL SLC loop module must be capable of being located up to 6000 feet from the FACP on an RS-485 bus, which is separate from the SLC bus. The SLC shall be capable of functioning in a class A or class B configuration.

D. SLC loop devices: Devices supported must include analog photoelectric, ionization smoke detectors, analog heat detectors, contact monitoring modules and relay output modules. There is to be no limit to the number of any particular device type up to the maximum of 127 that can be connected to the SLC.

E. Addressable Detector Functions

1. The products of combustion detectors must communicate analog values using a digital protocol to the control panel for the following functions:

 a. Automatic compliance with NFPA 72 standards for detector sensitivity testing
 b. Drift compensation to assure detector is operating correctly
 c. Maintenance alert when a detector nears the trouble condition
 d. Trouble alert when a detector is out of tolerance
 e. Alert control panel of analog values that indicate fire.

F. Programmable Flexputs

1. The FACP shall support six programmable Flexput circuits that are capable of being programmed as supervised reverse polarity notification circuits or supervised auxiliary power circuits that can be programmed as continuous, reset able or door holder power. The circuits shall also be programmable as input circuits in class A or class B configurations to support dry contact or compatible two wire smoke detectors.

G. Annunciators

1. The main control must have built in annunciators with an 80 character LCD display and feature LED’s for General alarm, Supervisory, System trouble, System silence and Power. When in the normal condition the LCD shall display time and date based on a 200-year clock which is capable of automatic daylight savings time adjustments. All controls and program-
ming keys are silicone mechanical type with tactile and audible feedback. Keys have a travel of .040 in. No membrane style buttons will be permissible. The annunciator must be able to silence and reset alarms through the use of a keypad-entered code, or by using a firefighter key. The annunciators must have two levels of user codes that will allow the limitation of operating system programming to authorized individuals.

H. Remote Annunciators

1. The fire system shall be capable of supporting up to eight remote annunciators. LCD Remote annunciators shall have the same control and display layout so that they match identically the built in annunciator. LED Remote annunciators shall have individually mapped LED’s and reset and silence inputs. The reset and silence inputs must use the same firefighters key as the LCD annunciators. Remote annunciators shall be capable of operating at a distance of 6000 feet from the main control panel on unshielded non-twisted cable.

2. The fire system shall be able to support up to eight I/O modules on the SBUS that shall be used to drive remote LED graphic style displays and accommodate up to eight dry contact type switch inputs. The I/O modules shall each drive up to 40 LEDs without requiring external power connections. The I/O module inputs shall be supervised and shall be suitable for alarm and trouble circuits as well as reset and silence switches. The system shall also support up to 40 LED drivers that reside on the two-wire SLC loop. These driver boards shall contain 80 LED outputs that are powered by an external source.

I. Serial/Parallel Interface

1. The fire system shall be capable of supporting up to two serial/parallel interfaces that are capable of driving standard computer style printers. The interface shall be programmable as to what information is sent to it and shall include the ability to print out Detector Status, Event History and System Programming.

J. Distributed Power Module

1. The fire system shall be capable of supporting up to eight Power Modules that provide 5 additional amps of power each. The modules shall have 6 programmable Flexput circuits that shall have the same functionality as the Flexput circuits on the main panel. Each power supply shall have two (2) programmable form “C” relays on board. The power supply shall be capable of being connected via and RS-485 style bus at a maximum distance of 6000 ft. from the main control panel. The power module will also act as a bus repeater so that additional RS-485 devices can be connected at a maximum distance of 6000 ft. from the power module. The notification circuits shall be programmable as described in earlier in this section.

K. Digital Communicator

1. The digital communicator must be an integral part of the control panel and be capable of reporting all zones of alarm, supervisory, and trouble as well as all system status information such as loss of AC, low battery, ground fault, loss of supervision to any remote devices with individual and distinct messages to a central station or remote station. The communicator must also be capable of up/downloading of all system programming options, Event history and Sensitivity compliance information to a PC on site or at a remote location. The communicator shall have an answering machine bypass feature that will allow the panel to respond to communication even on phone lines that have other communication equipment present.
The communicator must be capable of reporting via SIA and Contact ID formats. The communicator shall have a delayed AC loss report function which will provide a programmable report delay plus a 10-25 min random component to help ease traffic to the central station during a power outage.

L. Dry Contacts

1. The FACP shall have three form “C” dry contacts, one will be dedicated to trouble conditions, the other two will be programmable for alarm, trouble, supervisory, notification, pre-alarm, workflow, manual pull, aux. 1 or aux. 2 conditions. The trouble contact shall be normal in an electrically energized state so that any total power loss (AC and Backup) will cause a trouble condition. In the event that the Microprocessor on the FACP fails the trouble contacts shall also indicate a trouble condition.

M. Ground Fault Detection

1. A ground fault detection circuit, to detect positive and negative grounds on all field wiring. The ground fault detector shall operate the general trouble devices as specified but shall not cause an alarm to be sounded. Ground fault will not interfere with the normal operation, such as alarm, or other trouble conditions.

N. Over Current Protection

1. All low voltage circuits will be protected by microprocessor controlled power limiting or have self restoring polyswitches for the following: smoke detector power, main power supply, indicating appliance circuits, battery standby power and auxiliary output.

O. Test Functions

1. A “Lamp Test” mode shall be a standard feature of the fire alarm control panel and shall test all LED’s and the LCD display on the main panel and remote annunciators.
2. A “Walk Test” mode shall be a standard feature of the fire alarm control panel. The walk test feature shall function so that each alarm input tested will operate the associated notification appliance for two seconds. The FACP will then automatically perform a reset and confirm normal device operation. The event memory shall contain the information on the point tested, the zone tripped, the zone restore and the individual points return too normal.
3. A “Fire Drill” mode shall allow the manual testing of the fire alarm system notification circuits. The “Fire Drill” shall be capable of being controlled at the main annunciator, remote annunciators and via a remote contact input.
4. A “Bypass Mode” shall allow for any zone, point, group, or nac circuit to be bypassed without effecting the operation of the total fire system.

P. Remote Input Capabilities

1. The control panel shall have provisions for supervised switch inputs for the purpose of Alarm reset and Alarm and trouble restore.

Q. Notification Appliance Mapping Structure
1. All notification circuits and modules shall be programmable via a mapping structure that allows for a maximum of 250 output groups. Each of these groups shall have the ability to be triggered by any of the panels 125 Zones. A group may be triggered from zones individually, or may contain a global trigger for manual pull stations, fire drills and two different system alarms. Additionally each Zone will individually control the cadence pattern of each of the Groups that it is “Mapped” to so that sounders can indicate a variety of conditions. The Zone shall be capable of issuing a different cadence pattern for each of the Groups under its control. The mapping structure must also allow a group to be designated to “ignore cadence” for use with strobes and other continuous input devices. Zones shall have eight different output categories; Detector alarm, Trouble, Supervisory, Pre-alarm, Waterflow, Manual pull, Zone auxiliary one and Zone Auxiliary two. Each of the categories shall have the ability to control from 1 to 8 output groups with a cadence pattern. The patterns are; March code, ANSI 3.41, Single Stroke Bell Temporal, California code, Zone 1 coded, Zone 2 coded, Zone 3 coded, Zone 4 coded, Zone 5 coded, Zone 6 coded, Zone 7 coded, Zone 8 coded, Custom output pattern 1, Custom output pattern 2, Custom output pattern 3, Custom output pattern 4 and Constant. This mapping/cadence pattern shall be supported by all system power supplies and Notification Expander Modules.

R. On Board Programmer

1. The FACP shall have an on board programmer which will allow for all system functions and options to be programmed. Any panel that does not have this capability will not be accepted.

S. Downloading Software

1. The fire alarm control panel must support up/downloading of system programming from a PC under Windows 3.1 or Windows 95. The FACP must also be able to upload the detector sensitivity test results and a 1000 event system event buffer to the PC. Communication shall take place over a direct connection to the PC and/or via the same telephone lines as the built in digital communicator and shall not require an external modem to be connected to the panel. The downloading software shall contain a code that will block unauthorized persons from accessing the panel via direct connection or over the phone lines.

T. Facility Management Software

1. The FACP must support a facility management capable of providing off site access to FACP data that is necessary to manage fire system operation. A software package capable of uploading the detector sensitivity test results and the 1000 event system event buffer to the PC shall be required as part of the bid package. Communication shall take place over a direct connection to the PC and/or via the same telephone lines as the built in digital communicator. The facility management package must be separate from the downloader package and must not be capable of affecting programmed system options.

U. English Language Descriptions

1. The FACP shall provide the ability to have a text description of each system device input zone and output group on the system. The use of individual lights to provide descriptions will not be acceptable.

2.2 SYSTEM OPERATION
A. Alarm

1. When a device indicates an alarm or supervisory condition the control panel must respond within 3 seconds. The General Alarm or Supervisory Alarm LED on the annunciator(s) shall light and the LCD shall prompt the user as to the number of current events. All notification circuits associated with the alarm or supervisory condition shall activate. If the digital dialer is being utilized it shall transmit a signal to the digital alarm receiving unit. The alarm shall also cause the appropriate door holders and air handlers to shut down. If employed all elevators shall return to the main level or an alternate level when required by the elevator specification or building code. The alarm information must be stored in event memory for later review. Event memory shall be available at the main and all remote annunciators. The alarm memory must be capable of storing up to 1000 events.

2. When the alarmed device is restored to normal, the control panel shall be required to be manually reset to clear the alarm condition, except that the alarms may be silenced as programmed. Exception: When detectors are utilized in single station or multi-station applications they may be self-restoring.

3. An alarm shall be silenced by a code or Firefighter key at the main or remote annunciators. When silenced, this shall not prevent the resounding of subsequent events if another event should occur (subsequent alarm feature). When alarms are silenced the silenced LED on the control panel, and on any remote annunciators shall remain lit, until the alarmed device is returned to normal.

B. Troubles

1. When a device indicates a trouble condition, the control panel System Trouble LED should light and the LCD should prompt the user as to the number of current events. The trouble information must be stored in event memory for later review. Event memory must be available at the main and all remote annunciators.

2. When the device in trouble is restored to normal, the control panel shall be automatically reset, the trouble restore information must be stored in event memory for later review. Event memory must be available at the main and all remote annunciators. A trouble shall be silenced by a code or Firefighter key at the main or remote annunciators. When silenced, this shall not prevent the resounding of subsequent events if another event should occur.

C. Supervision Methods

1. Each SLC loop shall be electrically supervised for opens and ground faults in the circuit wiring, and shall be so arranged that a fault condition on any loop will not cause an alarm to sound. Additionally, every addressable device connected to the SLC will be supervised and individually identified if in a fault condition. The occurrence of any fault will light a trouble LED and sound the system trouble sounder, but will not interfere with the proper operation of any circuit which does not have a fault condition.

2.3 SYSTEM CABINET
A. Mounting
 1. The system cabinet shall be red and can be either surface or flush mounted. The cabinet door shall be easily removable to facilitate installation and service.

B. Audible System Trouble Sounder
 1. An audible system trouble sounder shall be an integral part of the control unit. Provisions shall also be provided for an optional supervised remote trouble signal.

2.4 POWER SUPPLY AND CHARGER:

A. The entire system shall operate on 24 VDC, filtered switch mode power supply with the rated current available of 5 Amps. The FACP must have a battery charging circuit capable of complying with the following requirements:
 1. Sixty (60) hours of battery standby with five (5) minutes of alarm signaling at the end of this sixty (60) hour period (as required per NFPA 72 remote station signaling requirements) using rechargeable batteries with automatic charger to maintain standby gel-cell batteries in a fully charged condition.

 OR

 Twenty-four (24) hours of battery standby with five (5) minutes of alarm signaling at the end of this twenty-four (24) hour period (as required per NFPA 72 central station signaling requirements) using rechargeable batteries with automatic charger to maintain gel-cell batteries in a fully charged condition.

 2. The power supply shall comply with UL Standard 864 for power limiting.
 3. The FACP will indicate a trouble condition if there is a loss of AC power or if the batteries are missing or of insufficient capacity to support proper system operation in the event of AC failure. A “Battery Test” will be performed automatically every minute to check the integrity of the batteries. The test must disconnect the batteries from the charging circuit and place a load on the battery to verify the battery condition.
 4. In the event that it is necessary to provide additional power one or more of the model 5395 or 5895 Distributed Power Modules shall be used to accomplish this purpose.

B. Connections and Circuits
 1. Connections to the light and power service shall be on a dedicated branch circuit in accordance with the National Electrical Code (NEC) and the local authority having jurisdiction (AHJ). The circuit and connections shall be mechanically protected.
 2. A circuit disconnecting means shall be accessible only to authorized personnel and shall be clearly marked “FIRE ALARM CIRCUIT CONTROL”.

2.5 THE FACP SHALL SUPPORT A THE FOLLOWING DEVICES ON THE RS-485 DATA BUS:

A. 5815XL Signaling Line Circuit Expander (SLC) Module
B. 5824 Printer Interface Module
THE FACP SHALL SUPPORT THE OPERATION OF 127 TOTAL DEVICES PER SLC LOOP WITHOUT REGARD TO DEVICE TYPE. THE FOLLOWING DEVICES SHALL BE SUPPORTED:

A. SD505-APS Analog Photoelectric Smoke detector
B. SD505-AIS Analog Ionization Sensor
C. SD505-AHS Analog Heat Sensor
D. SD505-ARM Addressable Relay Module
E. SD500-FRCM-4 Contact input Module
F. SD500-FRCM Mini Contact Input Module
G. SD505-ADH Duct Detector Enclosure
H. SD500-AIM Addressable Input Module (replaces the SD505-FRCM-4)
I. SD500-MIM Mini Input Module (replaces the SD505-FRCM)
J. SD500-ARM Addressable Relay Module (replaces the SD505-ARM)
K. SD500-ANM Addressable Notification Module
L. SD505-SDM Two Wire Smoke Detector Module
M. SD505-6IB Smoke Detector Isolation Base
N. SD505-6SB Smoke Detector Sounder Base
O. SD505-6RB Smoke Detector Relay Base
P. SD505-ADHR Duct Detector Housing with Built-In Relay
Q. SD505-RTS Remote Test Switch For Duct Housing
R. SD500-PS Addressable Pull Station
S. SD500-LED 80 Output LED Driver Board

T. The FACP shall support these other Silent Knight devices via addressable or conventional inputs.

1. PS-SATK Single Action Pull Station – Key Reset
2. PS-DATK Double Action Pull Station – Key Reset
3. HS or ST Series Combination Horn Strobe or Strobe only devices
4. 5883 Relay Interface Board

MANUAL FIRE ALARM STATIONS

A. Manual Fire Alarm Stations shall be non-coded, break glass, single or double action type, with a key operated test reset lock in order that they may be tested, and so designed that after actual emergency operation, they cannot be restored to normal except by use of a key. The reset key shall be so designed that it will reset the manual Pull Station and open the FACP cabinet without use of another key. An operated station shall automatically condition itself so as to visually detected, as operated, at a minimum distance of fifty feet, front or side. Manual stations shall be constructed of die cast metal with clearly visible operating instructions on the front of the station in raised letters. Stations shall be suitable for surface mounting on matching back box, or semi-flush mounting on a standard single gang box, and shall be installed within the limits defined by the Americans with Disabilities Act (ADA) dependent on Manual Station accessibility or per local re-
requirements. Manual Stations shall be Silent Knight Models SD500-PS (MIM included) and Underwriters Laboratories listed. Provide STI Stopper covers with horn for all Manual Pull Stations.

2.8 REMOTE POWER SUPPLIES

A. The Remote Power Supplies for Notification appliances shall be the Silent Knight Model 5895. The Model 5895XL Intelligent Power Supply shall hang on the main S-Bus and be programmed through the 5820XL control. It will support 5amps of 24 volt DC power, with 6 Flexput circuits, rated at 3 amps each. Two additional 5815XL SLC loop expanders shall be capable of being install in the cabinet to allow an additional 254 points. The power supply will also regenerate the S-Bus for an additional 6000'.

2.9 NOTIFICATION DEVICES

A. The visible and audible/visible signal shall be Silent Knight Model ST and HS series signal devises and be listed by Underwriters Laboratories Inc. per UL 1971 and/or 1638 for the ST and also UL464 for the HS. Each indicating appliance circuit shall be electrically supervised for opens, grounds and short circuit faults, on the circuit wiring, and shall be so arranged that a fault condition on any indicating appliance circuit or group of circuits will not cause an alarm to sound. The occurrence of any fault will light the trouble LED and sound the system trouble sounder, but will not interfere with the proper operation of any circuit which does not have a fault condition. The notification appliance (combination audible/visible units only) shall produce a peak sound output of 90dba or greater as measured in an anechoic chamber. The appliance shall be capable of meeting the candela requirements of the blueprints presented by the Engineer and ADA. The appliance shall have an operation current of 57ma or less at 24VDC for the 15/75Cd.

B. The appliance shall be polarized to allow for electrical supervision of the system wiring. The unit shall be provided with terminals with barriers for input/output wiring and be able to mount a single gang or double gang box or double workbox with the use of an adapter plate. The unit shall have an input voltage range of 20-30 volts with either direct current or full wave rectified power. Provide STI Stopper Covers on all Horn Srobes and Visual strobes in restrooms, corridors, meeting rooms, gymnasiums, cafeteria and any weather permitting areas.

2.10 SMOKE DETECTORS

A. All New detectors shall be the Silent Knight Model SD505-APS Addressable Photoelectric Smoke Detector or the SD505-AHS (heat) detector. The base shall be the Silent Knight model SD505-6AB. The Smoke detector shall have a flashing status LED for visual supervision. When the detector is actuated, the flashing LED will latch on steady at full brilliance. The sensitivity of the detector shall be capable of being measured by the control panel without the need for external test apparatus. The detector shall be a double EE-prom technology and be programmed using the internal programming loop located on the FACP.

2.11 DUCT DETECTORS

A. All Duct Detectors shall be Silent Knight Model SD505-ADHR housings with the Model SD505-APS smoke detectors. The optional SD505-RTS Remote Test Switch may be included with the SD505-ADHR unit.
PART 3 - EXECUTION

3.1 INSTALLER’S RESPONSIBILITIES

A. The installer shall coordinate the installation of the fire alarm equipment.

B. All conductors and wiring shall be installed according to the manufacturer’s recommendations. It shall be the installer’s responsibility to coordinate with the supplier, regarding the correct wiring procedures before installing any conduits or conductors.

3.2 INSTALLATION OF SYSTEM COMPONENTS

A. System components shall be installed in accordance with the latest revisions of the appropriate NFPA pamphlets, the requirements contained herein, National Electrical Code, local and state regulations, the requirements of the fire department and other applicable authorities having jurisdiction (AHJ).

