BEN TAUB HOSPITAL BRONCHOSCOPY SUITE RENOVATION

1504 Taub Loop. Houston.Texas 77030

SECTION 00 01 10

TABLE OF CONTENTS

PROCUREMENT AND CONTRACTING DOCUMENTS GROUP

DIVISION 00 PROCUREMENT AND CONTRACTING REQUIREMENTS

- 00 01 10 TABLE OF CONTENTS
- 00 31 00 AVAILABLE PROJECT INFORMATION

HARRIS COUNTY GENERAL CONDITIONS (FOR BUILDING CONSTRUCTION AND RELATED WORK)

HARRIS HEALTH SYSTEM POLICY AND PROCEDURES MANUAL

- PRE-CONSTRUCTION RISK ASSESSMENT (PRA) PROGRAM
- PRE-CONSTRUCTION RISK ASSESSMENT PROGRAM
- ALTERNATIVE LIFE SAFETY MEASURES
- ABOVE CEILING WORK AND FIRE/SMOKE WALL PENETRATIONS
- IDENTIFICATION ACCESS BADGE REQUEST

HARRIS HEALTH SYSTEM GUIDELINES AND PROCEDURES

- CONTRACTORS WORK GUIDELINES
- REQUEST FOR UTILITY/OPERATIONAL SYSTEM SHUTDOWN
- FIBER OPTIC CABLING PROTECTION PROCEDURE

Balance of Documents required for procurement and contracting will be provided by the Owner.

SPECIFICATIONS GROUP

General Requirements Subgroup

DIVISION 01 GENERAL REQUIREMENTS

- 01 01 00 SUMMARY OF WORK
- 01 10 00 SUMMARY
- 01 20 00 PRICE AND PAYMENT PROCEDURES
- 01 25 00 SUBSTITUTION PROCEDURES
- SUBSTITUTION REQUEST FORM
- 01 26 00 CONTRACT MODIFICATION PROCEDURES
- 01 30 00 ADMINISTRATIVE REQUIREMENTS
- 01 35 16 ALTERATION PROJECT PROCEDURES
- 01 40 00 QUALITY REQUIREMENTS
- 01 42 16 DEFINITIONS

TABLE OF CONTENTS

00 01 10 - 1 Issued for Construction – 7/13/2018

Ben Taub Hospital Houston, Texas

01 50 00 01 60 00 01 70 00 01 78 00 01 79 00 01 91 13	TEMPORARY FACILITIES AND CONTROLS PRODUCT REQUIREMENTS EXECUTION AND CLOSEOUT REQUIREMENTS CLOSEOUT SUBMITTALS DEMONSTRATION AND TRAINING GENERAL COMMISSIONING REQUIREMENTS
	Facility Construction Subgroup
DIVISION 02	EXISTING CONDITIONS
02 41 19	SELECTIVE DEMOLITION
DIVISION 03	CONCRETE
03 54 00	CAST UNDERLAYMENT
DIVISION 04	MASONRY
	NOT APPLICABLE
DIVISION 05	METALS
05 50 00	METAL FABRICATIONS
	WOOD BLASTICS AND COMPOSITES
DIVISION 00	WOOD, FLASTICS, AND CONFOSTES
06 10 00 06 41 00 06 64 00	ROUGH CARPENTRY ARCHITECTURAL WOOD CASEWORK PLASTIC FABRICATIONS
06 10 00 06 41 00 06 64 00 DIVISION 07	ROUGH CARPENTRY ARCHITECTURAL WOOD CASEWORK PLASTIC FABRICATIONS THERMAL AND MOISTURE PROTECTION
06 10 00 06 41 00 06 64 00 DIVISION 07 07 21 00 07 84 00 07 90 05	ROUGH CARPENTRY ARCHITECTURAL WOOD CASEWORK PLASTIC FABRICATIONS THERMAL AND MOISTURE PROTECTION THERMAL INSULATION FIRESTOPPING JOINT SEALERS
06 10 00 06 41 00 06 64 00 DIVISION 07 07 21 00 07 84 00 07 90 05 DIVISION 08	ROUGH CARPENTRY ARCHITECTURAL WOOD CASEWORK PLASTIC FABRICATIONS THERMAL AND MOISTURE PROTECTION THERMAL INSULATION FIRESTOPPING JOINT SEALERS OPENINGS
06 10 00 06 41 00 06 64 00 DIVISION 07 07 21 00 07 84 00 07 90 05 DIVISION 08 08 12 13 08 14 16 08 31 00 08 71 00 08 71 13 08 80 00	ROUGH CARPENTRY ARCHITECTURAL WOOD CASEWORK PLASTIC FABRICATIONS THERMAL AND MOISTURE PROTECTION THERMAL INSULATION FIRESTOPPING JOINT SEALERS OPENINGS HOLLOW METAL FRAMES FLUSH WOOD DOORS ACCESS DOORS AND PANELS DOOR HARDWARE AUTOMATIC DOOR OPERATORS GLAZING
06 10 00 06 41 00 06 64 00 DIVISION 07 07 21 00 07 84 00 07 90 05 DIVISION 08 08 12 13 08 14 16 08 31 00 08 71 00 08 71 13 08 80 00 DIVISION 09	ROUGH CARPENTRY ARCHITECTURAL WOOD CASEWORK PLASTIC FABRICATIONS THERMAL AND MOISTURE PROTECTION THERMAL INSULATION FIRESTOPPING JOINT SEALERS OPENINGS HOLLOW METAL FRAMES FLUSH WOOD DOORS ACCESS DOORS AND PANELS DOOR HARDWARE AUTOMATIC DOOR OPERATORS GLAZING FINISHES