B. All wire used on the fire alarm system shall be U.L. Listed as fire alarm protection signaling circuit cable per National Electrical Code, Articles 760. All interior wall mounted fire alarm devices shall be mounted in Wiremold, conduit EMT shall not be acceptable.

3.3 WARRANTY

A. The contractor shall warrant all equipment and wiring free from inherent mechanical and electrical defects for one year (365 days) from the date of final acceptance.

3.4 FINAL TEST

A. Before the installation shall be considered completed and acceptable by the awarding authority, a test of the system shall be performed as follows:

1. The contractor’s job foreman, a representative of the owner, and the fire department shall operate every building fire alarm device to ensure proper operation and correct annunciation at the control panel.
2. At least one half of all tests shall be performed on battery standby power.
3. Where application of heat would destroy any detector, it may be manually activated.
4. The communication loops and the indicating appliance circuits shall be opened in at least two (2) locations per circuit to check for the presence of correct supervision circuitry.
5. When the testing has been completed to the satisfaction of both the contractor’s job foreman and owner, a notarized letter cosigned by each attesting to the satisfactory completion of said testing shall be forwarded to the owner and the fire department.
6. The contractor shall leave the fire alarm system in proper working order, and, without additional expense to the owner, shall replace any defective materials or equipment provided by him under this contract within one year (365 days) from the date of final acceptance by the awarding authority.
7. Prior to final test the fire department must be notified in accordance with local requirements.
3.5 AS BUILT DRAWINGS, TESTING, AND MAINTENANCE INSTRUCTIONS

A. As Built Drawings

1. A complete set of reproducible “as-built” drawings showing installed wiring, color coding, and wire tag notations for exact locations of all installed equipment, specific interconnections between all equipment, and internal wiring of the equipment shall be delivered to the owner upon completion of system.

B. Operating and Instruction Manuals

1. Operating and instruction manuals shall be submitted prior to testing of the system. Three (3) complete sets of operating and instruction manuals shall be delivered to the owner upon completion. User operating instructions shall be provided prominently displayed on a separate sheet located next to the control unit in accordance with U.L. Standard 864.

END OF SECTION 28 31 11
SECTION 311000 - SITE CLEARING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Protecting existing vegetation to remain.
 2. Removing existing vegetation.
 3. Clearing and grubbing.
 4. Stripping and stockpiling topsoil.
 5. Stripping and stockpiling rock.
 6. Removing above- and below-grade site improvements.
 7. Disconnecting, capping or sealing, and removing site utilities abandoning site utilities
 in place.
 8. Temporary erosion and sedimentation control.

 B. Related Requirements:
 1. Section 015000 "Temporary Facilities and Controls" for temporary erosion- and
 sedimentation-control measures.

 C. Related Requirements:
 1. Section 015000 "Temporary Facilities and Controls" for temporary erosion- and
 sedimentation-control measures.

1.3 DEFINITIONS
 A. Subsoil: Soil beneath the level of subgrade; soil beneath the topsoil layers of a naturally
 occurring soil profile, typified by less than 1 percent organic matter and few soil organisms.

 B. Surface Soil: Soil that is present at the top layer of the existing soil profile. In undisturbed areas,
 surface soil is typically called "topsoil," but in disturbed areas such as urban environments, the
 surface soil can be subsoil.

 C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-
 place surface soil; the zone where plant roots grow.

 D. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-
 place surface soil; the zone where plant roots grow. Its appearance is generally friable, pervious,
and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of
subsoil, clay lumps, gravel, and other objects larger than 2 inches in diameter; and free of
weeds, roots, toxic materials, or other nonsoil materials.

E. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other
vegetation to be protected during construction and indicated on Drawings.

F. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected
during construction and indicated on Drawings.

G. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 MATERIAL OWNERSHIP

A. Except for materials indicated to be stockpiled or otherwise remain Owner's property, cleared
materials shall become Contractor's property and shall be removed from Project site.

1.6 INFORMATIONAL SUBMITTALS

A. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and
site improvements that establishes preconstruction conditions that might be misconstrued as
damage caused by site clearing.

1. Use sufficiently detailed photographs or video recordings.
2. Include plans and notations to indicate specific wounds and damage conditions of each
tree or other plant designated to remain.

B. Topsoil stripping and stockpiling program.

C. Rock stockpiling program.

D. Record Drawings: Identifying and accurately showing locations of capped utilities and other
subsurface structural, electrical, and mechanical conditions.

E. Burning: Documentation of compliance with burning requirements and permitting of authorities
having jurisdiction. Identify location(s) and conditions under which burning will be performed.

1.7 QUALITY ASSURANCE

A. Topsoil Stripping and Stockpiling Program: Prepare a written program to systematically
demonstrate the ability of personnel to properly follow procedures and handle materials and
equipment during the Work. Include dimensioned diagrams for placement and protection of
stockpiles.
B. Rock Stockpiling Program: Prepare a written program to systematically demonstrate the ability of personnel to properly follow procedures and handle materials and equipment during the Work. Include dimensioned diagrams for placement and protection of stockpiles.

1.8 FIELD CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.

2. Provide alternate routes around closed or obstructed trafficways if required by Owner or authorities having jurisdiction.

B. Improvements on Adjoining Property: Authority for performing site clearing indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.

1. Do not proceed with work on adjoining property until directed by Architect.

C. Salvageable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises where indicated.

D. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing.

E. Do not commence site clearing operations until temporary erosion- and sedimentation-control and plant-protection measures are in place.

F. Tree- and Plant-Protection Zones: Protect according to requirements in Section 015639 "Temporary Tree and Plant Protection."

G. Soil Stripping, Handling, and Stockpiling: Perform only when the soil is dry or slightly moist.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312000 "Earth Moving."

1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

B. Antitrust Coating: Fast-curing, lead- and chromate-free, self-curing, universal modified-alkyd primer complying with MPI #23 (surface-tolerant, anticorrosive metal primer) or SSPC-Paint 20 or SSPC-Paint 29 zinc-rich coating.
PART 3 - EXECUTION

3.1 PREPARATION

A. Protect and maintain benchmarks and survey control points from disturbance during construction.

B. Verify that trees, shrubs, and other vegetation to remain or to be relocated have been flagged and that protection zones have been identified and enclosed according to requirements in Section 015639 "Temporary Tree and Plant Protection."

C. Protect existing site improvements to remain from damage during construction.
 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.

B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.

C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.

D. Remove erosion and sedimentation controls, and restore and stabilize areas disturbed during removal.

3.3 TREE AND PLANT PROTECTION

A. Protect trees and plants remaining on-site according to requirements in Section 015639 "Temporary Tree and Plant Protection."

B. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.4 EXISTING UTILITIES

A. Owner will arrange for disconnecting and sealing indicated utilities that serve existing structures before site clearing, when requested by Contractor.
 1. Verify that utilities have been disconnected and capped before proceeding with site clearing.
B. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.

1. Arrange with utility companies to shut off indicated utilities.
2. Owner will arrange to shut off indicated utilities when requested by Contractor.

C. Locate, identify, and disconnect utilities indicated to be abandoned in place.

D. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others, unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:

1. Notify Architect not less than two days in advance of proposed utility interruptions.
2. Do not proceed with utility interruptions without Architect's written permission.

E. Excavate for and remove underground utilities indicated to be removed.

F. Removal of underground utilities is included in earthwork sections; in applicable fire suppression, plumbing, HVAC, electrical, communications, electronic safety and security, and utilities sections; and in Section 024116 "Structure Demolition" and Section 024119 "Selective Demolition."

3.5 CLEARING AND GRUBBING

A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.

1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
2. Grind down stumps and remove roots larger than 2 inches in diameter, obstructions, and debris to a depth of 18 inches below exposed subgrade.
3. Use only hand methods or air spade for grubbing within protection zones.
4. Chip removed tree branches and dispose of off-site.

B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.

1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.6 TOPSOIL STRIPPING

A. Remove sod and grass before stripping topsoil.

B. Strip topsoil to depth of 6 inches in a manner to prevent intermingling with underlying subsoil or other waste materials.

1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects larger than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.
C. Stockpile topsoil away from edge of excavations without intermixing with subsoil or other materials. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.

1. Limit height of topsoil stockpiles to **72 inches**.
2. Do not stockpile topsoil within protection zones.
3. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
4. Stockpile surplus topsoil to allow for respreading deeper topsoil.

3.7 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.

1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut along line of existing pavement to remain before removing adjacent existing pavement. Saw-cut faces vertically.
2. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer's written instructions. Keep paint off surfaces that will remain exposed.

3.8 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.

B. Burning tree, shrub, and other vegetation waste is permitted according to burning requirements and permitting of authorities having jurisdiction. Control such burning to produce the least smoke or air pollutants and minimum annoyance to surrounding properties. Burning of other waste and debris is prohibited.

C. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials, and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 311000
SECTION 312000 - EARTH MOVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Excavating and filling for rough grading the Site.
 2. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses and plants.
 3. Excavating and backfilling for buildings and structures.
 4. Drainage course for concrete slabs-on-grade.
 5. Subbase course for concrete walks and pavements.
 6. Subbase course and base course for asphalt paving.
 7. Subsurface drainage backfill for walls and trenches.
 8. Excavating and backfilling trenches for utilities and pits for buried utility structures.

B. Related Requirements:

2. Section 311000 "Site Clearing" for site stripping, grubbing, stripping topsoil, and removal of above- and below-grade improvements and utilities.
3. Section 315000 "Excavation Support and Protection" for shoring, bracing, and sheet piling of excavations.
4. Section 316329 "Drilled Concrete Piers and Shafts" for excavation of shafts and disposal of surplus excavated material.
5. Section 329200 "Turf and Grasses" for finish grading in turf and grass areas, including preparing and placing planting soil for turf areas.
6. Section 329300 "Plants" for finish grading in planting areas and tree and shrub pit excavation and planting.

1.3 UNIT PRICES

A. Work of this Section is affected by unit prices for earth moving specified in Section 012200 "Unit Prices."

B. Quantity allowances for earth moving are included in Section 012100 "Allowances."
1.4 DEFINITIONS

A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 2. Final Backfill: Backfill placed over initial backfill to fill a trench.

B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.

C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.

D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.

E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.

F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect.
 2. Bulk Excavation: Excavation more than 10 feet in width and more than 30 feet in length.
 3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.

G. Fill: Soil materials used to raise existing grades.

H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

I. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.

J. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.

K. Utilities: On-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.

1.5 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct pre-excavation conference at Project site.
 1. Review methods and procedures related to earthmoving, including, but not limited to, the following:
a. Personnel and equipment needed to make progress and avoid delays.
b. Coordination of Work with utility locator service.
c. Coordination of Work and equipment movement with the locations of tree- and plant-protection zones.
d. Extent of trenching by hand or with air spade.
e. Field quality control.
f. Insert agenda items.

1.6 ACTION SUBMITTALS

A. Product Data: For each type of the following manufactured products required:
 1. Geotextiles.
 2. Controlled low-strength material, including design mixture.
 3. Geofoam.
 4. Warning tapes.

B. Samples for Verification: For the following products, in sizes indicated below:
 2. Warning Tape: 12 inches long; of each color.

1.7 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Material Test Reports: For each on-site and borrow soil material proposed for fill and backfill as follows:
 1. Classification according to ASTM D2487.
 2. Laboratory compaction curve according to ASTM D698.

C. Preexcavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces that might be misconstrued as damage caused by earth-moving operations. Submit before earth moving begins.

1.8 QUALITY ASSURANCE

A. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E329 and ASTM D3740 for testing indicated.

1.9 FIELD CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth-moving operations.
 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.

B. Improvements on Adjoining Property: Authority for performing earth moving indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.
 1. Do not proceed with work on adjoining property until directed by Architect.

C. Utility Locator Service: Notify utility locator service for area where Project is located before beginning earth-moving operations.

D. Do not commence earth-moving operations until temporary site fencing and erosion- and sedimentation-control measures specified in Section 015000 "Temporary Facilities and Controls" and Section 311000 "Site Clearing" are in place.

E. Do not commence earth-moving operations until plant-protection measures specified in Section 015639 "Temporary Tree and Plant Protection" are in place.

F. The following practices are prohibited within protection zones:
 1. Storage of construction materials, debris, or excavated material.
 2. Parking vehicles or equipment.
 3. Foot traffic.
 4. Erection of sheds or structures.
 5. Impoundment of water.
 6. Excavation or other digging unless otherwise indicated.
 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.

G. Do not direct vehicle or equipment exhaust towards protection zones.

H. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D2487, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.
 1. Liquid Limit: less than 40.
 2. Plasticity Index: less than 20.

C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D2487, or a combination of these groups.
1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.

E. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 95 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 sieve.

F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.

G. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940/D2940M; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.

H. Drainage Course: Narrowly graded mixture of washed crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and zero to 5 percent passing a No. 8 sieve.

I. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch sieve and zero to 5 percent passing a No. 4 sieve.

J. Sand: ASTM C33/C33M; fine aggregate.

K. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.2 GEOTEXTILES

A. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Survivability: As follows:
 a. Grab Tensile Strength: 157 lbf; ASTM D4632.
 b. Sewn Seam Strength: 142 lbf; ASTM D4632.
 c. Tear Strength: 56 lbf; ASTM D4533.
 d. Puncture Strength: 56 lbf; ASTM D4833.
3. Apparent Opening Size: No. 60 sieve, maximum; ASTM D4751.
4. Permittivity: 0.2 per second, minimum; ASTM D4491.
5. UV Stability: 50 percent after 500 hours' exposure; ASTM D4355.
B. Separation Geotextile: Woven geotextile fabric, manufactured for separation applications, made from polyolefins or polyesters; with elongation less than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Survivability: As follows:
 a. Grab Tensile Strength: 247 lbf; ASTM D4632.
 b. Sewn Seam Strength: 222 lbf; ASTM D4632.
 c. Tear Strength: 90 lbf; ASTM D4533.
 d. Puncture Strength: 90 lbf; ASTM D4833.
3. Apparent Opening Size: No. 60 sieve, maximum; ASTM D4751.
4. Permittivity: 0.02 per second, minimum; ASTM D4491.
5. UV Stability: 50 percent after 500 hours' exposure; ASTM D4355.

2.3 CONTROLLED LOW-STRENGTH MATERIAL

A. Controlled Low-Strength Material: Self-compacting, low-density, flowable concrete material produced from the following:

1. Portland Cement: ASTM C150/C150M, Type I.
2. Fly Ash: ASTM C618, Class C or F.
4. Foaming Agent: ASTM C869/C869M.
5. Water: ASTM C94/C94M.

B. Produce low-density, controlled low-strength material with the following physical properties:

1. As-Cast Unit Weight: 30 to 36 lb/cu. ft. at point of placement, when tested according to ASTM C138/C138M.
2. Compressive Strength: 100 psi, when tested according to ASTM C495/C495M.

2.4 ACCESSORIES

A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility; colored as follows:

2. Yellow: Gas, oil, steam, and dangerous materials.
3. Orange: Telephone and other communications.
4. Blue: Water systems.
5. Green: Sewer systems.

B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide
and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:

2. Yellow: Gas, oil, steam, and dangerous materials.
3. Orange: Telephone and other communications.
4. Blue: Water systems.
5. Green: Sewer systems.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth-moving operations.

B. Protect and maintain erosion and sedimentation controls during earth-moving operations.

C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 DEWATERING

A. Provide dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.

B. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.

C. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.

1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

D. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.

3.3 EXPLOSIVES

A. Explosives: Do not use explosives.
3.4 EXCAVATION, GENERAL

A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.

1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.5 EXCAVATION FOR STRUCTURES

A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.

1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.

2. Pile Foundations: Stop excavations 6 to 12 inches above bottom of pile cap before piles are placed. After piles have been driven, remove loose and displaced material. Excavate to final grade, leaving solid base to receive concrete pile caps.

3. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.

B. Excavations at Edges of Tree- and Plant-Protection Zones:

1. Excavate by hand or with an air spade to indicated lines, cross sections, elevations, and subgrades. If excavating by hand, use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.

2. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.6 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.7 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.

1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.
B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to **12 inches** higher than top of pipe or conduit unless otherwise indicated.

1. Clearance: **As indicated.**

C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

1. For pipes and conduit less than **6 inches** in nominal diameter, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
2. For pipes and conduit **6 inches** or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe or conduit circumference. Fill depressions with tamped sand backfill.
3. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit on an undisturbed subgrade.

D. Trench Bottoms: Excavate trenches **4 inches** deeper than bottom of pipe and conduit elevations to allow for bedding course. Hand-excavate deeper for bells of pipe.

E. Trenches in Tree- and Plant-Protection Zones:

1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.
3. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.8 SUBGRADE INSPECTION

A. Notify Architect when excavations have reached required subgrade.

B. If Architect determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.

C. Proof-roll subgrade **below the building slabs and pavements** with a pneumatic-tired **loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons** to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

1. Completely proof-roll subgrade in one direction, **repeating proof-rolling in direction perpendicular to first direction.** Limit vehicle speed to **3 mph.**
2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

D. Authorized additional excavation and replacement material will be paid for according to Contract provisions for **changes in the Work.**
E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.9 UNAUTHORIZED EXCAVATION

A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi, may be used when approved by Architect.

1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Architect.

3.10 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.11 BACKFILL

A. Place and compact backfill in excavations promptly, but not before completing the following:

1. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
2. Surveying locations of underground utilities for Record Documents.
3. Testing and inspecting underground utilities.
4. Removing concrete formwork.
5. Removing trash and debris.
6. Removing temporary shoring, bracing, and sheeting.
7. Installing permanent or temporary horizontal bracing on horizontally supported walls.

B. Place backfill on subgrades free of mud, frost, snow, or ice.

3.12 UTILITY TRENCH BACKFILL

A. Place backfill on subgrades free of mud, frost, snow, or ice.

B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 033000 "Cast-in-Place Concrete."
D. Trenches under Roadways: Provide 4-inch-thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase course. Concrete is specified in Section 033000 "Cast-in-Place Concrete."

E. Backfill voids with satisfactory soil while removing shoring and bracing.

F. Initial Backfill:

1. Soil Backfill: Place and compact initial backfill of satisfactory soil, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.
 a. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.

2. Controlled Low-Strength Material: Place initial backfill of controlled low-strength material to a height of 12 inches over the pipe or conduit. Coordinate backfilling with utilities testing.

G. Final Backfill:

1. Soil Backfill: Place and compact final backfill of satisfactory soil to final subgrade elevation.

2. Controlled Low-Strength Material: Place final backfill of controlled low-strength material to final subgrade elevation.

H. Warning Tape: Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.13 SOIL FILL

A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.

B. Place and compact fill material in layers to required elevations as follows:

 1. Under grass and planted areas, use satisfactory soil material.
 2. Under walks and pavements, use satisfactory soil material.
 3. Under steps and ramps, use engineered fill.
 4. Under building slabs, use engineered fill.
 5. Under footings and foundations, use engineered fill.

C. Place soil fill on subgrades free of mud, frost, snow, or ice.

3.14 SOIL MOISTURE CONTROL

A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.15 COMPACTION OF SOIL BACKFILLS AND FILLS

A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment and not more than 4 inches in loose depth for material compacted by hand-operated tampers.

B. Place backfill and fill soil materials evenly on all sides of structures to required elevations and uniformly along the full length of each structure.

C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D698:
 1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill soil material at 95 percent.
 2. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 95 percent.
 3. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 4. For utility trenches, compact each layer of initial and final backfill soil material at 90 percent.

3.16 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 1. Provide a smooth transition between adjacent existing grades and new grades.
 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.

B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to elevations required to achieve indicated finish elevations, within the following subgrade tolerances:
 1. Turf or Unpaved Areas: Plus or minus 1 inch.
 2. Walks: Plus or minus 1 inch.
 3. Pavements: Plus or minus 1/2 inch.

C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.
3.17 SUBSURFACE DRAINAGE

A. Subsurface Drain: Place subsurface drainage geotextile around perimeter of subdrainage trench. Place a 6-inch course of filter material on subsurface drainage geotextile to support subdrainage pipe. Encase subdrainage pipe in a minimum of 12 inches of filter material, placed in compacted layers 6 inches thick, and wrap in subsurface drainage geotextile, overlapping sides and ends at least 6 inches.

1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D698 with a minimum of two passes of a plate-type vibratory compactor.

B. Drainage Backfill: Place and compact filter material over subsurface drain, in width indicated, to within 12 inches of final subgrade, in compacted layers 6 inches thick. Overlay drainage backfill with one layer of subsurface drainage geotextile, overlapping sides and ends at least 6 inches.

1. Compact each filter material layer [to 85 percent of maximum dry unit weight according to ASTM D698] [with a minimum of two passes of a plate-type vibratory compactor].
2. Place and compact impervious fill over drainage backfill in 6-inch-thick compacted layers to final subgrade.

3.18 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:

1. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
2. Place base course material over subbase course under hot-mix asphalt pavement.
3. Shape subbase course and base course to required crown elevations and cross-slope grades.
4. Place subbase course and base course 6 inches or less in compacted thickness in a single layer.
5. Place subbase course and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
6. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D698.

C. Pavement Shoulders: Place shoulders along edges of subbase course and base course to prevent lateral movement. Construct shoulders, at least 12 inches wide, of satisfactory soil materials and compact simultaneously with each subbase and base layer to not less than 95 percent of maximum dry unit weight according to ASTM D698.
3.19 DRAINAGE COURSE UNDER CONCRETE SLABS-ON-GRADE

A. Place drainage course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:
 1. Install subdrainage geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 2. Place drainage course 6 inches or less in compacted thickness in a single layer.
 3. Place drainage course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches (75 mm) thick.
 4. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D698.

3.20 FIELD QUALITY CONTROL

A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:
 1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
 2. Determine that fill material classification and maximum lift thickness comply with requirements.
 3. Determine, during placement and compaction, that in-place density of compacted fill complies with requirements.

B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.

C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.

D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect.

E. Testing agency will test compaction of soils in place according to ASTM D1556, ASTM D2167, ASTM D2937, and ASTM D6938, as applicable. Tests will be performed at the following locations and frequencies:
 1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. or less of paved area or building slab but in no case fewer than three tests.
 2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet or less of wall length but no fewer than two tests.
3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 150 feet or less of trench length but no fewer than two tests.

F. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.21 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.

1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.

C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.

1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.22 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

B. Transport surplus satisfactory soil to designated storage areas on Owner's property. Stockpile or spread soil as directed by Architect.

1. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 312000
SECTION 312319
DEWATERING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes construction dewatering.
B. Related Requirements:
 1. Section 013233 "Photographic Documentation" for recording preexisting conditions and dewatering system progress.
 2. Section 312000 "Earth Moving" for excavating, backfilling, site grading, and controlling surface-water runoff and ponding.
 3. Section 334600 "Subdrainage" for permanent foundation wall, underfloor, and footing drainage.

1.3 ALLOWANCES
A. None.

1.4 PRE-INSTALLATION MEETINGS
A. Pre-installation Conference: Conduct conference at Project site.
 1. Verify availability of Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 2. Review condition of site to be dewatered including coordination with temporary erosion-control measures and temporary controls and protections.
 3. Review geotechnical report.
 4. Review proposed site clearing and excavations.
 5. Review existing utilities and subsurface conditions.
 6. Review observation and monitoring of dewatering system.
1.5 ACTION SUBMITTALS

A. Shop Drawings: For dewatering system, prepared by or under the supervision of a qualified professional engineer.

1. Include plans, elevations, sections, and details.
2. Show arrangement, locations, and details of wells and well points; locations of risers, headers, filters, pumps, power units, and discharge lines; and means of discharge, control of sediment, and disposal of water.
3. Include layouts of piezometers and flow-measuring devices for monitoring performance of dewatering system.
4. Include written plan for dewatering operations including sequence of well and well-point placement coordinated with excavation shoring and bracings and control procedures to be adopted if dewatering problems arise.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Field quality-control reports.
C. Existing Conditions: Using photographs, show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by dewatering operations. Submit before Work begins.
D. Record Drawings: Identify locations and depths of capped wells and well points and other abandoned-in-place dewatering equipment.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer that has specialized in design of dewatering systems and dewatering work.

1.8 FIELD CONDITIONS

A. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from this data.

1. Make additional test borings and conduct other exploratory operations necessary for dewatering according to the performance requirements.
2. The geotechnical report is included elsewhere in Project Manual.
B. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.

1. Design dewatering system, including comprehensive engineering analysis by a qualified professional engineer.
2. Continuously monitor and maintain dewatering operations to ensure erosion control, stability of excavations and constructed slopes, prevention of flooding in excavation, and prevention of damage to subgrades and permanent structures.
3. Prevent surface water from entering excavations by grading, dikes, or other means.
4. Accomplish dewatering without damaging existing buildings, structures, and site improvements adjacent to excavation.
5. Remove dewatering system when no longer required for construction.

B. Regulatory Requirements: Comply with governing EPA notification regulations before beginning dewatering. Comply with water- and debris-disposal regulations of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by dewatering operations.

1. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding site or surrounding area.
2. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.

B. Install dewatering system to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate
routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

C. Provide temporary grading to facilitate dewatering and control of surface water.

D. Protect and maintain temporary erosion and sedimentation controls, which are specified in Section 015000 "Temporary Facilities and Controls," and/or Section 311000 "Site Clearing," and as shown on Drawings during dewatering operations.

3.2 INSTALLATION

A. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, water disposal, and surface-water controls.

1. Space well points or wells at intervals required to provide sufficient dewatering.
2. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.

B. Place dewatering system into operation to lower water to specified levels before excavating below ground-water level.

C. Provide sumps, sedimentation tanks, and other flow-control devices as required by authorities having jurisdiction.

D. Provide standby equipment on-site, installed and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails.

3.3 OPERATION

A. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.

B. Operate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.

1. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.
2. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.
3. Maintain piezometric water level a minimum of 24 inches (600 mm) below bottom of excavation.

C. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.
D. Remove dewatering system from Project site on completion of dewatering. Plug or fill well holes with sand or cut off and cap wells a minimum of 36 inches (900 mm) below overlying construction.

3.4 FIELD QUALITY CONTROL

A. Observation Wells: Provide observation wells or piezometers, take measurements, and maintain at least the minimum number indicated; additional observation wells may be required by authorities having jurisdiction.

1. Observe and record daily elevation of ground water and piezometric water levels in observation wells.
2. Repair or replace, within 24 hours, observation wells that become inactive, damaged, or destroyed. In areas where observation wells are not functioning properly, suspend construction activities until reliable observations can be made. Add or remove water from observation-well risers to demonstrate that observation wells are functioning properly.
3. Fill observation wells, remove piezometers, and fill holes when dewatering is completed.

B. Survey-Work Benchmarks: Resurvey benchmarks regularly during dewatering and maintain an accurate log of surveyed elevations for comparison with original elevations. Promptly notify Architect if changes in elevations occur or if cracks, sags, or other damage is evident in adjacent construction.

C. Provide continual observation to ensure that subsurface soils are not being removed by the dewatering operation.

D. Prepare reports of observations.

3.5 PROTECTION

A. Protect and maintain dewatering system during dewatering operations.

B. Promptly repair damages to adjacent facilities caused by dewatering.

END OF SECTION 312319
SECTION 313116 - TERMITE CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Soil treatment with termiticide.

1.3 SUBMITTALS

A. Product Data: For each type of termite control product.

1. Include the EPA-Registered Label for termiticide products.

B. Qualification Data: For qualified Installer.

C. Product Certificates: For termite control products, from manufacturer.

D. Soil Treatment Application Report: After application of termiticide is completed, submit report for Owner's records and include the following:

1. Date and time of application.
2. Moisture content of soil before application.
3. Termiticide brand name and manufacturer.
4. Quantity of undiluted termiticide used.
5. Dilutions, methods, volumes used, and rates of application.
6. Areas of application.
7. Water source for application.

E. Warranties: Sample of special warranties.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: A specialist who is licensed according to regulations of authorities having jurisdiction to apply termite control treatment and products in jurisdiction where Project is located, and who employs workers trained and approved by manufacturer to install manufacturer's products.
B. Regulatory Requirements: Formulate and apply termiticides and termiticide devices according to the EPA-Registered Label.

C. Source Limitations: Obtain termite control products from single source from single manufacturer.

D. Preinstallation Conference: Conduct conference at Project site.

1.5 PROJECT CONDITIONS

A. Environmental Limitations: To ensure penetration, do not treat soil that is water saturated or frozen. Do not treat soil while precipitation is occurring. Comply with requirements of the EPA-Registered Label and requirements of authorities having jurisdiction.

B. Coordinate soil treatment application with excavating, filling, grading, and concreting operations. Treat soil under footings, grade beams, and ground-supported slabs before construction.

1.6 WARRANTY

A. Soil Treatment Special Warranty: Manufacturer's standard form, signed by Applicator and Contractor, certifying that termite control work, consisting of applied soil termiticide treatment, will prevent infestation of subterranean termites. If subterranean termite activity or damage is discovered during warranty period, re-treat soil and repair or replace damage caused by termite infestation.

1. Warranty Period: Five years from date of Substantial Completion.

1.7 MAINTENANCE SERVICE

A. Continuing Service: Beginning at Substantial Completion, provide 12 months' continuing service including monitoring, inspection, and re-treatment for occurrences of termite activity. Provide a standard continuing service agreement. State services, obligations, conditions, terms for agreement period, and terms for future renewal options.

PART 2 - PRODUCTS

2.1 SOIL TREATMENT

A. Termiticide: Provide an EPA-Registered termiticide, complying with requirements of authorities having jurisdiction, in an aqueous solution formulated to prevent termite infestation. Provide quantity required for application at the label volume and rate for the maximum termiticide concentration allowed for each specific use, according to product's EPA-Registered Label.

1. Products: Subject to compliance with requirements, provide one of the following:

 a. BASF Corporation, Agricultural Products; Termidor.
 b. Bayer Environmental Science; Premise 75.
2. Service Life of Treatment: Soil treatment termiticide that is effective for not less than **five** years against infestation of subterranean termites.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for **moisture content of soil per termiticide label requirements**, interfaces with earthwork, slab and foundation work, landscaping, utility installation, and other conditions affecting performance of termite control.

B. Proceed with application only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. General: Comply with the most stringent requirements of authorities having jurisdiction and with manufacturer's written instructions for preparation before beginning application of termite control treatment. Remove all extraneous sources of wood cellulose and other edible materials such as wood debris, tree stumps and roots, stakes, formwork, and construction waste wood from soil within and around foundations.

B. Soil Treatment Preparation: Remove foreign matter and impermeable soil materials that could decrease treatment effectiveness on areas to be treated. Loosen, rake, and level soil to be treated except previously compacted areas under slabs and footings. Termiticides may be applied before placing compacted fill under slabs if recommended in writing by termiticide manufacturer.

1. Fit filling hose connected to water source at the site with a backflow preventer, complying with requirements of authorities having jurisdiction.

3.3 APPLICATION, GENERAL

A. General: Comply with the most stringent requirements of authorities having jurisdiction and with manufacturer's EPA-Registered Label for products.

3.4 APPLYING SOIL TREATMENT

A. Application: Mix soil treatment termiticide solution to a uniform consistency. Provide quantity required for application at the label volume and rate for the maximum specified concentration of termiticide, according to manufacturer's EPA-Registered Label, to the following so that a continuous horizontal and vertical termiticidal barrier or treated zone is established around and under building construction. Distribute treatment evenly.
1. Slabs-on-Grade: Under ground-supported slab construction, including footings, building slabs, and attached slabs as an overall treatment. Treat soil materials before concrete footings and slabs are placed.

2. Foundations: Adjacent soil, including soil along the entire inside perimeter of foundation walls; along both sides of interior partition walls; around plumbing pipes and electric conduit penetrating the slab; around interior column footers, piers, and chimney bases; and along the entire outside perimeter, from grade to bottom of footing. Avoid soil washout around footings.

3. Penetrations: At expansion joints, control joints, and areas where slabs will be penetrated.

B. Avoid disturbance of treated soil after application. Keep off treated areas until completely dry.

C. Protect termiticide solution, dispersed in treated soils and fills, from being diluted until ground-supported slabs are installed. Use waterproof barrier according to EPA-Registered Label instructions.

D. Post warning signs in areas of application.

E. Reapply soil treatment solution to areas disturbed by subsequent excavation, grading, landscaping, or other construction activities following application.

END OF SECTION 313116
SECTION 321216 - ASPHALT PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Hot-mix asphalt paving.

B. Related Requirements:
 1. Section 312000 "Earth Moving" for subgrade preparation, fill material, separation geotextiles, unbound-aggregate subbase and base courses, and aggregate pavement shoulders.
 2. Section 321313 "Concrete Paving" for concrete pavement and for separate concrete curbs, gutters, and driveway aprons.
 3. Section 321373 "Concrete Paving Joint Sealants" for joint sealants and fillers at pavement terminations.
 4. Section 321400 "Unit Paving" for bituminous setting bed for pavers and for stone and precast concrete curbs.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include technical data and tested physical and performance properties.
 2. Job-Mix Designs: Certification, by authorities having jurisdiction, of approval of each job mix proposed for the Work.

B. Sustainable Design Submittals:

C. Samples for Verification: For the following product, in manufacturer's standard sizes unless otherwise indicated:
 1. Paving Fabric: 12 by 12 inches minimum.

1.4 INFORMATIONAL SUBMITTALS

A. Material Test Reports: For each paving material, by a qualified testing agency.

B. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM D3666 for testing indicated.

B. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of TxDOT for asphalt paving work.

1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.6 FIELD CONDITIONS

A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:

1. Prime Coat: Minimum surface temperature of 60 deg F.
2. Tack Coat: Minimum surface temperature of 60 deg F.
4. Asphalt Base Course: Minimum surface temperature of 40 deg F and rising at time of placement.
5. Asphalt Surface Course: Minimum surface temperature of 60 deg F at time of placement.

PART 2 - PRODUCTS

2.1 AGGREGATES

A. General: Use materials and gradations that have performed satisfactorily in previous installations.

B. Coarse Aggregate: ASTM D692/D692M, sound; angular crushed stone, crushed gravel, or cured, crushed blast-furnace slag.

C. Fine Aggregate: ASTM D1073 or AASHTO M 29, sharp-edged natural sand or sand prepared from stone, gravel, cured blast-furnace slag, or combinations thereof.

1. For hot-mix asphalt, limit natural sand to a maximum of 20 percent by weight of the total aggregate mass.

D. Mineral Filler: ASTM D242/D242M or AASHTO M 17, rock or slag dust, hydraulic cement, or other inert material.

2.2 ASPHALT MATERIALS

A. Asphalt Binder: [ASTM D6373] [or] [AASHTO M 320] binder designation [PG 64-22] [PG 58-28] [PG 70-22] <Insert performance grade>.
B. Asphalt Cement: [ASTM D3381/D3381M for viscosity-graded material] [ASTM D946/D946M for penetration-graded material].

C. Cutback Prime Coat: ASTM D2027/D2027M, medium-curing cutback asphalt, [MC-30 or MC-70] [MC-250].

D. Emulsified Asphalt Prime Coat: [ASTM D977] [or] [AASHTO M 140] emulsified asphalt, or [ASTM D2397/D2397M] [or] [AASHTO M 208] cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.

E. Tack Coat: [ASTM D977] [or] [AASHTO M 140] emulsified asphalt, or [ASTM D2397/D2397M] [or] [AASHTO M 208] cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.

F. Fog Seal: [ASTM D977] [or] [AASHTO M 140] emulsified asphalt, or [ASTM D2397/D2397M] [or] [AASHTO M 208] cationic emulsified asphalt, slow setting, factory diluted in water, of suitable grade and consistency for application.

G. Water: Potable.

2.3 AUXILIARY MATERIALS

A. Recycled Materials for Hot-Mix Asphalt Mixes: Reclaimed asphalt pavement; reclaimed, unbound-aggregate base material; and recycled [tires] [asphalt shingles] [or] [glass] from sources and gradations that have performed satisfactorily in previous installations, equal to performance of required hot-mix asphalt paving produced from all new materials.

B. Herbicide: Commercial chemical for weed control, registered by the EPA, and not classified as "restricted use" for locations and conditions of application. Provide in granular, liquid, or wettable powder form.

C. Sand: [ASTM D1073] [or] [AASHTO M 29], Grade No. 2 or No. 3.

D. Paving Geotextile: AASHTO M 288 paving fabric; nonwoven polypropylene; resistant to chemical attack, rot, and mildew; and specifically designed for paving applications.

E. Joint Sealant: ASTM D6690, [Type I] [Type II or III] [Type IV], hot-applied, single-component, polymer-modified bituminous sealant.

2.4 MIXES

A. <Double click to insert sustainable design text for recycled content.>

1. Surface Course Limit: Recycled content no more than [10] <Insert number> percent by weight.
B. Hot-Mix Asphalt: Dense-graded, hot-laid, hot-mix asphalt plant mixes approved by authorities having jurisdiction; designed according to procedures in AI MS-2, "Asphalt Mix Design Methods"; and complying with the following requirements:

1. Provide mixes with a history of satisfactory performance in geographical area where Project is located.
2. Base Course: <Insert mix designation>.
3. Surface Course: <Insert mix designation>.