09 30 00 TILING

- 09 51 00 ACOUSTICAL CEILINGS
- 09 65 00 RESILIENT FLOORING
- 09 91 23 INTERIOR PAINTING
- 09 96 00 HIGH-PERFORMANCE COATINGS

DIVISION 10 SPECIALTIES

- 10 11 01 VISUAL DISPLAY BOARDS
- 10 21 23 CUBICLE CURTAINS AND TRACK
- 10 26 00 WALL AND DOOR PROTECTION
- 10 28 00 TOILET, BATH, AND LAUNDRY ACCESSORIES
- 10 44 00 FIRE PROTECTION SPECIALTIES

DIVISION 11 EQUIPMENT

- 11 40 00 FOODSERVICE EQUIPMENT
- 11 70 00 HEALTHCARE EQUIPMENT

DIVISION 12 FURNISHINGS

- 12 24 00 WINDOW SHADES 12 36 00 COUNTERTOPS
- DIVISION 13 SPECIAL CONSTRUCTION
 - 13 49 05 X-RAY RADIATION PROTECTION
- DIVISION 14 CONVEYING EQUIPMENT

NOT APPLICABLE

DIVISION 21 FIRE SUPPRESSION

21 11 00 WET-PIPE FIRE SUPPRESSION SPRINKLERS

DIVISION 22 PLUMBING

- 22 05 00 COMMON WORK RESULTS FOR PLUMBING
- 22 05 29 PLUMBING HANGERS AND SUPPORTS
- 22 05 53 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
- 22 11 16 DOMESTIC WATER PIPING
- 22 13 16 SANITARY WASTE AND VENT PIPING
- 22 30 00 PLUMBING EQUIPMENT
- 22 40 00 PLUMBING FIXTURES
- 22 63 13 GAS PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

DIVISION 23 HEATING, VENTILATING, AND AIR CONDITIONING

- 23 05 00 COMMON WORK RESULTS FOR HVAC
- 23 05 48 VIBRATION CONTROLS FOR HVAC

- 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC
- 23 07 13 DUCT INSULATION
- 23 08 00 COMMISSIONING OF HVAC
- 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC
- 23 31 13 METAL DUCTS
- 23 33 00 AIR DUCT ACCESSORIES
- 23 34 23 HVAC POWER VENTILATORS
- 23 36 00 AIR TERMINAL UNITS
- 23 37 13 DIFFUSERS, REGISTERS, AND GRILLES

DIVISION 26 ELECTRICAL

- 26 00 10 ELECTRICAL GENERAL PROVISIONS
- 26 00 11 SUBMITTALS
- 26 00 12 OPERATION AND MAINTENANCE MANUALS
- 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
- 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- 26 05 29 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
- 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
- 26 05 44 SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING
- 26 05 53 ELECTRICAL IDENTIFICATION
- 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS
- 26 24 16 PANELBOARDS
- 26 24 16.10 ISOLATION PANELBOARDS
- 26 27 26 WIRING DEVICES
- 26 28 16 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
- 26 51 00 INTERIOR LIGHTING

DIVISION 27 COMMUNICATIONS

- 27 05 00 COMMOM WORK RESULTS
- 27 05 28 PATHWAYS FOR COMMUNICATIONS SYSTEMS
- 27 05 53 IDENTIFICATION FOR COMMUNICATIONS SYSTEMS
- 27 12 00 CABLE TELEVISION DISTRIBUTION SYSTEM
- 27 15 00 COMMUNICATIONS HORIZONTAL CABLING
- 27 16 00 COMMUNICATIONS CONNECTING CORDS, DEVICES, AND ADAPTORS
- 27 51 17 OVERHEAD PAGING SYSTEMS
- 27 52 23 NURSE/PATIENT COMMUNICATIONS NETWORK

DIVISION 28 ELECTRONIC SAFETY AND SECURITY

28 13 00 ELECTRONIC SAFETY AND SECURITY

DIVISION 31 EARTHWORK

NOT APPLICABLE

DIVISION 32 EXTERIOR IMPROVEMENTS

NOT APPLICABLE

DIVISION 33 UTILITIES NOT APPLICABLE

END OF SECTION

SECTION 23 05 00

COMMON WORK RESULTS FOR HVAC

CONDITIONS OF THE CONTRACT AND DIVISION 1, as applicable, apply to this Section.

PART 1 - GENERAL

1.1 SUMMARY

- A. Common work results for requirements specifically applicable to Division 23.
- B. Requirements of Division 01 Specifications, General Provisions of the Contract and General and Supplementary Conditions apply to this Division.