C. Emulsified-Asphalt Slurry: ASTM D3910, [Type 1] [Type 2] [Type 3].

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that subgrade is dry and in suitable condition to begin paving.

B. Proceed with paving only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Protection: Provide protective materials, procedures, and worker training to prevent asphalt materials from spilling, coating, or building up on curbs, driveway aprons, manholes, and other surfaces adjacent to the Work.

B. Proof-roll subgrade below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph (5 km/h).
2. Proof roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons (13.6 tonnes).
3. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

3.3 SURFACE PREPARATION

A. Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.

B. Herbicide Treatment: Apply herbicide according to manufacturer's recommended rates and written application instructions. Apply to dry, prepared subgrade or surface of compacted-aggregate base before applying paving materials.

1. Mix herbicide with prime coat if formulated by manufacturer for that purpose.
C. Cutback Prime Coat: Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.15 to 0.50 gal./sq. yd. (0.7 to 2.3 L/sq. m). Apply enough material to penetrate and seal, but not flood, surface. Allow prime coat to cure.

1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
2. Protect primed substrate from damage until ready to receive paving.

D. Emulsified Asphalt Prime Coat: Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.10 to 0.30 gal./sq. yd. per inch depth (0.5 to 1.40 L/sq. m per 25 mm depth). Apply enough material to penetrate and seal, but not flood, surface. Allow prime coat to cure.

1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
2. Protect primed substrate from damage until ready to receive paving.

E. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd. (0.2 to 0.7 L/sq. m).

1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.4 PLACING HOT-MIX ASPHALT

A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand in areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.

1. Place hot-mix asphalt base course in number of lifts and thicknesses indicated.
2. Place hot-mix asphalt surface course in single lift.
3. Spread mix at a minimum temperature of 250 deg F (121 deg C).
4. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.
5. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.

B. Place paving in consecutive strips not less than 10 feet (3 m) wide unless infill edge strips of a lesser width are required.

1. After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Overlap mix placement about 1 to 1-1/2 inches (25 to 38 mm) from strip to strip to ensure proper compaction of mix along longitudinal joints.
2. Complete a section of asphalt base course before placing asphalt surface course.
C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

3.5 JOINTS

A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.

1. Clean contact surfaces and apply tack coat to joints.
2. Offset longitudinal joints, in successive courses, a minimum of 6 inches (150 mm).
3. Offset transverse joints, in successive courses, a minimum of 24 inches (600 mm).
4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints [using either "bulkhead" or "papered" method according to Al MS-22, for both "Ending a Lane" and "Resumption of Paving Operations."] [as shown on Drawings.] <Insert joint requirement.>
5. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.
6. Compact asphalt at joints to a density within 2 percent of specified course density.

3.6 COMPACTION

A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.

1. Complete compaction before mix temperature cools to 185 deg F (85 deg C).

B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.

C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:

1. Average Density: 96 percent of reference laboratory density according to [ASTM D6927] [or] [AASHTO T 245], but not less than 94 percent or greater than 100 percent.
2. Average Density: 92 percent of reference maximum theoretical density according to ASTM D2041/D2041M, but not less than 90 percent or greater than 96 percent.

D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.

E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.
F. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.

G. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.

H. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.7 INSTALLATION TOLERANCES

A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:

1. Base Course: Plus or minus 1/2 inch (13 mm).
2. Surface Course: Plus 1/4 inch (6 mm), no minus.

B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot (3-m) straightedge applied transversely or longitudinally to paved areas:

1. Base Course: [1/4 inch (6 mm)] <Insert dimension>.
2. Surface Course: [1/8 inch (3 mm)] <Insert dimension>.
3. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch (6 mm).

C. Asphalt Traffic-Calming Devices: Compact and form asphalt to produce the contour indicated and within a tolerance of plus or minus 1/8 inch (3 mm) of height indicated above pavement surface.

3.8 SURFACE TREATMENTS

A. Fog Seals: Apply fog seal at a rate of 0.10 to 0.15 gal./sq. yd. (0.45 to 0.7 L/sq. m) to existing asphalt pavement and allow to cure. With fine sand, lightly dust areas receiving excess fog seal.

B. Slurry Seals: Apply slurry coat in a uniform thickness according to ASTM D3910 and allow to cure.

1. Roll slurry seal to remove ridges and provide a uniform, smooth surface.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: [Owner will engage] [Engage] a qualified testing agency to perform tests and inspections.

B. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D3549/D3549M.
C. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances.

D. Asphalt Traffic-Calming Devices: Finished height of traffic-calming devices above pavement will be measured for compliance with tolerances.

E. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to ASTM D979/D979M or AASHTO T 168.

1. Reference maximum theoretical density will be determined by averaging results from four samples of hot-mix asphalt-paving mixture delivered daily to site, prepared according to ASTM D2041/D2041M, and compacted according to job-mix specifications.
2. In-place density of compacted pavement will be determined by testing core samples according to ASTM D1188 or ASTM D2726/D2726M.

 a. One core sample will be taken for every 1000 sq. yd. (836 sq. m) or less of installed pavement, with no fewer than three cores taken.
 b. Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D2950 and correlated with ASTM D1188 or ASTM D2726/D2726M.

F. Replace and compact hot-mix asphalt where core tests were taken.

G. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

3.10 WASTE HANDLING

A. General: Handle asphalt-paving waste according to approved waste management plan required in Section 017419 "Construction Waste Management and Disposal."

END OF SECTION 321216
SECTION 321313 - CONCRETE PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes Concrete Paving Including the Following:

1. Driveways.
2. Roadways.
3. Parking lots.
4. Curbs and gutters.
5. Walks.

B. Related Requirements:

1. Section 033053 "Miscellaneous Cast-in-Place Concrete" for general building applications of concrete.
2. Section 321316 "Decorative Concrete Paving" for stamped concrete other than stamped detectable warnings.
3. Section 321373 "Concrete Paving Joint Sealants" for joint sealants in expansion and contraction joints within concrete paving and in joints between concrete paving and asphalt paving or adjacent construction.
4. Section 321723 "Pavement Markings."
5. Section 321726 "Tactile Warning Surfacing" for detectable warning tiles.

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash, slag cement, and other pozzolans.

B. W/C Ratio: The ratio by weight of water to cementitious materials.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1. Review methods and procedures related to concrete paving, including but not limited to, the following:

 a. Concrete mixture design.
b. Quality control of concrete materials and concrete paving construction practices.

2. Require representatives of each entity directly concerned with concrete paving to attend, including the following:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Concrete paving Subcontractor.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Initial Selection: For each type of product, ingredient, or admixture requiring color selection.

C. Samples for Verification: For each type of product or exposed finish, prepared as Samples of size indicated below:
 1. Exposed Aggregate: **10-lb** Sample of each mix.

D. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer of stamped detectable warnings and testing agency.

B. Material Certificates: For the following, from manufacturer:
 1. Cementitious materials.
 2. Steel reinforcement and reinforcement accessories.
 3. Fiber reinforcement.
 4. Admixtures.
 5. Curing compounds.
 7. Bonding agent or epoxy adhesive.
 8. Joint fillers.

C. Material Test Reports: For each of the following:
 1. Aggregates: Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.

D. Field quality-control reports.
1.7 QUALITY ASSURANCE

A. Stamped Detectable Warning Installer Qualifications: An employer of workers trained and approved by manufacturer of stamped concrete paving systems.

1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual - Section 3, "Plant Certification Checklist").

B. Testing Agency Qualifications: Qualified according to ASTM C1077 and ASTM E329 for testing indicated.

1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.

1.8 FIELD CONDITIONS

A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

B. Cold-Weather Concrete Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:

1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
2. Do not use frozen materials or materials containing ice or snow.
3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.

C. Hot-Weather Concrete Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:

1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
2. Cover steel reinforcement with water-soaked burlap, so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 unless otherwise indicated.
2.2 FORMS

A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.

1. Use flexible or uniformly curved forms for curves with a radius of 100 feet or less.

B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.3 STEEL REINFORCEMENT

A. Plain-Steel Welded-Wire Reinforcement: ASTM A1064/A1064M, fabricated from steel wire into flat sheets.

C. Reinforcing Bars: ASTM A615/A615M, Grade 60; deformed.

D. Steel Bar Mats: ASTM A184/A184M; with ASTM A615/A615M, Grade 60 deformed bars; assembled with clips.

E. Plain-Steel Wire: ASTM A1064/A1064M.

F. Deformed-Steel Wire: ASTM A1064/A1064M.

G. Joint Dowel Bars: ASTM A615/A615M, Grade 60 plain-steel bars. Cut bars true to length with ends square and free of burrs.

H. Tie Bars: ASTM A615/A615M, Grade 60; deformed.

I. Hook Bolts: ASTM A307, Grade A, internally and externally threaded. Design hook-bolt joint assembly to hold coupling against paving form and in position during concreting operations, and to permit removal without damage to concrete or hook bolt.

J. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded-wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:

1. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.

2.4 CONCRETE MATERIALS

A. Cementitious Materials: Use the following cementitious materials, of same type, brand, and source throughout Project:

1. Portland Cement: ASTM C150/C150M, portland cement Type I.
B. Normal-Weight Aggregates: ASTM C33/C33M, uniformly graded. Provide aggregates from a single source with documented service-record data of at least 10 years' satisfactory service in similar paving applications and service conditions using similar aggregates and cementitious materials.

2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

C. Air-Entraining Admixture: ASTM C260/C260M.

D. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.

1. Water-Reducing Admixture: ASTM C494/C494M, Type A.
2. Retarding Admixture: ASTM C494/C494M, Type B.
3. Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type D.
4. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
5. High-Range, Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type G.
6. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II.

E. Water: Potable and complying with ASTM C94/C94M.

2.5 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd.

B. Water: Potable.

2.6 RELATED MATERIALS

A. Joint Fillers: ASTM D1751, asphalt-saturated cellulosic fiber in preformed strips.

B. Slip-Resistive Aggregate Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of fused aluminum-oxide granules or crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials.

C. Bonding Agent: ASTM C1059/C1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

D. Chemical Surface Retarder: Water-soluble, liquid, set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to a depth of 1/8 to 1/4 inch.
2.7 STAMPED DETECTABLE WARNING MATERIALS

A. Detectable Warning Stamp: Semirigid polyurethane mats with formed underside capable of imprinting detectable warning pattern on plastic concrete; perforated with a vent hole at each dome.
 1. Size of Stamp: One piece, matching detectable warning area shown on Drawings.

B. Liquid Release Agent: Manufacturer's standard, clear, evaporating formulation designed to facilitate release of stamp mats.

2.8 CONCRETE MIXTURES

A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.
 1. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
 2. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that comply with or exceed requirements.

B. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 1. Air Content: 4-1/2 percent plus or minus 1-1/2 percent for 1-1/2-inch nominal maximum aggregate size.

C. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
 1. Use water-reducing admixture, high-range, water-reducing admixture, high-range, water-reducing and retarding admixture or plasticizing and retarding admixture in concrete as required for placement and workability.
 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.

D. Concrete Mixtures: Normal-weight concrete.
 2. Maximum W/C Ratio at Point of Placement: 0.45.
 3. Slump Limit: 4 inches, plus or minus 1 inch.

2.9 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C94/C94M. Furnish batch certificates for each batch discharged and used in the Work.
 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.
B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C94/C94M. Mix concrete materials in appropriate drum-type batch machine mixer.

1. For concrete batches of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
2. For concrete batches larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd.
3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.

B. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.

1. Completely proof-roll subbase in one direction and repeat in perpendicular direction. Limit vehicle speed to 3 mph.
2. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 15 tons.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.

B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT INSTALLATION

A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.

C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.

D. Install welded-wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

E. Zinc-Coated Reinforcement: Use galvanized-steel wire ties to fasten zinc-coated reinforcement. Repair cut and damaged zinc coatings with zinc repair material.

F. Epoxy-Coated Reinforcement: Use epoxy-coated steel wire ties to fasten epoxy-coated reinforcement. Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D3963/D3963M.

G. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch overlap of adjacent mats.

3.5 JOINTS

A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.

1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.

B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.

1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
2. Provide tie bars at sides of paving strips where indicated.
3. Butt Joints: Use bonding agent at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete.
5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.

1. Locate expansion joints at intervals of 50 feet unless otherwise indicated.
2. Extend joint fillers full width and depth of joint.
3. Terminate joint filler not less than 1/2 inch or more than 1 inch below finished surface if joint sealant is indicated.
4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
6. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.

D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows, to match jointing of existing adjacent concrete paving:

1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/4-inch radius. Repeat grooving of contraction joints after applying surface finishes. Eliminate grooving-tool marks on concrete surfaces.
 a. Tolerance: Ensure that grooved joints are within 3 inches either way from centers of dowels.

2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
 a. Tolerance: Ensure that sawed joints are within 3 inches either way from centers of dowels.

3. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 3/8-inch radius. Repeat tooling of edges after applying surface finishes.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.

B. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.

C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.

D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.
E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.

F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

G. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.

1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels and joint devices.

H. Screed paving surface with a straightedge and strike off.

I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleedwater appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

J. Curbs and Gutters: Use design mixture for automatic machine placement. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing.

K. Slip-Form Paving: Use design mixture for automatic machine placement. Produce paving to required thickness, lines, grades, finish, and jointing.

1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of slip-form paving machine during operations.

3.7 FLOAT FINISHING

A. General: Do not add water to concrete surfaces during finishing operations.

B. Float Finish: Begin the second floating operation when bleedwater sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

1. Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture.

3. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch deep with a stiff-bristled broom, perpendicular to line of traffic.
3.8 DETECTABLE WARNING INSTALLATION

A. Blockouts: Form blockouts in concrete for installation of detectable paving units specified in Section 321726 "Tactile Warning Surfacing."

1. Tolerance for Opening Size: **Plus 1/4 inch, no minus.**

3.9 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

B. Comply with ACI 306.1 for cold-weather protection.

C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.

D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

E. Curing Methods: Cure concrete by **moisture curing, moisture-retaining-cover curing, curing compound or a combination of these** as follows:

 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:

 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period, using cover material and waterproof tape.

 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.10 PAVING TOLERANCES

A. Comply with tolerances in ACI 117 and as follows:

1. Elevation: 3/4 inch.
3. Surface: Gap below 10-feet- long; unleveled straightedge not to exceed 1/2 inch.
4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches of tie bar.
5. Lateral Alignment and Spacing of Dowels: 1 inch.
7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches of dowel.
8. Joint Spacing: 3 inches.

3.11 FIELD QUALITY CONTROL

A. Testing Agency: **Owner will engage** a qualified testing agency to perform tests and inspections.

B. Testing Services: Testing and inspecting of composite samples of fresh concrete obtained according to ASTM C172/C172M shall be performed according to the following requirements:

1. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd., 5000 sq. ft. or fraction thereof of each concrete mixture placed each day.
 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.

2. Slump: ASTM C143/C143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

3. Air Content: ASTM C231/C231M, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

4. Concrete Temperature: ASTM C1064/C1064M; one test hourly when air temperature is 40 deg F and below and when it is 80 deg F and above, and one test for each composite sample.

5. Compression Test Specimens: ASTM C31/C31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.

6. Compressive-Strength Tests: ASTM C39/C39M; test one specimen at seven days and two specimens at 28 days.
 a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.

C. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

D. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days,
CONCRETE PAVING

Montgomery County ESD #8
Station 11-1

March 2019

3.12 REPAIR AND PROTECTION

A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.

B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.

C. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.

D. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 321313
SECTION 321373 - CONCRETE PAVING JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Cold-applied joint sealants.
 2. Hot-applied joint sealants.
 3. Cold-applied, fuel-resistant joint sealants.
 5. Joint-sealant backer materials.
 6. Primers.

B. Related Requirements:
 1. Section 079200 "Joint Sealants" for sealing nontraffic and traffic joints in locations not specified in this Section.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch-wide joints formed between two 6-inch-long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.

C. Paving-Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.
1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of joint sealant and accessory.

1.6 QUALITY ASSURANCE

A. Product Testing: Test joint sealants using a qualified testing agency.

1.7 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:
 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer.
 2. When joint substrates are wet.
 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

2.2 COLD-APPLIED JOINT SEALANTS

A. Single-Component, Nonsag, Silicone Joint Sealant: ASTM D5893/D5893M, Type NS.
B. Single-Component, Self-Leveling, Silicone Joint Sealant: ASTM D5893/D5893M, Type SL.
C. Multicomponent, Nonsag, Urethane, Elastomeric Joint Sealant: ASTM C920, Type M, Grade NS, Class 25, for Use T.
D. Single Component, Pourable, Urethane, Elastomeric Joint Sealant: ASTM C920, Type S, Grade P, Class 25, for Use T.
E. Multicomponent, Pourable, Urethane, Elastomeric Joint Sealant: ASTM C920, Type M, Grade P, Class 25, for Use T.
2.3 HOT-APPLIED JOINT SEALANTS
 B. Hot-Applied, Single-Component Joint Sealant: ASTM D6690, Type I or Type II.
 C. Hot-Applied, Single-Component Joint Sealant: ASTM D6690, Type I, II, or III.
 D. Hot-Applied, Single-Component Joint Sealant: ASTM D6690, Type IV.

2.4 COLD-APPLIED, FUEL-RESISTANT JOINT SEALANTS
 A. Fuel-Resistant, Single-Component, Pourable, Modified-Urethane, Elastomeric Joint Sealant: ASTM C920, Type S, Grade P, Class 25, for Use T.
 B. Fuel-Resistant, Multicomponent, Pourable, Modified-Urethane, Elastomeric Joint Sealant: ASTM C920, Type M, Grade P, Class 12-1/2 or 25, for Use T.

2.5 HOT-APPLIED, FUEL-RESISTANT JOINT SEALANTS
 A. Hot-Applied, Fuel-Resistant, Single-Component Joint Sealants: ASTM D7116, Type I or Type II.

2.6 JOINT-SEALANT BACKER MATERIALS
 A. Joint-Sealant Backer Materials: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by joint-sealant manufacturer, based on field experience and laboratory testing.
 B. Round Backer Rods for Cold- and Hot-Applied Joint Sealants: ASTM D5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.
 C. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D5249, Type 3, of diameter and density required to control joint-sealant depth and prevent bottom-side adhesion of sealant.
 D. Backer Strips for Cold- and Hot-Applied Joint Sealants: ASTM D5249; Type 2; of thickness and width required to control joint-sealant depth, prevent bottom-side adhesion of sealant, and fill remainder of joint opening under sealant.

2.7 PRIMERS
 A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine joints to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Surface Cleaning of Joints: Before installing joint sealants, clean out joints immediately to comply with joint-sealant manufacturer's written instructions.

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

3.3 INSTALLATION OF JOINT SEALANTS
A. Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.

B. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C1193 for use of joint sealants as applicable to materials, applications, and conditions.

C. Install joint-sealant backings to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

1. Do not leave gaps between ends of joint-sealant backings.
2. Do not stretch, twist, puncture, or tear joint-sealant backings.
3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install joint sealants immediately following backing installation, using proven techniques that comply with the following:

1. Place joint sealants so they fully contact joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

E. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:

1. Remove excess joint sealant from surfaces adjacent to joints.
2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.

F. Provide joint configuration to comply with joint-sealant manufacturer's written instructions unless otherwise indicated.

3.4 CLEANING AND PROTECTION

A. Clean off excess joint sealant as the Work progresses, by methods and with cleaning materials approved in writing by joint-sealant manufacturers.

B. Protect joint sealants, during and after curing period, from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations in repaired areas are indistinguishable from the original work.

3.5 PAVING-JOINT-SEALANT SCHEDULE

A. Joint-Sealant Application: Joints within concrete paving.

1. Joint Location:
 a. Expansion and isolation joints in concrete paving.
 b. Contraction joints in concrete paving.
 c. Other joints as indicated.

2. Joint Sealant: **Single-component, nonsag, silicone joint sealant; Single-component, self-leveling, silicone joint sealant; Multicomponent, nonsag, urethane, elastomeric joint sealant; Single component, pourable, urethane, elastomeric joint sealant; Multicomponent, pourable, urethane, elastomeric joint sealant; Hot-applied, single-component joint sealant.**

3. Joint-Sealant Color: **Manufacturer's standard.**

B. Joint-Sealant Application: Joints within concrete paving and between concrete and asphalt paving.

1. Joint Location:
a. Joints between concrete and asphalt paving.
b. Joints between concrete curbs and asphalt paving.
c. Other joints as indicated.

2. Joint Sealant: **Hot-applied, single-component joint sealant.**
3. Joint-Sealant Color: **Manufacturer's standard.**

C. Joint-Sealant Application: Fuel-resistant joints within concrete paving.

1. Joint Location:
 a. Expansion and isolation joints in concrete paving.
 b. Contraction joints in concrete paving.
 c. Other joints as indicated.

2. Joint Sealant: **Fuel-resistant, single-component, pourable, modified-urethane, elastomeric joint sealant; Fuel-resistant, multicomponent, pourable, modified-urethane, elastomeric joint sealant; Hot-applied, fuel-resistant, single-component joint sealant.**
3. Joint-Sealant Color: **Manufacturer's standard.**

END OF SECTION 321373
SECTION 321400 - UNIT PAVING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Brick pavers set in aggregate setting beds.

1.2 ACTION SUBMITTALS
A. Product Data: For materials other than water and aggregates.
B. Samples for unit pavers.

1.3 PROJECT CONDITIONS
A. Cold-Weather Protection: Do not use frozen materials or build on frozen subgrade or setting beds.
B. Weather Limitations for Bituminous Setting Bed: Install bituminous setting bed only when ambient temperature is above 40 deg F (4 deg C) and when base is dry.
C. Weather Limitations for Mortar and Grout:
 2. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602. Do not apply mortar to substrates with temperatures of 100 deg F (38 deg C) and higher.

PART 2 - PRODUCTS

2.1 BRICK PAVERS
A. Brick Pavers: Light-traffic paving brick; ASTM C 902, Class SX, Type I. Provide brick without frogs or cores in surfaces exposed to view in the completed Work.
 1. Manufacturers: Subject to compliance with requirements, provide products that existing match City standard.
 2. Thickness: 2-1/4 inches (57 mm).
 3. Face Size: 4 by 8 inches (102 by 203 mm) and 8 by 8 inches (203 by 203 mm).
B. **Temporary Protective Coating:** Precoat exposed surfaces of brick pavers with a continuous film of a temporary protective coating that is compatible with brick, mortar, and grout products.

ACCESSORIES

A. Cork Joint Filler: Preformed strips complying with ASTM D 1752, Type II.

B. Compressible Foam Filler: Preformed strips complying with ASTM D 1056, Grade 2A1.

AGGREGATE SETTING-BED MATERIALS

A. Sand for Leveling Course: Sound, sharp, washed, natural sand or crushed stone complying with gradation requirements in ASTM C 33 for fine aggregate.

B. Sand for Joints: Fine, sharp, washed, natural sand or crushed stone with 100 percent passing No. 16 (1.18-mm) sieve and no more than 10 percent passing No. 200 (0.075-mm) sieve.

PART 3 - EXECUTION

INSTALLATION, GENERAL

A. Mix pavers from several pallets or cubes, as they are placed, to produce uniform blend of colors and textures.

B. Cut unit pavers with motor-driven masonry saw equipment to provide pattern indicated and to fit adjoining work neatly. Use full units without cutting where possible.

C. Joint Pattern: See Drawings.

D. Tolerances: Do not exceed 1/16-inch (1.6-mm) unit-to-unit offset from flush (lippage) nor 1/8 inch in 24 inches (3 mm in 600 mm) and 1/4 inch in 10 feet (6 mm in 3 m) from level, or indicated slope, for finished surface of paving.

END OF SECTION 321400
SECTION 321713 - PARKING BUMPERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes wheel stops.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 PARKING BUMPERS

A. Concrete Wheel Stops: Precast, steel-reinforced, air-entrained concrete, 4000-psi (27.6-MPa) minimum compressive strength, 4-1/2 inches (115 mm) high by 9 inches (225 mm) wide by 72 inches (1800 mm) long. Provide chamfered corners, transverse drainage slots on underside, and a minimum of two factory-formed or drilled vertical holes through wheel stop for anchoring to substrate.

1. Surface Appearance: Free of pockets, sand streaks, honeycombs, and other obvious defects. Corners shall be uniform, straight, and sharp.

2. Mounting Hardware: Galvanized-steel spike or dowel, 1/2-inch (13-mm) diameter, 10-inch (254-mm) minimum length

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that pavement is in suitable condition to begin installation according to manufacturer's written instructions.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. General: Install wheel stops according to manufacturer's written instructions unless otherwise indicated.

B. Install wheel stops in bed of adhesive before anchoring.

C. Securely anchor wheel stops to pavement with hardware in each preformed vertical hole in wheel stop as recommended in writing by manufacturer. Recess head of hardware beneath top of wheel stop.

END OF SECTION 321713
SECTION 321723 - PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes painted markings applied to asphalt and concrete pavement.

B. Related Requirements:

 1. Section 071800 "Traffic Coatings" for painting whole areas of building floors and pavements with coatings having an integral wearing surface.
 2. Section 099113 "Exterior Painting" for painting exterior concrete surfaces other than pavement.
 3. Section 099123 "Interior Painting" for painting interior concrete surfaces other than pavement

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

 1. Include technical data and tested physical and performance properties.

B. Shop Drawings: For pavement markings.

 1. Indicate pavement markings, colors, lane separations, defined parking spaces, and dimensions to adjacent work.
 2. Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.

C. Samples: For each exposed product and for each color and texture specified; on rigid backing, 8 inches square.

1.4 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of TxDOT for pavement-marking work.

 1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.
1.5 FIELD CONDITIONS

A. Environmental Limitations: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F for alkyd materials, 55 deg F for water-based materials, and not exceeding 95 deg F.

PART 2 - PRODUCTS

2.1 PAVEMENT-MARKING PAINT

A. Pavement-Marking Paint: Alkyd-resin type, lead and chromate free, ready mixed, complying with AASHTO M 248, Type N; colors complying with FS TT-P-1952.

1. Color: As indicated.

B. Pavement-Marking Paint: MPI #32, solvent-borne traffic-marking paint.

1. Color: As indicated.

C. Pavement-Marking Paint: Latex, waterborne emulsion, lead and chromate free, ready mixed, complying with FS TT-P-1952, Type II, with drying time of less than 45 minutes.

1. Color: As indicated.

D. Pavement-Marking Paint: MPI #97, latex traffic-marking paint.

1. Color: As indicated.

E. Glass Beads: AASHTO M 247, Type 1 made of 100 percent recycled glass.

1. Roundness: Minimum 75 percent true spheres by weight.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that pavement is dry and in suitable condition to begin pavement marking according to manufacturer's written instructions.

B. Proceed with pavement marking only after unsatisfactory conditions have been corrected.

3.2 PAVEMENT MARKING

A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect.

B. Allow paving to age for a minimum of 30 days before starting pavement marking.
C. Sweep and clean surface to eliminate loose material and dust.

D. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.

1. Apply graphic symbols and lettering with paint-resistant, die-cut stencils, firmly secured to pavement. Mask an extended area beyond edges of each stencil to prevent paint application beyond stencil. Apply paint so that it cannot run beneath stencil.

2. Broadcast glass beads uniformly into wet markings at a rate of 6 lb/gal.

3.3 PROTECTING AND CLEANING

A. Protect pavement markings from damage and wear during remainder of construction period.

B. Clean spillage and soiling from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 321723
SECTION 323113 - CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Chain-link fences (hot-dipped galvanized).
2. Gates: Motor operated horizontal slide, and manually operated swing.

B. Related Sections:

1. Section 033000 "Cast-in-Place Concrete" for cast-in-place concrete, for equipment bases/pads for gate operators and controls, and post footings.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design chain-link fences and gates, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Chain-link fence and gate framework shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated according to ASCE/SEI 7:

1. Minimum Post Size: Determine according to ASTM F 1043 for framework up to 12 feet (3.66 m) high, and post spacing not to exceed 10 feet (3 m) for Industrial Fence, Group IA.

C. Lightning Protection System: Maximum grounding-resistance value of 25 ohms under normal dry conditions.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for chain-link fences and gates.

1. Fence and gate posts, rails, and fittings.
2. Chain-link fabric, reinforcements, and attachments.
3. Accessories: Barbed wire.
4. Gates and hardware.
5. Gate operators, including operating instructions.
6. Motors: Show nameplate data, ratings, characteristics, and mounting arrangements.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Show accessories, hardware, gate operation, and operational clearances.
 1. Gate Operator: Show locations and details for installing operator components, switches, and controls. Indicate motor size, electrical characteristics, drive arrangement, mounting, and grounding provisions.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Samples for Initial Selection: For components with factory-applied color finishes.

D. Samples for Verification: Prepared on Samples of size indicated below:
 1. Polymer-Coated Components: In 6-inch (150-mm) lengths for components and on full-sized units for accessories.

E. Delegated-Design Submittal: For chain-link fences and gate framework indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified factory-authorized service representative.

B. Product Certificates: For each type of chain-link fence, operator, and gate, from manufacturer.

C. Product Test Reports: For framing strength according to ASTM F 1043.

D. Field quality-control reports.

E. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For the following to include in emergency, operation, and maintenance manuals:
 1. Gate hardware.
 2. Gate operator.
1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing fence grounding. Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Emergency Access Requirements: Comply with requirements of authorities having jurisdiction for gates with automatic gate operators serving as a required means of access.

D. Pre-installation Conference: Conduct conference at Project site.

 1. Inspect and discuss electrical roughing-in, equipment bases, and other preparatory work specified elsewhere.
 2. Review sequence of operation for each type of gate operator.
 3. Review coordination of interlocked equipment specified in this Section and elsewhere.
 4. Review required testing, inspecting, and certifying procedures.

1.8 PROJECT CONDITIONS

A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which Installer agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:
 a. Faulty operation of gate operators and controls.
 b. Deterioration of metals, metal finishes, and other materials beyond normal weathering.

 2. Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 CHAIN-LINK FENCE FABRIC

A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist. Comply with CLFMI Product Manual and with requirements indicated below:

1. Fabric Height: As indicated on Drawings.
2. Steel Wire Fabric: Wire with a diameter of 0.148 inch (3.76 mm).
 a. Mesh Size: 2 inches (50 mm).
 b. Zinc-Coated Fabric: ASTM A 392, Type II, Class 1, 1.2 oz./sq. ft. (366 g/sq. m) with zinc coating applied after weaving.
3. Selvage: Twisted top and knuckled bottom.

2.2 FENCE FRAMING

A. Posts and Rails: Comply with ASTM F 1043 for framing, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F 1043 based on the following:

1. Fence Height: As indicated on Drawings.
2. Heavy Industrial Strength: Material Group IA, round steel pipe, Schedule 40.
5. Metallic Coating for Steel Framing:
 a. Type A, consisting of not less than minimum 2.0-oz./sq. ft. (0.61-kg/sq. m) average zinc coating per ASTM A 123/A 123M or 4.0-oz./sq. ft. (1.22-kg/sq. m) zinc coating per ASTM A 653/A 653M.
 b. Type C, Zn-5-Al-MM alloy, consisting of not less than 1.8-oz./sq. ft. (0.55-kg/sq. m) coating.
 c. Coatings: Any coating above.

2.3 TENSION WIRE

A. Metallic-Coated Steel Wire: 0.177-inch- (4.5-mm-) diameter, marcelled tension wire complying with ASTM A 817 and ASTM A 824, with the following metallic coating:

1. Type II, zinc coated (galvanized) by hot-dip or electrolytic process, with the following minimum coating weight:
 a. Class 4: Not less than 1.2 oz./sq. ft. (366 g/sq. m) of uncoated wire surface.

2.4 SWING GATES

A. General: Comply with ASTM F 900 for gate posts and single swing gate types

1. Gate Leaf Width: As indicated on Drawings.
2. Gate Fabric Height: To match adjacent fence height as indicated on Drawings.

B. Pipe and Tubing:

1. Zinc-Coated Steel: Comply with ASTM F 1043 and ASTM F 1083; protective coating and finish to match fence framing.
2. Gate Posts: Round tubular steel.
3. Gate Frames and Bracing: Round tubular steel.

C. Frame Corner Construction: Welded.

D. Extended Gate Posts and Frame Members: Extend gate posts and frame end members above top of chain-link fabric at both ends of gate frame 12 inches (300 mm) to attach barbed wire assemblies.

E. Hardware:

2. Latches permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate.
3. Padlock and Chain: Furnished by Owner.
4. Lock: Manufacturer's standard.
5. Closer: Manufacturer's standard.

2.5 HORIZONTAL-SLIDE GATES

A. General: Comply with ASTM F 1184 for gate posts and single sliding gate types. Provide automated vehicular gates that comply with ASTM F 2200.

1. Classification: Type II Cantilever Slide, Class 2 with internal roller assemblies.

 a. Gate Frame Width and Height: Height to match adjacent fence and width as required to for clear opening width as indicated on Drawings.

B. Pipe and Tubing:

1. Zinc-Coated Steel: Protective coating and finish to match fence framing.
2. Gate Posts: Comply with ASTM F 1184. Provide round tubular steel posts.
3. Gate Frames and Bracing: Round tubular steel.

C. Frame Corner Construction: Welded.
D. Extended Gate Posts and Frame Members: Extend gate posts and frame end members above top of chain-link fabric at both ends of gate frame 12 inches (300 mm) as required to attach barbed wire assemblies.

E. Hardware:
 1. Padlock and Chain: Owner furnished.
 2. Roller assemblies, and stops fabricated from galvanized steel.

2.6 FITTINGS

A. General: Comply with ASTM F 626.

B. Post Caps: Provide for each post.
 1. Provide line post caps with loop to receive tension wire or top rail.

C. Rail and Brace Ends: For each gate, corner, pull, and end post.

D. Rail Fittings: Provide the following:
 1. Top Rail Sleeves: Pressed-steel or round-steel tubing not less than 6 inches (152 mm) long.
 2. Rail Clamps: Line and corner boulevard clamps for connecting intermediate brace rails in the fence line-to-line posts.

E. Tension and Brace Bands: Pressed steel.

F. Tension Bars: Steel, length not less than 2 inches (50 mm) shorter than full height of chain-link fabric. Provide one bar for each gate and end post, and two for each corner and pull post, unless fabric is integrally woven into post.

G. Truss Rod Assemblies: Steel, hot-dip galvanized after threading rod and turnbuckle or other means of adjustment.

H. Barbed Wire Arms: Pressed steel or cast iron, with clips, slots, or other means for attaching strands of barbed wire, integral with post cap; for each post unless otherwise indicated, and as follows:
 1. Provide line posts with arms that accommodate top rail or tension wire.
 2. Provide corner arms at fence corner posts, unless extended posts are indicated.
 3. Type I, single slanted arm.

I. Tie Wires, Clips, and Fasteners: According to ASTM F 626.
 1. Standard Round Wire Ties: For attaching chain-link fabric to posts, rails, and frames, complying with the following:
 a. Hot-Dip Galvanized Steel: 0.148-inch- (3.76-mm-) diameter wire; galvanized coating thickness matching coating thickness of chain-link fence fabric.
J. Finish:

1. Metallic Coating for Pressed Steel or Cast Iron: Not less than 1.2 oz. /sq. ft. (366 g /sq. m) zinc.

2.7 BARBED WIRE

A. Steel Barbed Wire: Comply with ASTM A 121, for two-strand barbed wire, 0.099-inch- (2.51-mm-) diameter line wire with 0.080-inch- (2.03-mm-) diameter, four-point round barbs spaced not more than 5 inches (127 mm) o.c.

 1. Aluminum Coating: Type A.
 2. Zinc Coating: Type Z, Class 3.

2.8 GATE OPERATORS

A. General: Provide factory-assembled automatic operating system designed for gate size, type, weight, and operation frequency. Provide operation control system with characteristics suitable for Project conditions, with remote-control stations, safety devices, and weatherproof enclosures; coordinate electrical requirements with building electrical system.

 1. Provide operator designed so motor may be removed without disturbing limit-switch adjustment and without affecting auxiliary emergency operator.
 2. Provide operator with UL-approved components.
 4. Provide unit designed and wired for both right-hand/left-hand opening, permitting universal installation.

B. Comply with NFPA 70.

C. UL Standard: Fabricate and label gate operators to comply with UL 325.

D. Motor Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, within installed environment, with indicated operating sequence, and without exceeding nameplate rating or considering service factor. Comply with NEMA MG 1 and the following:

 1. Voltage: 208 V.
 4. Duty: Continuous duty at ambient temperature of 105 deg F (40 deg C) and at altitude of 3300 feet (1005 m) above sea level.
 5. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.
 6. Phase: Polyphase.

E. Gate Operators: Pedestal post mounted and as follows:

 1. Mechanical Slide Gate Operators:
b. Gate Speed: Minimum 45 feet (13.7 m) per minute.
c. Maximum Gate Weight: 600 lb (272 kg).
d. Frequency of Use: Continuous duty.
e. Operating Type: Roller chain with manual release.
f. Drive Type: Enclosed worm gear and chain-and-sprocket reducers, roller-chain drive.