1.2 **REFERENCES**

- A. ANSI: American National Standards Institute.
- B. ARI: American Refrigeration Institute.
- C. ASHRAE: American Society of Heating Refrigeration and Air Conditioning Engineers.
- D. 2012 International Building Code with City of Houston Amendments.
- E. 2012 International Fire Code with City of Houston Amendments.
- F. 2012 Uniform Mechanical Code with City of Houston Amendments
- G. 2012 Uniform Plumbing Code with City of Houston Amendments.
- H. 2009 International Energy Code with City of Houston Amendments.
- I. ASME: American Society for Mechanical Engineers.
- J. ASTM: American Society for Testing and Materials
- K. FM: Factory Mutual
- L. IRI: Industrial Risk Insurers
- M. MSS: Manufacturer's Standardization Society of the Valve and Fitting Industry.
- N. NEMA: National Electrical Manufacturers' Association.

- O. NFPA: National Fire Protection Association.
- P. SMACNA: Sheet Metal and Air Conditioning Contractors' National Association.
- Q. UL: Underwriters' Laboratories, Inc.
- R. U.L. Fire Resistance Index
- S. ASTM E814-88: Standard Test Method for Fire Tests of Through-Penetration Firestops.

1.3 QUALITY ASSURANCE

- A. All work shall be performed in accordance with the latest edition of the applicable codes, specifications, local ordinances, industry standards, utility company regulations, and nationally accepted codes.
- B. All materials, distribution, and utilization equipment shall be UL Listed.
- C. All equipment and materials shall be new, unused and of United States Domestic manufacture unless approved otherwise by engineer or owner.
- D. Any and all abnormal sources of noise shall be eliminated noted by the Architect or Engineer not to be an inherent part of the systems as designed without additional cost to the Owner.

1.4 **PROJECT/SITE CONDITIONS**

- A. Layouts indicated on drawings are diagrammatical and intended to show relative positions and arrangement of equipment, ductwork and piping. Coordinate mechanical work with other trades and measurements obtained at the job site, as applicable, prior to installation. Generally, install work in locations shown on Drawings, using as necessary rises, drops, offsets, transitions, and alternate routings to fit in the available space unless prevented by Project conditions.
- B. If prevented by project conditions, prepare drawings showing proposed rearrangement of Work, including changes to Work specified in other sections. Obtain permission of Architect before proceeding.
- C. Place anchors, sleeves, and supports prior to pouring concrete or installation of masonry work.
- D. Cause as little interference or interruption of existing utilities and services as possible. Schedule work which will cause interference or interruption in advance with Owner, authorities having jurisdiction, and all affected trades.

- E. Determine sizes and verify locations of existing utilities on or near site.
- F. Visit site and be informed of conditions under which Work must be performed.
- G. Locate equipment requiring periodic servicing so that it is readily accessible. Provide means of service access, following appropriate manufacturer's recommended service clearance space or, as applicable, means of access using duct, wall, or ceiling access doors.
- H. Install ductwork and piping to leave sufficient space for AHJ inspection of wall construction.

1.5 DRAWINGS

- A. The Contract Documents depict HVAC systems which are intended to be complete and functioning systems. All products, materials, and labor necessary to render a fully functional system to fulfill the design intent shown on the documents shall be provided by the Contractor.
- B. The drawings are schematic in nature, but show the various components of the systems approximately to scale and attempt to indicate how they are to be integrated with other parts of the building. Determine exact locations by review of equipment manufacturer's data, by job site measurements, by checking the requirements of other trades, and by reviewing all Contract Documents. The size of the HVAC equipment indicated on the Drawings may be based on the dimensions of a particular manufacturer. While other listed manufacturers will be acceptable, it is the responsibility of the Contractor to determine if the equipment that the Contractor proposes to furnish will fit in the space. The drawings are not intended to show exact locations of pipes and ducts, or to indicate all offsets and fittings or supports, but rather to indicate approximate layout.
- C. The HVAC Drawings are necessarily diagrammatic in character and cannot show every connection in detail in its exact location. These details are subject to the requirements of ordinances and also structural and architectural conditions. The Contractor shall carefully investigate structural and finish conditions and shall coordinate the separate trades in order to avoid interference between the various phases of work. Work shall be laid out so that it will be concealed in furred chases and suspended ceilings, etc., in finished portions of the building, unless specifically noted to be exposed. Work shall be installed to avoid crippling of structural members. All exposed work shall be installed parallel or perpendicular to the lines of the building unless otherwise noted.
- D. When the HVAC Drawings do not give exact details as to the elevation of pipe, physically arrange the systems to fit in the space available at the elevations intended with the proper grades for the functioning of the system involved.

Exposed piping is generally intended to be installed true and square to the building construction, and located in a neat and workmanlike manner. The Drawings do not show all required offsets and their location details. Work shall be concealed in all finished areas.

E. Catalog numbers referenced throughout the Division 23 Drawings and Specifications are intended to convey a general understanding of the type and quality of the product required. Where written descriptions differ from information conveyed by a catalog number, the written description shall govern. No extra shall be allowed because a catalog number is found to be incomplete or obsolete.

1.6 SUBMITTALS

- A. Provide shop drawings and complete product data as indicated in each specification section.
- B. Coordination Drawings: Using the HVAC shop drawings as a basis, provide a composite set of AutoCAD drawings in which the major HVAC equipment, ductwork and piping are superimposed on the architectural plan and structural framing plan. Include spot elevations of bottom of steel along with finished ceiling height. Prepare at 1/8 inch scale or larger, one drawing per building area. Provide 1/4 inch scale enlargements of locations where special attention to rough-in dimensions as required to ensure all systems will fit within the available space. Obtain approval of coordination drawings prior to duct fabrication and mechanical system hanger rough-ins.
- C. Shop Drawings and Submittals will be reviewed and returned to the Contractor with one of the following categories:
 - 1. **Approved**: No further submittal action is required. Submittal to be included in O & M Manual.
 - 2. **Revise and Resubmit**: Contractor to resubmit submittal as indicated in comments section of Engineer's Submittal Cover Letter.
 - 3. **Rejected**: Contractor to resubmit new submittal when alternate or substitution is not approved and be required to furnished product named in Specification and or Drawings.
 - 4. **Furnish as Corrected**: Contractor to submit letter verifying that required corrections noted on Engineer's Submittal Cover Letter have been received and complied with by manufacturer. If equipment on site is not in compliance with corrections noted, contractor shall be responsible for the cost of removing and replacing equipment.
- D. Materials and equipment which are purchased or installed without Submittal review and approval will be removed and replaced with specified equipment at Contractor's expense.

E. Provide a specification review that consists of a copy of related specification section with notations indicating compliance or deviation with each element of specification.

1.7 COORDINATION DRAWINGS

- A. Prior to commencement of installation, prepare coordination drawings for work under this division, as specified in Division 01, in full cooperation with persons performing work under other Divisions, including but not limited to mechanical, electrical, plumbing, fire protection, telecommunications, audio/visual and miscellaneous steel.
- B. Drawings shall not be formally submitted but shall be kept on site for reference. Notify Architect and CM of conflicts that cannot be resolved.
- C. Coordination Drawings shall be prepared to include the following:
 - 1. Drawn to a scale of 1/4" = 1'-0.
 - 2. Room dimensions.
 - 3. Sheet size matching contract documents.
 - 4. Duct sizes with bottom elevation from finished floor.
 - 5. Show equipment, columns, and beams.
 - 6. Duct fitting details.
 - 7. Construction details of plenums and casings.
 - 8. Concrete pad and foundation layouts including anchor bolt and sleeve locations.
 - 9. Dimensioned floor drain locations.
 - 10. Wall mounted equipment.
 - 11. Piping 3" and larger, with elevations from finished floor to bottom of pipe.
 - 12. Space allocation for conduits and cable trays.
 - 13. Ceiling height.

1.8 RECORD DRAWINGS

- A. Provide record drawings that illustrate the work of Division 23 as finally constructed. Deliver record drawings to the Architect in a form suitable for production.
- B. Record drawings shall reflect all changes made to the Contract Documents, whether generated by addenda, change orders, or field conditions. Maintain a daily record of these changes and keep current set of drawings showing these changes.
- C. Deliver record drawings to Architect within 30 days of Substantial Completion.

1.9 OWNING AND OPERATING MANUALS

- A. Provide four sets of operating and maintenance manuals. These manuals shall be in indexed three ring binders and shall contain all the manufacturer's operating and maintenance literature for every equipment item furnished by the contractor. Typical wiring or piping schematics are not acceptable, the diagrams shall reflect the actual furnished equipment including all options and interfaces with other equipment or systems. O and M manuals shall include a steam trap inventory with individual trap identification, service, manufacturer and model.
- B. A single copy of the O and M manual shall be submitted immediately after the submittals have been approved. This copy will be reviewed by the Owner's representative and sent back to the contractor for corrections. All four corrected and approved copies shall be received by the Owner two weeks prior to scheduled training.

1.10 COORDINATION WITH ELECTRICAL CONTRACTOR

- A. Provide electric motors, control panels, certain control and safety devices and control wiring when specified or required for proper operation of electrical systems associated with mechanical equipment specified in Division 23.
- B. Electrical materials and work provided shall be in accordance with Division 26.
- C. Notify Architect/Engineer in writing 14 days before bids are due if it is necessary to increase horsepower of any motors or change any electrical requirements listed or shown. After this period, costs incurred because of changes shall be assumed by the responsible Contractor.

1.11 GENERAL ELECTRICAL REQUIREMENTS

- A. Comply with the requirements of Division 01, but provide a minimum of three sets.
- B. Manuals shall include clear and comprehensive instructions with appropriate graphics and project specific marked data to enable owner to operate and maintain all systems specified in this Division Notify Architect/Engineer in writing 14 days before bids are due if it is necessary to increase horsepower of any motors or change any electrical requirements listed or shown. After this period, costs incurred because of changes shall be assumed by the responsible Contractor.
- C. Copies of final reviewed submittals indicating all model numbers, serial numbers, cut sheets, and all performance criteria on furnished equipment shall be included.