F. Remote Controls: Electric controls separated from gate and motor and drive mechanism, with NEMA ICS 6, Type 4 enclosure for pedestal mounting and with space for additional optional equipment. Provide the following remote-control device(s):

1. Control Station: Keyed, [two] [three]-position switch, located remotely from gate. Provide two keys per station.
2. Control Station: Momentary-contact, [single] [three]-button-operated; located remotely from gate. [Key switch to lock out open and close buttons.]
 a. Function: Open, stop, and close.
3. Card Reader: Functions only when authorized card is presented. Programmable, magnetic [multiple] [single]-code system, permitting four different access time periods; face-lighted unit fully visible at night.
 a. Reader Type: [Touch plate] [Swipe] [Insertion] [Proximity].
 b. Features: [Timed anti-passback] [Limited-time usage] [Capable of monitoring and auditing gate activity].
4. Digital Keypad Entry Unit: Multiple-[programmable] code capability of not less than [five] [500] [2500] <Insert number> possible individual codes, consisting of [one-to-seven] [four] [five]-digit codes, and permitting four different access time periods.
 a. Features: [Timed anti-passback] [Limited-time usage] [Capable of monitoring and auditing gate activity].
 b. Face-lighted unit with [metal-keyed] [keyless-membrane] keypad fully visible at night.
5. Radio Control: Digital system consisting of code-compatible universal receiver for each gate, located where indicated, with remote antenna with coaxial cable and mounting brackets designed to operate gates. Provide [one] [two] <Insert number> programmable transmitter(s) with multiple-code capability permitting validating or voiding of not less than [1000] [10,000] <Insert number> codes per channel configured for the following functions:
 a. Transmitters: [Single] [Three]-button operated, with open [and close] function.
 b. Channel Settings: [Two] [Three] [Four] <Insert number> independent channel settings controlling separate receivers for operating more than one gate from each transmitter.
6. Telephone Entry System: Hands-free voice-communication system for connection to building telephone system with digital-entry code activation of gate operator[and auxiliary keypad entry].

 a. Residential System: Designed to be wired to same line with telephone.
 b. Multiunit System: Designed to be wired to a dedicated telephone line, with capacity to access [20] [100] <Insert number> telephones[and with electronic directory].

7. Vehicle Loop Detector: System including automatic closing timer with adjustable time delay before closing[, timer cut-off switch,] and loop detector designed to [open and close gate] [hold gate open until traffic clears] [reverse gate] <Insert functions>. Provide electronic detector with adjustable detection patterns, adjustable sensitivity and frequency settings, and panel indicator light designed to detect presence or transit of a vehicle over an embedded loop of wire and to emit a signal activating the gate operator. Provide number of loops consisting of multiple strands of wire, number of turns, loop size, and method of placement at location shown on Drawings, as recommended in writing by detection system manufacturer for function indicated.

 a. Loop: Wire, in size indicated for field assembly, for [pave-over] [saw-cut with epoxy-grouted] installation.
 b. Loop: Factory preformed in size indicated; style for [pave-over] [saw-cut with epoxy-grouted] installation.

8. Vehicle Presence Detector: System including automatic closing timer with adjustable time delay before closing[, timer cut-off switch,] and presence detector designed to [open and close gate] [hold gate open until traffic clears] [reverse gate] <Insert functions>. Provide [retroreflective] [emitter/receiver] detector with adjustable detection zone pattern and sensitivity, designed to detect the presence or transit of a vehicle in gate pathway when infrared beam in zone pattern is interrupted, and to emit a signal activating the gate operator.

G. Obstruction Detection Devices: Provide each motorized gate with automatic safety sensor(s). Activation of sensor(s) causes operator to immediately function as follows:

1. Action: [Reverse gate in both opening and closing cycles and hold until clear of obstruction] [Stop gate in opening cycle and reverse gate in closing cycle and hold until clear of obstruction].
2. Internal Sensor: Built-in torque or current monitor senses gate is obstructed.
3. Sensor Edge: Contact-pressure-sensitive safety edge, profile, and sensitivity designed for type of gate and component indicated, in locations as follows. Connect to control circuit using [take-up cable reel] [self-coiling cable] [gate edge transmitter and operator receiver system].

 a. Along entire gate leaf leading edge.
 b. Along entire gate leaf trailing edge.
 c. Across entire gate leaf bottom edge.
 d. Along entire length of gate posts.
 e. Along entire length of gate guide posts.
 f. Where indicated on Drawings.
g. <Insert extent and location>.

4. Photoelectric/Infrared Sensor System: Designed to detect an obstruction in gate's path when infrared beam in the zone pattern is interrupted.

H. Limit Switches: Adjustable switches, interlocked with motor controls and set to automatically stop gate at fully retracted and fully extended positions.

1. Type: [Integral fail-safe release, allowing gate to be pushed open without mechanical devices, keys, cranks, or special knowledge] [Mechanical device, key, or crank-activated release].

I. Operating Features:

1. Digital Microprocessor Control: Electronic programmable means for setting, changing, and adjusting control features[with capability for monitoring and auditing gate activity]. Provide unit that is isolated from voltage spikes and surges.
2. System Integration: With controlling circuit board capable of accepting any type of input from external devices.
3. Master/Slave Capability: Control stations designed and wired for gate pair operation.
4. Automatic Closing Timer: With adjustable time delay before closing[and timer cut-off switch].
5. Open Override Circuit: Designed to override closing commands.
6. Reversal Time Delay: Designed to protect gate system from shock load on reversal in both directions.
7. Maximum Run Timer: Designed to prevent damage to gate system by shutting down system if normal time to open gate is exceeded.
8. Clock Timer: [24-hour] [Seven-day] <Insert time period> programmable for regular events.

J. Accessories:

1. Warning Module: [Audio] [Visual], [constant] [strobe]-light alarm sounding three to five seconds in advance of gate operation and continuing until gate stops moving; compliant with the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines.
2. Battery Backup System: Battery-powered drive and access-control system, independent of primary drive system.
 a. Fail Safe: Gate opens and remains open until power is restored.
 b. Fail Secure: Gate cycles on battery power, then fail safe when battery is discharged.
3. External electric-powered [solenoid] [magnetic] lock with delay timer allowing time for lock to release before gate operates.
4. [Fire] [Postal] box.
5. Fire [strobe] [siren] alarm.
6. Intercom System: <Insert requirements>.
7. Instructional, Safety, and Warning Labels and Signs: [According to UL 325] [Manufacturer's standard for components and features specified] [As indicated on Drawings] <Insert requirements>.

8. Equipment Bases/Pads: Cast-in-place or precast concrete, [depth not less than 12 inches (300 mm)] <Insert depth 6 to 12 inches (150 to 300 mm) below frost line or detail on Drawings>, dimensioned and reinforced according to gate-operator component manufacturer's written instructions and as indicated on Drawings.

2.9 GROUT AND ANCHORING CEMENT

A. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout, recommended in writing by manufacturer, for exterior applications.

B. Erosion-Resistant Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with potable water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating and that is recommended in writing by manufacturer, for exterior applications.

2.10 FENCE GROUNDING

A. Conductors: Bare, solid wire for No. 6 AWG and smaller; stranded wire for No. 4 AWG and larger.

1. Material above Finished Grade: Copper.
2. Material on or below Finished Grade: Copper.
3. Bonding Jumpers: Braided copper tape, 1 inch (25 mm) wide, woven of No. 30 AWG bare copper wire, terminated with copper ferrules.

B. Connectors and Grounding Rods: Comply with UL 467.

1. Connectors for Below-Grade Use: Exothermic welded type.
2. Grounding Rods: Copper-clad steel, 5/8 by 96 inches (16 by 2440 mm).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for a verified survey of property lines and legal boundaries, site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.

1. Do not begin installation before final grading is completed unless otherwise permitted by Architect.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet (152.5 m) or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

3.3 INSTALLATION, GENERAL

A. Install chain-link fencing to comply with ASTM F 567 and more stringent requirements indicated.

1. Install fencing on established boundary lines inside property line.

3.4 CHAIN-LINK FENCE INSTALLATION

A. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.

B. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.

1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.

2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.

 a. Exposed Concrete (grass areas): Extend 2 inches (50 mm) above grade; shape and smooth to shed water.
 b. Concealed Concrete (concrete paved areas): Top 8 inches (200 mm) below grade to allow covering with surface material.

C. Terminal Posts: Locate terminal end, corner, and gate posts per ASTM F 567 and terminal pull posts at changes in horizontal or vertical alignment of 22.5 degrees or more.

D. Line Posts: Space line posts uniformly at 10 feet (3 m) o.c.

E. Post Bracing and Intermediate Rails: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.

1. Locate horizontal braces at mid-height of fabric 72 inches (1830 mm) or higher, on fences with top rail and at two-third fabric height on fences without top rail. Install so posts are plumb when diagonal rod is under proper tension.
F. Tension Wire: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch- (3.05-mm-) diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches (610 mm) o.c. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:

1. Extended along bottom of fence fabric. Install bottom tension wire within 6 inches (152 mm) of bottom of fabric and tie to each post with not less than same diameter and type of wire.

G. Top Rail: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended in writing by fencing manufacturer.

H. Intermediate and Bottom Rails: Install and secure to posts with fittings.

I. Chain-Link Fabric: Apply fabric to outside of enclosing framework. Leave 1 inch (25.4 mm) between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

J. Tension or Stretcher Bars: Thread through fabric and secure to end, corner, pull, and gate posts with tension bands spaced not more than 15 inches (380 mm) o.c.

K. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric per ASTM F 626. Bend ends of wire to minimize hazard to individuals and clothing.

1. Maximum Spacing: Tie fabric to line posts at 12 inches (300 mm) o.c. and to braces at 24 inches (610 mm) o.c.

L. Fasteners: Install nuts for tension bands and carriage bolts on the side of the fence opposite the fabric side.

M. Barbed Wire: Install barbed wire uniformly spaced, angled toward security side of fence. Pull wire taut, install securely to extension arms, and secure to end post or terminal arms.

3.5 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.
3.6 GATE OPERATOR INSTALLATION

A. General: Install gate operators according to manufacturer's written instructions, aligned and true to fence line and grade.

B. Excavation for Support Posts and Pedestals; Hand-excavate holes for bases/pads, in firm, undisturbed soil to dimensions and depths and at locations as required by gate-operator component manufacturer's written instructions and as indicated.

C. Vehicle Loop Detector System: Cut grooves in pavement and bury and seal wire loop according to manufacturer's written instructions. Connect to equipment operated by detector.

D. Comply with NFPA 70 and manufacturer's written instructions for grounding of electric-powered motors, controls, and other devices.

3.7 GROUNDING AND BONDING

A. Fence Grounding: Install at maximum intervals of 1,500 feet (450 m) except as follows:

1. Fences within 100 Feet (30 m) of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet (225 m).
 a. Gates and Other Fence Openings: Ground fence on each side of opening.
 1) Bond metal gates to gate posts.
 2) Bond across openings, with and without gates, except openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches (460 mm) below finished grade.

B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet (45 m) on each side of crossing.

C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

D. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches (150 mm) below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at the grounding location, including the following:

1. Make grounding connections to each barbed wire strand with wire-to-wire connectors designed for this purpose.
2. Make grounding connections to each barbed tape coil with connectors designed for this purpose.

E. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.

F. Connections: Make connections to minimize possibility of galvanic action or electrolysis. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

G. Bonding to Lightning Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning protection down conductor or lightning protection grounding conductor complying with NFPA 780.

3.8 FIELD QUALITY CONTROL

A. Grounding-Resistance Testing: [Owner will engage] [Engage] a qualified testing agency to perform tests and inspections.

1. Grounding-Resistance Tests: Subject completed grounding system to a megger test at each grounding location. Measure grounding resistance no fewer than two full days after last trace of precipitation, without soil having been moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural grounding resistance. Perform tests by two-point method according to IEEE 81.
2. Excessive Grounding Resistance: If resistance to grounding exceeds specified value, notify Architect promptly. Include recommendations for reducing grounding resistance and a proposal to accomplish recommended work.
3. Report: Prepare test reports certified by a testing agency of grounding resistance at each test location. Include observations of weather and other phenomena that may affect test results.

3.9 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Automatic Gate Operator: Energize circuits to electrical equipment and devices. Adjust operators, controls, safety devices, alarms, and limit switches.

1. Hydraulic Operator: Purge operating system, adjust pressure and fluid levels, and check for leaks.
2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
3. Test and adjust controls, alarms, and safeties. Replace damaged and malfunctioning controls and equipment.
C. Lubricate hardware, gate operator, and other moving parts.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's personnel to adjust, operate, and maintain chain-link fences and gates.

END OF SECTION 323113
SECTION 323119 - DECORATIVE METAL FENCES AND GATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Decorative metallic-coated steel tubular picket fences.
 2. Horizontal slide gates.
 3. Gate operators, including controls.

B. Related Sections:
 1. Division 31 Section "Earth Moving" for site excavation, fill, and backfill where decorative metal fences and gates are located.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For gates. Include plans, elevations, sections, details, and attachments to other work.

C. Samples: For each fence material and for each color specified.
 1. Provide Samples 12 inches (300 mm) in length for linear materials.

D. Welding certificates.

E. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for decorative metallic-coated steel tubular picket fences, including finish, indicating compliance with referenced standard and other specified requirements.

F. Maintenance Data: For gate operators to include in maintenance manuals.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Fabricator of products.

B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
C. Mockups: Build mockups to **verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.**

1. Include **10-foot (3-m)** length of fence complying with requirements.
2. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

D. Preinstallation Conference: Conduct conference at **Project site.**

PART 2 - PRODUCTS

2.1 **STEEL AND IRON**

A. Plates, Shapes, and Bars: ASTM A 36/A 36M.

B. Bars (Pickets): Hot-rolled, carbon steel complying with ASTM A 29/A 29M, Grade 1010.

C. Tubing: ASTM A 500, cold formed steel tubing.

D. Uncoated Steel Sheet: **Hot-rolled steel sheet, ASTM A 1011/A 1011M, Structural Steel, Grade 45 (Grade 310).**

E. Galvanized-Steel Sheet: ASTM A 653/A 653M, structural quality, **Grade 50 (Grade 340), with G90 (Z275) coating.**

F. Aluminum-Zinc Alloy-Coated Steel Sheet: ASTM A 792/A 792M, structural quality, **Grade 50 (Grade 340), with AZ60 (AZM180) coating.**

G. Castings: Either gray or malleable iron unless otherwise indicated.

2. Malleable Iron: ASTM A 47/A 47M.

2.2 **COATING MATERIALS**

A. Epoxy Primer for Galvanized Steel: Complying with MPI #101 and compatible with coating specified to be applied over it.

1. Use primer with a VOC content of **420 g/L** or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Epoxy Intermediate Coat: Complying with MPI #77 and compatible with primer and topcoat.

1. Use product with a VOC content of **420 g/L** or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Polyurethane Topcoat: Complying with MPI #72 and compatible with undercoat.
1. Use product with a VOC content of \textbf{420 g/L} or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MISCELLANEOUS MATERIALS

A. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.

B. Concrete: Normal-weight, air-entrained, ready-mix concrete complying with requirements in Division 03 Section "Cast-in-Place Concrete" with a minimum 28-day compressive strength of 3000 psi (20 MPa), 3-inch (75-mm) slump, and 1-inch (25-mm) maximum aggregate size or dry, packaged, normal-weight concrete mix complying with ASTM C 387 mixed with potable water according to manufacturer's written instructions.

C. Nonshrink Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107 and specifically recommended by manufacturer for exterior applications.

2.4 GROUNDING MATERIALS

A. Grounding Conductors: Bare, solid wire for No. 6 AWG and smaller; stranded wire for No. 4 AWG and larger.

1. Material above Finished Grade: \textbf{Copper}.
2. Material on or below Finished Grade: Copper.
3. Bonding Jumpers: Braided copper tape, 1 inch (25 mm) wide, woven of No. 30 AWG bare copper wire, terminated with copper ferrules.

B. Grounding Connectors and Grounding Rods: Comply with UL 467.

1. Connectors for Below-Grade Use: Exothermic-welded type.
2. Grounding Rods: Copper-clad steel.

 a. Size: 5/8 by 96 inches (16 by 2440 mm).

2.5 DECORATIVE METALLIC-COATED STEEL TUBULAR PICKET FENCES

A. Decorative Metallic-Coated Steel Tubular Picket New Fence: Comply with ASTM F 2408, for \textbf{light industrial (commercial) application (class)} unless otherwise indicated, and ASTM F2200 – 14 (maximum opening of 2-1/4” between pickets where gate pockets next to fencing)

1. Basis-of-Design Product: Subject to compliance with requirements, provide Montage II Genesis as manufactured by Amerstar Fence Products or comparable product by one of the following:

 a. Ameristar Fence Products.
 b. Fortress Iron; a division of Woodmark International, LP.
 c. Iron Eagle Industries, Inc.
 d. Master Halco.
 e. Merchants Metals; a division of MMI Products, Inc.
Montgomery County ESD #8 May 10, 2019
Station 11-1

f. Payne Fence Products; a division of Payne Metal Works, Inc.
g. Xcel Fence.

2.6 HORIZONTAL-SLIDE GATES

A. Gate Configuration: **Single leaf**
 1. Type: Cantilever slide, with **external** roller assemblies.

B. Gate Frame Height: **As indicated**

C. Gate Opening Width: **As indicated**

D. Automated vehicular gates shall comply with ASTM F 2200, **Class IV**. Maximum opening between pickets shall not be more than 2-1/4”.

E. Galvanized-Steel Frames and Bracing: Fabricate members from square tubing.
 1. Frame Members: Square tubes **1-1/2 by 1-1/2 inches** formed from 0.108-inch (2.74-mm) nominal-thickness, metallic-coated steel sheet or formed from 0.105-inch (2.66-mm) nominal-thickness steel sheet and hot-dip galvanized after fabrication.
 2. Bracing Members: Square tubes **1-1/2 by 1-1/2 inches** formed from 0.108-inch (2.74-mm) nominal-thickness, metallic-coated steel sheet or formed from 0.105-inch (2.66-mm) nominal-thickness steel sheet and hot-dip galvanized after fabrication.

F. Steel Frames and Bracing: Fabricate members from square tubing. **Hot-dip galvanize frames after fabrication.**
 1. Frame Members: Steel tubing **1-1/2 by 1-1/2 inches** with 1/8-inch thickness.
 2. Bracing Members: Steel tubing **1-1/2 by 1-1/2 inches** with 1/8-inch thickness.

G. Frame Corner Construction:
 1. Welded frame with panels assembled with bolted or riveted corner fittings and **5/16-inch diameter**, adjustable truss rods for panels 5 feet (1.52 m) wide or wider.