1.12 ELECTRICAL REQUIREMENTS FOR MECHANICAL EQUIPMENT

- A. Mechanical equipment with factory assembled and/or attached electric equipment shall be Underwriters' Laboratories (UL) listed as an assembly when such listing is available from UL, and shall meet the latest edition of the National Electrical Code.
- B. Unless otherwise specified, the electrical supply being furnished is a 460 volt, 3 phase, 3 wire, 60 hertz source. No neutral connection is available from the 460 volt source. The manufacturer shall include any transformers for equipment requiring other voltages (220 volt, 120 volt, 24 volt, etc.).
- C. Electric Motors:
 - 1. For each piece of equipment requiring electric drive, provide a motor having starting and running characteristics consistent with torque and speed requirements of the driven machine.
 - 2. Manufacturers furnishing motors shall verify motor horsepower with the characteristic power curves of driven equipment on shop drawings.
 - 3. Contractor shall verify electrical characteristics of each motor with electrical drawings.
 - 4. Motors which are shipped loose from equipment shall be set by supplying subcontractor.
 - 5. Alignment of motors factory coupled to equipment and motors field coupled to equipment shall be rechecked by millwright after all connections (belt drives, gear drives, impellers, piping, etc.) have been completed and again after 48 hours of operation in designed service.

PART 2 – PRODUCTS – NOT USED

PART 3 - EXECUTION

3.1 EXISTING WORK

- A. Disconnect HVAC systems in walls, floors, and ceilings scheduled for removal.
- B. Provide all required connections to maintain existing systems in service during construction.
- C. When performing work on operating systems use personnel experienced and trained in similar operations.
- D. Remove, relocate, and extend existing installations to accommodate new construction.

- E. Repair adjacent construction and finishes damaged during demolition and extension work.
- F. Normal facility activities will continue in existing areas. MEP systems servicing existing occupied spaces will have to be maintained in service. Schedule any required outages and system service interruptions with Owner and Architect. Submit a written request indicating service(s) to be interrupted along with proposed duration and summary of work to be performed during downtime.
- G. Removed Equipment:
 - 1. Store removed items at site; Owner retains rights to all removed items.
 - 2. Allow Owner ample time to review removed items and to designate which items to be kept by Owner.
 - 3. Dispose properly, off-site, all items Owner chooses not to keep.

3.2 CLEANING AND REPAIR

- A. Clean and repair existing materials and equipment which remain or are to be reused.
- B. Repair or replace damage caused by cutting or installation of work specified in Division 23. Perform repairs with materials which match existing and install in accordance with the appropriate section of these specifications.

3.3 CONNECTION TO EQUIPMENT FURNISHED BY OWNER

- A. Connect or install equipment shown on mechanical drawings that requires mechanical connections.
- B. Provide piping, shutoff valves, unions, and other piping appurtenances required for a complete installation.
- C. Provide steam strainers, steam traps, and pressure reducing valves in steam lines.

3.4 DELIVERY, STORAGE AND PROTECTION

A. Insofar as possible, deliver items in manufacturer's original unopened packaging. Where deliver in original packaging is not practical, provide cover and shielding for all items with protective materials to keep them from being damaged. Use care in loading, transporting, unloading, and storing to keep items from being damaged.

- B. Store items in a clean, dry place, and protect from damage. Mechanical equipment may not be staged or stored outdoors unless intended for outdoor use. Protect motors from dust.
- C. Protect nameplates on motors, pumps, and similar equipment. Do not paint or insulate over nameplate data.
- D. Protect valves and piping from damage. Cover equipment during work of finishing trades.
- E. Keep dirt and debris out of pipes and ducts.
- F. Repair, restore, and replace damaged items.
- G. Cover factory finished equipment during work of finished trades, such as fan coils, fin tubes, etc.
- H. Protect cooling and/or heating coils with temporary filter media during construction.

3.5 OPERATION OF HVAC SYSTEMS DURING CONSTRUCTION

- A. Install specified filters prior to system operation. In addition to specified filters, install a roughing filter upstream of mixed air filter. Roughing filter shall consist of two layers of roll filter media clipped and sealed to entering side of filter frame. Change roughing filter as necessary to minimize dust collection on specified filters.
- B. Cover return and exhaust air grilles with temporary filter media. Attach media to avoid damage to grille or ceiling. Change temporary media as required to protect against dust buildup on ductwork. Remove temporary media from grilles after flooring is installed, walls are sanded and painted and other dust generating construction has been completed.
- C. During periods of excessive dust generation such as drywall sanding, seal off return and exhaust openings and grilles to prevent dust from accumulating in ductwork.
- D. If outside air source contains less dust than building air, adjust A/C unit dampers to operate with as much outside air as possible without causing a freezing condition for coil or exceeding capacity of coil to adequately condition supply air.
- E. After start-up all the surrounding areas shall be kept as dust free as possible by regular and frequent cleaning.

F. Furnish and install a new set of specified filter media prior to start of system test and balance. Furnish a new, clean set of the specified media and turn over to Owner's Representative

3.6 TESTING MECHANICAL SYSTEMS

- A. Test all systems and equipment installed to demonstrate proper operation.
- B. Advise Architect of scheduled systems testing and completed system demonstration/operation schedules so that he may witness, if desired.
- C. Correct and retest work found defective when tested.
- D. Make repairs to piping systems with new materials. Peening, doping, or caulking of joints or holes will not be acceptable.
- E. HVAC Circulating Water Piping: Hydrostatically test piping at 150 psig pressure or at 1-1/2 times design pressure as indicated on drawings, whichever is greater, for a period of six hours without evidence of leaking
- F. Ductwork Pressure Testing: Refer to Section 23 31 13 for required pressure testing for ductwork.
- G. Chemical Water Treatment Systems: Have equipment manufacturer field check installations of boiler water treatment systems, and cooling tower water treatment systems, including field calibration of pumps, controllers and other operable parts. Chemical water treatment for HVAC including cleaning, testing, and treatment shall be performed in accordance with Section 23 25 00.
- H. System Balance and Testing: Prepare to assist test and balance firm by assuring systems are complete and operational.
- I. Test all fire dampers by manually disconnecting linkage and observing blades fall into position.
- J. Test all smoke and combination fire/smoke, dampers by observing damper operation during fire alarm system commissioning.
- K. Records of Testing: Maintain records of system testing and results thereof. Deliver results as part of project closing file and on an intermediate basis as requested by Architect.

3.7 OWNER INSTRUCTION - GENERAL

- A. Provide on-site Owner training for all new equipment by factory trained specialists.
- B. Use Operation and Maintenance manuals and actual equipment installed as basis for instruction.
- C. At conclusion of on-site training program have Owner personnel sign written certification they have completed training and understand equipment operation. Include copy of training certificates in final Operation and Maintenance manual submission.
- D. Refer to individual equipment specifications for additional training requirements.

3.8 INFECTION CONTROL

- A. Coordinate with the Owner the exact requirements for the infection control measures to be executed and performed during the course of this Project.
- B. Prior to execution, present to the Owner for approval a written execution plan for each infection control measure.
- C. Coordinate infection control measures as needed with all other trades and disciplines.

END OF SECTION

SECTION 23 05 48

VIBRATION CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Elastomeric isolation mounts.
 - 2. Open-spring isolators.

1.2 SUBMITTALS

- A. Product Data: For each type of product.
- B. Delegated-Design Submittal: For each vibration isolation device.
 - 1. Include design calculations and details for selecting vibration isolators complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- C. Welding certificates.
- D. Field quality-control reports.

1.3 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION MOUNTS

- A. Double-Deflection, Elastomeric Isolation Mounts:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.

- d. Kinetics Noise Control, Inc.
- e. Mason Industries, Inc.
- f. Vibration Eliminator Co., Inc.
- g. Vibration Isolation.
- h. Vibration Mountings & Controls, Inc.
- 2. Mounting Plates:
 - a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 - b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
- 3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.2 OPEN-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.
 - d. Kinetics Noise Control, Inc.
 - e. Mason Industries, Inc.
 - f. Vibration Eliminator Co., Inc.
 - g. Vibration Isolation.
 - h. Vibration Mountings & Controls, Inc.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates shall limit floor load to 500 psig
 - 7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.3 SNUBBERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

- 1. Kinetics Noise Control, Inc.
- 2. Mason Industries, Inc.
- 3. Vibration Mountings & Controls, Inc.
- B. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 - 1. Anchor bolts for attaching to concrete shall be drill-in, and stud-wedge or femalewedge type.
 - 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
 - 3. Maximum 1/4-inch air gap, and minimum 1/4-inch thick resilient cushion.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Strength of Support Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static loads within specified loading limits.

3.2 VIBRATION CONTROL DEVICE INSTALLATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete." Or Section 033053 "Miscellaneous Cast-in-Place Concrete."
- B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.
- C. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- D. Equipment Restraints:
 - 1. Install snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 - 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch
- E. Install cables so they do not bend across edges of adjacent equipment or building structure.
- F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

- G. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- H. Drilled-in Anchors:
 - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavyduty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. Verify snubber minimum clearances.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.5 VIBRATION ISOLATION SCHEDULE

A. Vent Sets or Utility Fans (Floor Mounted, Upper Floor) – Open Spring Isolators, 1-1/2" deflection

END OF SECTION

SECTION 23 05 93

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Dual-duct systems
 - c. Variable-air-volume systems.

1.2 **DEFINITIONS**

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 INFORMATIONAL SUBMITTALS

- A. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.
- B. Certified TAB reports.

1.4 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC

- 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC as a TAB technician.
- B. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard TAB contractor's forms approved by Architect, Owner or Construction Manager
- D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."
- E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- F. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in

Section 233113 "Metal Ducts", Section 233116 "Nonmetal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- M. Examine operating safety interlocks and controls on HVAC equipment.
- N. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.