H. Additional Rails: Provide as indicated, complying with requirements for fence rails.

I. Infill: Comply with requirements for adjacent fence and ASTM F 2200, **Class IV**. Maximum opening between pickets shall not be more than 2-1/4”.

J. Picket Size, Configuration, and Spacing: Comply with requirements for adjacent fence.
 1. Treillage: Finish as specified for adjacent fence and compliance with ASTM F 2200, **Class IV**. Maximum opening between pickets shall not be more than 2-1/4”.

K. Hardware: Latches permitting operation from both sides of gate, **locking devices**, **hangers**, **roller assemblies** (in compliance with ASTM F 2200, **Class IV** (all rollers to be guarded or covered)), and stops fabricated from **galvanized steel**. **Fabricate latches with integral eye openings for padlocking; padlock accessible from both sides of gate.**
1. Coordinate hardware configuration to be compatible with Gate Operator.

L. Finish exposed welds to comply with NOMMA Guideline 1, Finish #4 - good-quality, uniform undressed weld with minimal splatter.

M. Galvanizing: For items other than hardware that are indicated to be galvanized, hot-dip galvanize to comply with ASTM A 123/A 123M. For hardware items, hot-dip galvanize to comply with ASTM A 153/A 153M.

N. Metallic-Coated Steel Finish: High-performance coating.

2.7 GATE OPERATORS

A. Gate Operators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Amazing Gates of America LLC.
 b. Apollo Gate Operators.
 c. AutoGate, Inc.
 d. Begley Automated Gate Systems.
 e. Byan Systems, Inc.
 f. CAME Americas Automation LLC.
 g. Chamberlain Group, Inc. (The).
 h. DoorKing, Inc.
 i. Eagle Access Control Systems, Inc.
 j. FAAC USA.
 k. Gates That Open, LLC.
 m. Tymetal Corp.
 n. USAutomatic Inc.

B. Provide factory-assembled automatic operating system designed for gate size, type, weight, and operation frequency. Provide operation control system with characteristics suitable for Project conditions, with remote-control stations, safety devices, and weatherproof enclosures; coordinate electrical requirements with building electrical system.

 1. Provide operator designed so motor may be removed without disturbing limit-switch adjustment and without affecting auxiliary emergency operator.
 2. Provide operator with UL approval.
 4. Provide unit designed and wired for both right-hand/left-hand opening, permitting universal installation.

C. Comply with NFPA 70.

D. UL Standard: Manufacturer and label gate operators to comply with UL 325.
E. Emergency Access Requirements: Comply with requirements of authorities having jurisdiction for automatic gate operators on gates that must provide emergency access.

F. Motor Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, within installed environment, with indicated operating sequence, and without exceeding nameplate rating or considering service factor. Comply with NEMA MG 1 and the following:

1. Voltage: **NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected.**
2. Horsepower: Not less than 1/2.
3. Enclosure: **Manufacturer's standard.**
4. Duty: Continuous duty at ambient temperature of 105 deg F (40 deg C) and at altitude of 3300 feet (1005 m) above sea level.
5. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.
6. Phase: **One.**

G. Gate Operators: **Concrete base** mounted and as follows:

1. Mechanical **Slide** Gate Operators:
 a. Duty: **Heavy duty, commercial/industrial.**
 b. Gate Speed: Minimum **45 feet (13.7 m) per minute**
 c. Maximum Gate Weight: **1500 lb**
 d. Frequency of Use: **60 cycles per hour Continuous duty.**
 e. Drive Type: V-belt and [worm gear] [chain-and-sprocket] reducers, roller-chain drive.

H. Remote Controls: Electric controls separated from gate and motor and drive mechanism, with **NEMA ICS 6, Type 4** enclosure for **concrete base** mounting, and with space for additional optional equipment. Provide the following remote-control device(s):

1. Control Station: Keyed, **three-position switch with open, stop, and close function; located remotely from gate.** Provide two keys per station.
2. Control Station: Momentary-contact, **three-button-operated with open, stop, and close function; located remotely from gate. Key switch to lock out open and close buttons.**
3. Card Reader: Functions only when authorized card is presented. **Programmable, multiple code system, permitting four different access time periods ; face-lighted unit fully visible at night.**
 a. Reader Type: **Proximity.**
 b. Features: **Timed antipassback**
4. Digital Keypad Entry Unit: **Programmable, multiple-code capability of not less than 500 possible individual codes, consisting of 5-digit codes, and permitting four different access time periods.**
 a. Features: **Timed antipassback**
 b. Face-lighted unit with **metal-keyed** keypad fully visible at night.
5. Radio Control: Digital system consisting of code-compatible universal receiver for each gate, located where indicated, with remote antenna with coaxial cable and mounting
brackets designed to operate gates. Provide two programmable transmitter(s) with multiple-code capability permitting validating or voiding of not less than 1000 codes per channel configured for the following functions:

a. Transmitters: Three button operated, with open and close function.

b. Channel Settings: Two independent channel settings controlling separate receivers for operating more than one gate from each transmitter.

6. Telephone Entry System: Hands-free, voice-communication system for connection to building telephone system with digital-entry code activation of gate operator and auxiliary keypad entry.

I. "Vehicle Loop Detector" and "Vehicle Presence Detector" paragraphs below describe detectors that can be used for vehicle control and for safety, depending on function. Hold-open function is recommended only for swing gate(s). Revise paragraphs if system requires combination loop detector and presence detector to provide suitable functions. Consult manufacturers for information and features.

J. Vehicle Loop Detector: System includes automatic closing timer with adjustable time delay, timer cutoff switch and loop detector designed to open and close gate and hold gate open until traffic clears. System includes electronic detector with adjustable detection patterns, adjustable sensitivity and frequency settings, and panel indicator light designed to detect presence or transit of a vehicle over an embedded loop of wire and to emit a signal activating the gate operator. System includes number of loops consisting of multiple strands of wire, number of turns, loop size, and method of placement, as recommended in writing by detection system manufacturer for function indicated, at location shown on Drawings.

K. Obstruction Detection Devices: Provide each motorized gate with automatic safety sensor(s). Activation of sensor(s) causes operator to immediately function as follows:

1. Action: Reverse gate in both opening and closing cycles, and hold until clear of obstruction.
2. Internal Sensor: Built-in torque or current monitor senses gate is obstructed.
3. Sensor Edge: Contact-pressure-sensitive safety edge, profile, and sensitivity designed for type of gate and component indicated, in locations as follows. Connect to control circuit using gate edge transmitter and operator receiver system.

a. Along entire gate leaf leading edge.

4. Photoelectric/Infrared Sensor System: Designed to detect an obstruction in gate's path when infrared beam in the zone pattern is interrupted.

L. Limit Switches: Adjustable switches, interlocked with motor controls and set to automatically stop gate at fully retracted and fully extended positions.

M. Emergency Release Mechanism: Quick-disconnect release of operator drive system of the following type, permitting manual operation if operator fails. Design system so control-circuit power is disconnected during manual operation.

1. Type: Integral fail-safe release, allowing gate to be pushed open without mechanical devices, keys, cranks, or special knowledge.
N. Operating Features:

1. Digital Microprocessor Control: Electronic programmable means for setting, changing, and adjusting control features with capability for monitoring and auditing gate activity. Provide unit that is isolated from voltage spikes and surges.
2. System Integration: With controlling circuit board capable of accepting any type of input from external devices.
3. Automatic Closing Timer: With adjustable time delay before closing and timer cutoff switch.
4. Open Override Circuit: Designed to override closing commands.
5. Reversal Time Delay: Designed to protect gate system from shock load on reversal in both directions.
6. Maximum Run Timer: Designed to prevent damage to gate system by shutting down system if normal time to open gate is exceeded.
7. Clock Timer: 24-hour programmable for regular events.

O. Accessories:

1. Warning Module: Audio and strobe-light alarm sounding three to five seconds in advance of gate operation and continuing until gate stops moving; compliant with the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines.
2. Battery Backup System: Battery-powered drive and access-control system, independent of primary drive system:
 a. Fail-Secure: Gate cycles on battery power, then fail-safe when battery is discharged.
3. External electric-powered solenoid lock with delay timer allowing time for lock to release before gate operates.
4. Fire box.
5. Instructional, Safety, and Warning Labels and Signs: Manufacturer's standard for components and features specified.
6. Equipment Bases/Pads: Precast concrete, depth not less than 12 inches (305 mm), dimensioned and reinforced according to gate operator component manufacturer's written instructions and as indicated on Drawings.

2.8 METALLIC-COATED STEEL FINISHES

A. Galvanized Finish: Clean welds, mechanical connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

B. Surface Preparation: Clean surfaces with nonpetroleum solvent so surfaces are free of oil and other contaminants. After cleaning, apply a zinc-phosphate conversion coating suited to the organic coating to be applied over it. Clean welds, mechanical connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

C. Powder Coating: Immediately after cleaning and pretreating, apply 2-coat finish consisting of zinc-rich epoxy prime coat and TGIC polyester topcoat, with a minimum dry film thickness of 2 mils (0.05 mm) for topcoat. Comply with coating manufacturer's written instructions to achieve a minimum total dry film thickness of 4 mils (0.10 mm).
1. Color and Gloss: As selected by Architect from manufacturer's full range.
2. Comply with surface finish testing requirements in ASTM F 2408 except change corrosion-resistance requirement to 3000 hours without failure.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for site clearing, earthwork, pavement work, construction layout, and other conditions affecting performance of the Work.

B. Do not begin installation before final grading is completed unless otherwise permitted by Architect.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet (152.5 m) or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

1. Construction layout and field engineering are specified in Division 01 Section "Execution"

3.3 DECORATIVE FENCE INSTALLATION

A. Install fences according to manufacturer's written instructions.

B. Install fences by setting posts as indicated and fastening rails to posts. Peen threads of bolts after assembly to prevent removal.

C. Post Excavation: Drill or hand-excavate holes for posts in firm, undisturbed soil. Excavate holes to a diameter of not less than 4 times post size and a depth of not less than 24 inches (600 mm) plus 3 inches (75 mm) for each foot (300 mm) or fraction of a foot (300 mm) that fence height exceeds 4 feet (1200 mm).

D. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.

1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.

2. Concrete Fill: Place concrete around posts and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.

 a. Exposed Concrete: Extend 2 inches (50 mm) above grade. Finish and slope top surface to drain water away from post.
b. Concealed Concrete: Top 2 inches (50 mm) below grade as indicated on Drawings to allow covering with surface material. Slope top surface of concrete to drain water away from post.

3. Posts Set in Concrete: Extend post to within 6 inches (150 mm) of specified excavation depth, but not closer than 3 inches (75 mm) to bottom of concrete.

4. Space posts uniformly at 6 feet (1.83 m) o.c.

3.4 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.

3.5 GATE OPERATOR INSTALLATION

A. General: Install gate operators according to manufacturer's written instructions, aligned and true to fence line and grade.

B. Excavation for Concrete Bases: Hand-excavate holes for bases in firm, undisturbed soil to dimensions and depths and at locations as required by gate operator component manufacturer's written instructions and as indicated.

C. Concrete Bases: Cast-in-place or precast concrete, depth not less than 12 inches (300 mm), dimensioned and reinforced according to gate operator component manufacturer's written instructions and as indicated on Drawings.

D. Vehicle Loop Detector System: Cut grooves in pavement and bury and seal wire loop according to manufacturer's written instructions. Connect to equipment operated by detector.

E. Comply with NFPA 70 and manufacturer's written instructions for grounding of electric-powered motors, controls, and other devices.

3.6 GROUNDING AND BONDING

A. Fence Grounding: Install at maximum intervals of 1500 feet (450 m) except as follows:

1. Fences within 100 Feet (30 m) of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet (225 m).

 a. Gates and Other Fence Openings: Ground fence on each side of opening.

 1) Bond metal gates to gate posts.

 2) Bond across openings, with and without gates, except openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches (460 mm) below finished grade.
B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet (45 m) on each side of crossing.

C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

D. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches (150 mm) below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at the grounding location.

E. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.

F. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
 2. Make connections with clean, bare metal at points of contact.
 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

G. Bonding to Lightning-Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning-protection down conductor or lightning-protection grounding conductor, complying with NFPA 780.

3.7 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

END OF SECTION 323119
SECTION 334100 - STORM UTILITY DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipe and fittings.
2. Non-pressure transition couplings.
3. Pressure pipe couplings.
4. Expansion joints and deflection fittings.
5. Backwater valves.
6. Cleanouts.
7. Drains.
8. Encasement for piping.
10. Channel drainage systems.
11. Catch basins.
13. Stormwater detention structures.
15. Stormwater disposal systems.

1.3 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:

1. Manholes: Include plans, elevations, sections, details, frames, and covers.
2. Catch basins and stormwater inlets: Include plans, elevations, sections, details, frames, covers, and grates.
3. Stormwater Detention Structures: Include plans, elevations, sections, details, frames, covers, design calculations, and concrete design-mix reports.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from storm drainage system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.

B. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.

C. Field quality-control reports.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic manholes, pipe, and fittings in direct sunlight.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

C. Handle manholes according to manufacturer's written rigging instructions.

D. Handle catch basins and stormwater inlets according to manufacturer's written rigging instructions.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

 1. Notify Architect no fewer than two days in advance of proposed interruption of service.
 2. Do not proceed with interruption of service without Architect's written permission.

PART 2 - PRODUCTS

2.1 DUCTILE-IRON, CULVERT PIPE AND FITTINGS

A. Pipe: ASTM A 716, for push-on joints.

B. Standard Fittings: AWWA C110, ductile or gray iron, for push-on joints.

C. Compact Fittings: AWWA C153, for push-on joints.

D. Gaskets: AWWA C111, rubber.

2.2 DUCTILE-IRON, PRESSURE PIPE AND FITTINGS

A. Push-on-Joint Piping:

 1. Pipe: AWWA C151, for push-on joints.
2. Standard Fittings: AWWA C110, ductile or gray iron, for push-on joints.
3. Compact Fittings: AWWA C153, for push-on joints.

B. Mechanical-Joint Piping:
 1. Pipe: AWWA C151, with bolt holes in bell.
 2. Standard Fittings: AWWA C110, ductile or gray iron, with bolt holes in bell.
 4. Glands: Cast or ductile iron, with bolt holes and high-strength, cast-iron or high-strength, low-alloy steel bolts and nuts.
 5. Gaskets: AWWA C111, rubber, of shape matching pipe, fittings, and glands.

2.3 PE PIPE AND FITTINGS

A. Corrugated PE Pipe and Fittings NPS 12 to NPS 60 (DN 300 to DN 1500): AASHTO M 294M, Type S, with smooth waterway for coupling joints.

2.4 PVC PIPE AND FITTINGS

A. PVC Type PSM Sewer Piping:
 1. Pipe: ASTM D 3034, SDR 26, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
 2. Fittings: ASTM D 3034, PVC with bell ends.

B. PVC Pressure Piping:
 2. Fittings: AWWA C900, Class 150 PVC pipe with bell ends

C. PVC Water-Service Piping:
 1. Pipe: ASTM D 1785, Schedule 40 and Schedule 80 PVC, with plain ends for solvent-cemented joints.

2.5 CONCRETE PIPE AND FITTINGS

A. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76 (ASTM C 76M).
1. Bell-and-spigot or tongue-and-groove ends and gasketed joints with ASTM C 443 (ASTM C 443M), rubber gaskets Retain first subparagraph below only for NPS 60 to NPS 144 (DN 1500 to DN 3600).
2. Class III, Wall B.

2.6 NONPRESSURE TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground non-pressure piping. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:
 1. For Concrete Pipes: ASTM C 443 (ASTM C 443M), rubber.
 2. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

C. Unshielded, Flexible Couplings:
 1. Description: Elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.

D. Shielded, Flexible Couplings:
 1. Description: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

E. Ring-Type, Flexible Couplings:
 1. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.7 PRESSURE PIPE COUPLINGS

A. Description: AWWA C219, tubular-sleeve coupling, with center sleeve, gaskets, end rings, and bolt fasteners.

B. Metal, bolted, sleeve-type, reducing or transition coupling, for joining underground pressure piping. Include 150-psig (1035-kPa) minimum pressure rating and ends sized to fit adjoining pipes.

C. Center-Sleeve Material: Ductile iron.

D. Gasket Material: Natural or synthetic rubber.

E. Metal Component Finish: Corrosion-resistant coating or material.
2.8 BACKWATER VALVES

A. Cast-Iron Backwater Valves:
 1. Description: ASME A112.14.1, gray-iron body and bolted cover, with bronze seat.
 2. Horizontal type; with swing check valve and hub-and-spigot ends.
 3. Combination horizontal and manual gate-valve type; with swing check valve, integral gate valve, and hub-and-spigot ends.
 4. Terminal type; with bronze seat, swing check valve, and hub inlet.

B. Plastic Backwater Valves:
 1. Description: Horizontal type; with PVC body, PVC removable cover, and PVC swing check valve.

2.9 CLEANOUTS

A. Cast-Iron Cleanouts:
 1. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 2. Top-Loading Classification(s): Medium Duty or Heavy Duty as specified or applicable.
 3. Sewer Pipe Fitting and Riser to Cleanout: As specified or match sewer pipe material.

B. Plastic Cleanouts:
 1. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.10 DRAINS

A. Cast-Iron Area Drains:
 1. Description: ASME A112.6.3 gray-iron round body with anchor flange and round secured grate. Include bottom outlet with inside calk or spigot connection, of sizes indicated.
 2. Top-Loading Classification(s): Heavy Duty.

B. Cast-Iron Trench Drains:
 1. Description: ASME A112.6.3, 6-inch- (150-mm-) wide top surface unless specified otherwise, rectangular body with anchor flange or other anchoring device, and rectangular secured grate. Include units of total length indicated and quantity of bottom outlets with inside calk or spigot connections, of sizes indicated.
 2. Top-Loading Classification(s): Medium Duty for walkways, Heavy Duty for traffic areas.

C. Steel Trench Drains:
 1. Description: Factory fabricated from ASTM A 242/A 242M, welded steel plate, to form rectangular body with uniform bottom downward slope of 2 percent toward outlet, anchor flange, and grate. Include units of total length indicated, bottom outlet of size indicated, outlet strainer, acid-resistant enamel coating on inside and outside surfaces, and grate with openings of total free area at least two times cross-sectional area of outlet.
2. Plate Thicknesses: 1/8 inch (3.2 mm).
3. Overall Widths: 7-1/2 inches (190 mm).
 a. Grate Openings: 3/8-by-3-inch (9.5-by-76-mm) slots.

2.11 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105.

B. Material: Linear low-density polyethylene film of 0.008-inch (0.20-mm) or high-density, cross-laminated polyethylene film of 0.004-inch (0.10-mm) minimum thickness.