- 2. Automatic temperature-control systems are operational.
- 3. Equipment and duct access doors are securely closed.
- 4. Balance, smoke and fire dampers are open.
- 5. Isolating and balancing valves are open and control valves are operational.
- 6. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
- 7. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance", ASHRAE 111, NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems", SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.

- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."
- M. Balance the following areas to have the following pressurization compared to adjacent spaces.
 - 1. Toilet Room Negative
 - 2. Bronchoscopy Procedure Room Negative
 - 3. Anteroom Positive to Corridor and Procedure Room
 - 4. Clean Supply Positive
 - 5. Decontamination Negative
 - 6. Equipment Storage Positive

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.

- c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
- d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
- 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
- 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
- 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 6. Obtain approval from Architect, Owner, or Construction Manager for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitottube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR DUAL-DUCT SYSTEMS

- A. Verify that the cooling coil is capable of full-system airflow, and set mixing boxes at fullcold airflow position for fan volume.
- B. Measure static pressure in both hot and cold ducts at the end of the longest duct run to determine that sufficient static pressure exists to operate controls of mixing boxes and to overcome resistance in the ducts and outlets downstream from mixing boxes.
 - 1. If insufficient static pressure exists, increase airflow at the fan.
- C. Test and adjust the constant-volume mixing boxes as follows:
 - 1. Verify both hot and cold operations by adjusting the thermostat and observing changes in air temperature and volume.
 - 2. Verify sufficient inlet static pressure before making volume adjustments.
 - 3. Adjust mixing boxes to indicated airflows within specified tolerances. Measure airflow by Pitot-tube traverse readings or by measuring static pressure at mixing-box taps if provided by mixing-box manufacturer.
- D. Do not overpressurize ducts.
- E. Remeasure static pressure in both hot and cold ducts at the end of the longest duct run to determine that sufficient static pressure exists to operate controls of mixing boxes and to overcome resistance in the ducts and outlets downstream from mixing boxes.

3.7 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.

- 5. Nameplate and measured voltage, each phase.
- 6. Nameplate and measured amperage, each phase.
- 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.8 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

- A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 - 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 - 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 - 3. Check the refrigerant charge.
 - 4. Check the condition of filters.
 - 5. Check the condition of coils.
 - 6. Check the operation of the drain pan and condensate-drain trap.
 - 7. Check bearings and other lubricated parts for proper lubrication.
 - 8. Report on the operating condition of the equipment and the results of the measurements taken. Report deficiencies.
- B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
 - 1. New filters are installed.
 - 2. Coils are clean and fins combed.
 - 3. Drain pans are clean.
 - 4. Fans are clean.
 - 5. Bearings and other parts are properly lubricated.
 - 6. Deficiencies noted in the preconstruction report are corrected.
- C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 - 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
 - 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.

- 3. If calculations increase or decrease the air flow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
- 4. Balance each air outlet.

3.9 TOLERANCES

- A. Set HVAC system's air flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent
 - 2. Air Outlets and Inlets: Plus or minus 10 percent

3.10 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.11 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Fan curves.
 - 2. Manufacturers' test data.
 - 3. Field test reports prepared by system and equipment installers.
 - 4. Other information relative to equipment performance; do not include Shop Drawings and product data.

- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Fan drive settings including settings and percentage of maximum pitch diameter.
 - d. Inlet vane settings for variable-air-volume systems.
 - e. Settings for supply-air, static-pressure controller.
 - f. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Duct, outlet, and inlet sizes.
 - 3. Terminal units.
 - 4. Balancing stations.
 - 5. Position of balancing devices.

3.12 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION
SECTION 23 07 13

DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, concealed return located in unconditioned space.
 - 3. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
- B. Related Sections:
 - 1. Section 230719 "HVAC Piping Insulation."

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

- 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smokedeveloped index of 50 or less.
- 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smokedeveloped index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, type II and ASTM C 1290. Type I without jackets, Type II with factory-applied vinyl jacket, Type III with factory-applied FSK or FSP jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, [provide one of the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
- b. Eagle Bridges Marathon Industries; 225.
- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
- d. Mon-Eco Industries, Inc.; 22-25.
- 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.

2.4 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F
 - 5. Color: Aluminum.
 - 6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F
 - 5. Color: White.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system shall comply with the following for factory installed jackets:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2.6 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. in a Leno weave, for ducts.
 - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Mast-A-Fab.
- b. Vimasco Corporation; Elastafab 894.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches
 - 3. Thickness: 11.5 mils
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.8 SECUREMENTS

- A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, one of the following:
 - 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 - 2) GEMCO; Perforated Base.
 - 3) Midwest Fasteners, Inc.; Spindle.

- b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
- c. Spindle: Stainless steel, fully annealed, 0.106-inch diameter shank, length to suit depth of insulation indicated.
- d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, one of the following:
 - 1) GEMCO; Nylon Hangers.
 - 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.
 - b. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - c. Spindle: Nylon, 0.106-inch diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 3. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; Tactoo Self-Adhering Insul-Hangers.
 - 2) GEMCO; Peel & Press.
 - 3) Midwest Fasteners, Inc.; Self Stick.
 - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Stainless steel, fully annealed, 0.106-inch diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive-backed base with a peel-off protective cover.
- 4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inchthick, stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

- a. Products: Subject to compliance with requirements, provide the provide one of the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
- b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016inch thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) GEMCO.
 - 2) Midwest Fasteners, Inc.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.
- D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. C & F Wire.