C. Form: Sheet or tube.

D. Color: Black.

2.12 MANHOLES

A. Standard Precast Concrete Manholes:
 1. Description: ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 2. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.
 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
 4. Base Section: 12-inch (300-mm) minimum thickness for floor slab and 4-inch (102-mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 5. Riser Sections: 4-inch (102-mm) minimum thickness, and lengths to provide depth indicated.
 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.
 8. Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.
 9. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
 10. Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Designed Precast Concrete Manholes:
 1. Description: ASTM C 913; designed according to ASTM C 890 for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
4. Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.
5. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
6. Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, to match diameter of manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers:

1. Description: Ferrous; 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with 4-inch- (102-mm-) minimum width flange and 26-inch- (660-mm-) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."
2. Material: ASTM A 536, Grade 60-40-18 ductile or ASTM A 48/A 48M, Class 35 gray iron unless otherwise indicated.

2.13 CONCRETE

A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R (ACI 350M/350RM), and the following:

1. Cement: ASTM C 150, Type II.

B. Portland Cement Design Mix: 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio.

2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.

1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 a. Invert Slope: 1 percent through manhole unless indicated otherwise.

2. Benches: Concrete, sloped to drain into channel.
a. Slope: 4 percent minimum.

D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi (20.7 MPa) minimum, with 0.58 maximum water/cementitious materials ratio.
 2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

2.14 POLYMER-CONCRETE, CHANNEL DRAINAGE SYSTEMS

A. General Requirements for Polymer-Concrete, Channel Drainage Systems: Modular system of precast, polymer-concrete channel sections, grates, and appurtenances; designed so grates fit into channel recesses without rocking or rattling. Include quantity of units required to form total lengths indicated.

B. Sloped-Invert, Polymer-Concrete Systems:
 1. Channel Sections:
 a. Interlocking-joint, precast, modular units with end caps.
 b. 4-inch (102-mm) inside width and deep, rounded bottom, with built-in invert slope of 0.6 percent and with outlets in quantities, sizes, and locations indicated.
 c. Extension sections necessary for required depth.
 d. Frame: Include gray-iron or steel frame for grate.
 2. Grates:
 a. Manufacturer's designation "Medium Duty," with slots or perforations that fit recesses in channels.
 b. Material: Fiberglass, Galvanized steel, Gray iron or Stainless steel as indicated on Drawings.
 3. Covers: Solid gray iron if indicated.
 4. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

C. Narrow-Width, Level-Invert, Polymer-Concrete Systems:
 1. Channel Sections:
 a. Interlocking-joint, precast, modular units with end caps.
 b. 5-inch (127-mm) inside width and 9-3/4-inch- (248-mm-) deep, rounded bottom, with level invert and with NPS 4 (DN 100) outlets in quantities, sizes, and locations indicated.
 2. Grates:
 a. Slots or perforations that fit recesses in channels.
 b. Material: Fiberglass, Galvanized steel, Gray iron, or Stainless steel as indicated on Drawings.
3. Covers: Solid gray iron if indicated.
4. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

D. Wide-Width, Level-Invert, Polymer-Concrete Systems:

1. Channel Sections:
 a. Interlocking-joint, precast, modular units with end caps.
 b. **8-inch (203-mm) inside width and 13-3/4-inch- (350-mm-) deep**, rounded bottom, with level invert and with outlets in quantities, sizes, and locations indicated.

2. Grates:
 a. Slots or other openings that fit recesses in channels.
 b. Material: **Fiberglass** or **Gray iron** as indicated on Drawings.

3. Covers: Solid gray iron if indicated.
4. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

E. Drainage Specialties: Precast, polymer-concrete units.

1. Large Catch Basins:
 a. 24-by-12-inch (610-by-305-mm) polymer-concrete body, with outlets in quantities and sizes indicated.
 b. Gray-iron slotted grate.
 c. Frame: Include gray-iron or steel frame for grate.

2. Small Catch Basins:
 a. 19- to 24-inch by approximately 6-inch (483- to 610-mm by approximately 150-mm) polymer-concrete body, with outlets in quantities and sizes indicated.
 b. Gray-iron slotted grate.
 c. Frame: Include gray-iron or steel frame for grate.

3. Oil Interceptors:
 a. Polymer-concrete body with interior baffle and four steel support channels and two 1/4-inch- (6.4-mm-) thick, steel-plate covers.
 b. Steel-plate covers.
 c. Capacity: **140 gal. (530 L)**, **200 gal. (757 L)**, or **260 gal. (984 L)** as indicated on Drawings.
 d. Inlet and Outlet: **NPS 4 (DN 100)** or **NPS 6 (DN 150)** as indicated on Drawings.

4. Sediment Interceptors:
 a. 27-inch- (686-mm-) square, polymer-concrete body, with outlets in quantities and sizes indicated.
b. 24-inch- (610-mm-) square, gray-iron frame and slotted grate.

F. Supports, Anchors, and Setting Devices: Manufacturer's standard unless otherwise indicated.

G. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

2.15 PLASTIC, CHANNEL DRAINAGE SYSTEMS

A. General Requirements for Plastic, Channel Drainage Systems:

1. Modular system of plastic channel sections, grates, and appurtenances.
2. Designed so grates fit into frames without rocking or rattling.
3. Number of units required to form total lengths indicated.

B. Fiberglass Systems:

1. Channel Sections:
 a. Interlocking-joint, fiberglass modular units, with built-in invert slope of approximately 1 percent and with end caps.
 b. Rounded or inclined inside bottom surface, with outlets in quantities, sizes, and locations indicated.
 c. Width: 6 or 8 inches (150 or 203 mm) as indicated on Drawings.

2. Factory- or field-attached frames that fit channel sections and grates.
 a. Material: Galvanized steel or Stainless steel as indicated on Drawings.

3. Grates with slots or perforations that fit frames.
 a. Material: Fiberglass, Galvanized steel, Gray iron or Stainless steel as indicated on Drawings.

4. Covers: Solid gray iron if indicated.

5. Drainage Specialties:
 a. Large Catch Basins: 24-inch- (610-mm-) square plastic body, with outlets in quantities and sizes indicated. Include gray-iron frame and slotted grate.
 b. Small Catch Basins: 12-by-24-inch (305-by-610-mm) plastic body, with outlets in quantities and sizes indicated. Include gray-iron frame and slotted grate.

C. PE Systems:

1. Channel Sections: Interlocking-joint, PE modular units, 4 inches (102 mm) wide, with end caps. Include rounded bottom, with level invert and with outlets in quantities, sizes, and locations indicated.

2. Grates: PE, ladder shaped; with stainless-steel screws.

3. Color: Gray unless otherwise indicated.

4. Drainage Specialties: Include the following PE components:
a. Drains: 4-inch- (102-mm-) square, slotted top; with NPS 3 (DN 80) bottom outlet.

b. Catch Basins: 12-inch- (305-mm-) square plastic body, with outlets in quantities and sizes indicated. Include PE slotted grate 11-3/4 inches (298 mm) square by 1-1/8 inches (28.6 mm) thick.

D. Supports, Anchors, and Setting Devices: Manufacturer's standard unless otherwise indicated.

E. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

2.16 CATCH BASINS

A. Standard Precast Concrete Catch Basins:

1. Description: ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.

2. Base Section: 6-inch (150-mm) minimum thickness for floor slab and 4-inch (102-mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.

3. Riser Sections: 4-inch (102-mm) minimum thickness, 48-inch (1200-mm) diameter, and lengths to provide depth indicated.

4. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated. Top of cone of size that matches grade rings.

6. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.

7. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 225-mm) total thickness, that match 24-inch- (610-mm-) diameter frame and grate.

8. Pipe Connectors: ASTM C 923 (ASTM C 923M), resilient, of size required, for each pipe connecting to base section.

B. Designed Precast Concrete Catch Basins: ASTM C 913, precast, reinforced concrete; designed according to ASTM C 890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for joint sealants.

2. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.

3. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 225-mm) total thickness, that match 24-inch- (610-mm-) diameter frame and grate.

4. Pipe Connectors: ASTM C 923 (ASTM C 923M), resilient, of size required, for each pipe connecting to base section.

C. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include flat grate with small square or short-slotted drainage openings.

1. Size: 24 by 24 inches (610 by 610 mm) minimum unless otherwise indicated.

2. Grate Free Area: Approximately 50 percent unless otherwise indicated.
D. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with 4-inch (102-mm) minimum width flange, and 26-inch- (660-mm-) diameter flat grate with small square or short-slotted drainage openings.

1. Grate Free Area: Approximately 50 percent unless otherwise indicated.

2.17 STORMWATER INLETS

A. Curb Inlets: Made with vertical curb opening, of materials and dimensions according to utility standards.

B. Gutter Inlets: Made with horizontal gutter opening, of materials and dimensions according to utility standards. Include heavy-duty frames and grates.

C. Combination Inlets: Made with vertical curb and horizontal gutter openings, of materials and dimensions according to utility standards. Include heavy-duty frames and grates.

D. Frames and Grates: Heavy duty, according to utility standards.

2.18 STORMWATER DETENTION STRUCTURES

A. Cast-in-Place Concrete, Stormwater Detention Structures: Constructed of reinforced-concrete bottom, walls, and top; designed according to ASTM C 890 for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, dimensions, and appurtenances indicated.

1. Ballast: Increase thickness of concrete as required to prevent flotation.
2. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 229-mm) total thickness, that match 24-inch- (610-mm-) diameter frame and cover.
3. Steps: Individual FRP steps or FRP ladder, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of structure to finished grade is less than 60 inches (1500 mm).

B. Manhole Frames and Covers: ASTM A 536, Grade 60-40-18, ductile-iron castings designed for heavy-duty service. Include 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with 4-inch (102-mm) minimum width flange, and 26-inch- (660-mm-) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."

2.19 PIPE OUTLETS

A. Head Walls: Cast-in-place reinforced concrete, with apron and tapered sides.

B. Riprap Basins: Broken, irregularly sized and shaped, graded stone according to NSSGA's "Quarried Stone for Erosion and Sediment Control."

1. Average Size: NSSGA No. R-5, screen opening 5 inches (127 mm).

D. Energy Dissipaters: According to NSSGA's "Quarried Stone for Erosion and Sediment Control," No. A-1, 3-ton (2721-kg) average weight armor stone, unless otherwise indicated.

2.20 STORMWATER DISPOSAL SYSTEMS

A. Chamber Systems:
 1. Storage and Leaching Chambers: Molded PE with perforated sides and open bottom. Include number of chambers, distribution piping, end plates, and other standard components as required for system total capacity.
 2. Filtering Material: ASTM D 448, Size No. 24, 3/4- to 2-1/2-inch (19- to 63-mm) washed, crushed stone or gravel.
 3. Filter Mat: Geotextile woven or spun filter fabric, in one or more layers, for minimum total unit weight of 4 oz./sq. yd. (135 g/sq. m).

B. Pipe Systems: Perforated manifold, header, and lateral piping complying with AASHTO M 252M for NPS 10 (DN 250) and smaller, AASHTO M 294M for NPS 12 to NPS 60 (DN 300 to DN 1500). Include proprietary fittings, couplings, seals, and filter fabric.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Install gravity-flow, nonpressure drainage piping according to the following:

1. Install piping pitched down in direction of flow.
2. Install piping NPS 6 (DN 150) and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.
3. Install piping with 36-inch (915-mm) minimum cover.
4. Install ductile-iron piping and special fittings according to AWWA C600 or AWWA M41.
5. Install PE corrugated sewer piping according to ASTM D 2321.
6. Install PVC sewer piping according to ASTM D 2321 and ASTM F 1668.
7. Install PVC water-service piping according to ASTM D 2321 and ASTM F 1668.
8. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."

G. Install force-main pressure piping according to the following:

1. Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.
2. Install piping with 36-inch (915-mm) minimum cover.
3. Install ductile-iron pressure piping according to AWWA C600 or AWWA M41.
4. Install ductile-iron special fittings according to AWWA C600.
5. Install PVC pressure piping according to AWWA M23, or ASTM D 2774 and ASTM F 1668.
6. Install PVC water-service piping according to ASTM D 2774 and ASTM F 1668.

H. Install corrosion-protection piping encasement over the following underground metal piping according to ASTM A 674 or AWWA C105:

1. Ductile-iron pipe and fittings.
2. Expansion joints and deflection fittings.

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, non-pressure drainage piping according to the following:

1. Join ductile-iron culvert piping according to AWWA C600 for push-on joints.
2. Join ductile-iron piping and special fittings according to AWWA C600 or AWWA M41.
3. Join corrugated PE piping according to ASTM D 3212 for push-on joints.
4. Join PVC sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasketed joints.

B. Join force-main pressure piping according to the following:
1. Join ductile-iron pressure piping according to AWWA C600 or AWWA M41 for push-on joints.
2. Join ductile-iron special fittings according to AWWA C600 or AWWA M41 for push-on joints.
3. Join PVC pressure piping according to AWWA M23 for gasketed joints.
4. Join PVC water-service piping according to ASTM D 2855 for solvent-cemented joints.
5. Join dissimilar pipe materials with pressure-type couplings.

3.4 BACKWATER VALVE INSTALLATION

A. Install horizontal-type backwater valves in piping where indicated.
B. Install combination horizontal and manual gate-valve type in piping and in manholes where indicated.
C. Install terminal-type backwater valves on end of piping and in manholes where indicated.

3.5 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use Medium-Duty, top-loading classification cleanouts in earth, unpaved or paved foot-traffic areas.
 2. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
B. Set cleanout frames and covers in earth in cast-in-place concrete block, 18 by 18 by 12 inches (450 by 450 by 300 mm) deep. Set with tops 1 inch (25 mm) above surrounding earth grade.
C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.6 DRAIN INSTALLATION

A. Install type of drains in locations indicated.
 1. Use Medium-Duty, top-loading classification drains in earth, unpaved or paved foot-traffic areas.
 2. Use Heavy-Duty, top-loading classification drains in vehicle-traffic service areas.
 3. Use Extra-Heavy-Duty, top-loading classification drains in roads.
B. Embed drains in 4-inch (102-mm) minimum concrete around bottom and sides.
C. Fasten grates to drains if indicated.
D. Set drain frames and covers with tops flush with pavement surface.
E. Assemble trench sections with flanged joints.
F. Embed trench sections in **4-inch (102-mm)** minimum concrete around bottom and sides.

3.7 MANHOLE INSTALLATION

A. General: Install manholes, complete with appurtenances and accessories indicated.

B. Install precast concrete manhole sections with sealants according to ASTM C 891.

C. Where specific manhole construction is not indicated, follow manhole manufacturer's written instructions.

D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops **3 inches (76 mm)** above finished surface elsewhere unless otherwise indicated.

3.8 CATCH BASIN INSTALLATION

A. Construct catch basins to sizes and shapes indicated.

B. Set frames and grates to elevations indicated.

3.9 STORMWATER INLET AND OUTLET INSTALLATION

A. Construct inlet head walls, aprons, and sides of reinforced concrete, as indicated.

B. Construct riprap of broken stone, as indicated.

C. Install outlets that spill onto grade, anchored with concrete, where indicated.

D. Install outlets that spill onto grade, with flared end sections that match pipe, where indicated.

E. Construct energy dissipaters at outlets, as indicated.

3.10 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.

3.11 CHANNEL DRAINAGE SYSTEM INSTALLATION

A. Install with top surfaces of components, except piping, flush with finished surface.

B. Assemble channel sections to form slope down toward drain outlets. Use sealants, adhesives, fasteners, and other materials recommended by system manufacturer.

C. Embed channel sections and drainage specialties in **4-inch (102-mm)** minimum concrete around bottom and sides.

D. Fasten grates to channel sections if indicated.
E. Assemble channel sections with flanged or interlocking joints.

F. Embed channel sections in 4-inch (102-mm) minimum concrete around bottom and sides.

3.12 STORMWATER DISPOSAL SYSTEM INSTALLATION

A. Chamber Systems: Excavate trenches of width and depth, and install system and backfill according to chamber manufacturer's written instructions. Include storage and leaching chambers, filtering material, and filter mat.

B. Piping Systems: Excavate trenches of width and depth, and install piping system, filter fabric, and backfill, according to piping manufacturer's written instructions.

3.13 CONNECTIONS

A. Connect non-pressure, gravity-flow drainage piping in building's storm building drains specified in Section 221413 "Facility Storm Drainage Piping."

B. Connect force-main piping to building's storm drainage force mains specified in Section 221413 "Facility Storm Drainage Piping." Terminate piping where indicated.

C. Make connections to existing piping and underground manholes.

1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch (150-mm) overlap, with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).

2. Make branch connections from side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500). Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).

3. Make branch connections from side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes and structures by cutting into existing unit and creating an opening large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, encase entering connection in 6 inches (150 mm) of concrete for minimum length of 12 inches (300 mm) to provide additional support of collar from connection to undisturbed ground.

 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi (20.7 MPa) unless otherwise indicated.

 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.

4. Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.
D. Connect to sediment interceptors specified in Section 221323 "Sanitary Waste Interceptors."

E. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

1. Use non-pressure-type flexible couplings where required to join gravity-flow, non-pressure sewer piping unless otherwise indicated.

 a. **Shielded** flexible couplings for same or minor difference OD pipes.
 b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

2. Use pressure-type pipe couplings for force-main joints.

3.14 CLOSING ABANDONED STORM DRAINAGE SYSTEMS

A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:

1. Close open ends of piping with at least 8-inch- (203-mm-) thick, brick masonry bulkheads.
2. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.

B. Abandoned Manholes and Structures: Excavate around manholes and structures as required and use one procedure below:

1. Remove manhole or structure and close open ends of remaining piping.
2. Remove top of manhole or structure down to at least 36 inches (915 mm) below final grade. Fill to within 12 inches (300 mm) of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.

C. Backfill to grade according to **Section 312000 "Earth Moving."**

3.15 IDENTIFICATION

A. Materials and their installation are specified in Section 312000 "Earth Moving." Arrange for installation of green warning tape directly over piping and at outside edge of underground structures.

1. Use **warning tape** or detectable warning tape over ferrous piping.
2. Use detectable warning tape over nonferrous piping and over edges of underground structures.
3.16 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches (610 mm) of backfill is in place, and again at completion of Project.

1. Submit separate reports for each system inspection.
2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.

3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Re-inspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Gravity-Flow Storm Drainage Piping: Test according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Option: Test plastic piping according to ASTM F 1417.
 b. Option: Test concrete piping according to ASTM C 924 (ASTM C 924M).
6. Force-Main Storm Drainage Piping: Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psig (1035 kPa).
 a. Ductile-Iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.
 b. PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.17 CLEANING

A. Clean interior of piping of dirt and superfluous materials. **Flush with water.**
END OF SECTION 334100