2.9 CORNER ANGLES

A. Aluminum Corner Angles: [0.040 inch thick, minimum 1 by 1 inch aluminum according to ASTM B 209 Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.

- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

- A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- B. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- C. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.

- 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.5 FINISHES

A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

- 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.7 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, concealed return located in unconditioned space.
 - 3. Indoor, concealed exhaust 10 feet from penetration of building exterior.
- B. Items Not Insulated:
 - 1. Factory-insulated flexible ducts.
 - 2. Factory-insulated plenums and casings.
 - 3. Flexible connectors.
 - 4. Vibration-control devices.
 - 5. Factory-insulated access panels and doors.

3.8 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, Supply-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- B. Concealed, Return-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.

- C. Concealed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- D. Concealed, Exhaust-Air Duct and Plenum Insulation 10 feet from penetration of building exterior: Mineral-fiber blanket, 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.

END OF SECTION

SECTION 23 08 00

COMMISSIONING OF HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes commissioning process requirements for HVAC&R systems, assemblies, and equipment.
- B. Related Sections:
 - 1. Section 019113 "General Commissioning Requirements" for general commissioning process requirements.

1.2 **DEFINITIONS**

- A. Commissioning Plan: A document that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.
- B. CxA: Commissioning Authority.
- C. HVAC&R: Heating, Ventilating, Air Conditioning, and Refrigeration.
- D. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.

1.3 INFORMATIONAL SUBMITTALS

- A. Certificates of readiness.
- B. Certificates of completion of installation, prestart, and startup activities.

1.4 CONTRACTOR'S RESPONSIBILITIES

- A. Perform commissioning tests at the direction of the CxA.
- B. Attend construction phase controls coordination meeting.
- C. Attend testing, adjusting, and balancing review and coordination meeting.

- D. Participate in HVAC&R systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.
- E. Provide information requested by the CxA for final commissioning documentation.
- F. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period.

1.5 CxA'S RESPONSIBILITIES

- A. Provide Project-specific construction checklists and commissioning process test procedures for actual HVAC&R systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.
- B. Direct commissioning testing.
- C. Verify testing, adjusting, and balancing of Work are complete.
- D. Provide test data, inspection reports, and certificates in Systems Manual.

1.6 COMMISSIONING DOCUMENTATION

- A. Provide the following information to the CxA for inclusion in the commissioning plan:
 - 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports.
 - 2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase.
 - 3. Process and schedule for completing construction checklists and manufacturer's prestart and startup checklists for HVAC&R systems, assemblies, equipment, and components to be verified and tested.
 - 4. Certificate of readiness, signed by the Contractor, certifying that HVAC&R systems, assemblies, equipment, components, and associated controls are ready for testing.
 - 5. Certificate of completion certifying that installation, prestart checks, and startup procedures have been completed.
 - 6. Certificate of readiness certifying that HVAC&R systems, subsystems, equipment, and associated controls are ready for testing.
 - 7. Test and inspection reports and certificates.
 - 8. Corrective action documents.
 - 9. Verification of testing, adjusting, and balancing reports.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TESTING PREPARATION

- A. Certify that HVAC&R systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.
- B. Certify that HVAC&R instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.
- C. Certify that testing, adjusting, and balancing procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.
- D. Set systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).
- E. Inspect and verify the position of each device and interlock identified on checklists.
- F. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.
- G. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.

3.2 TESTING AND BALANCING VERIFICATION

- A. Prior to performance of testing and balancing Work, provide copies of reports, sample forms, checklists, and certificates to the CxA.
- B. Notify the CxA at least 10 days in advance of testing and balancing Work, and provide access for the CxA to witness testing and balancing Work.
- C. Provide technicians, instrumentation, and tools to verify testing and balancing of HVAC&R systems at the direction of the CxA.
 - 1. The CxA will notify testing and balancing Contractor 10 days in advance of the date of field verification. Notice will not include data points to be verified.
 - 2. The testing and balancing Contractor shall use the same instruments (by model and serial number) that were used when original data were collected.

- 3. Failure of an item includes, other than sound, a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final testing, adjusting, and balancing report. For sound pressure readings, a deviation of 3 dB shall result in rejection of final testing. Variations in background noise must be considered.
- 4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.

3.3 GENERAL TESTING REQUIREMENTS

- A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.
- B. Scope of HVAC&R testing shall include entire HVAC&R installation, from the chilled water and hot water coils to the distribution systems to each conditioned space. Testing shall include measuring capacities and effectiveness of operational and control functions.
- C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.
- D. The CxA along with the HVAC&R Contractor, testing and balancing Contractor, and HVAC&R Instrumentation and Control Contractor shall prepare detailed testing plans, procedures, and checklists for HVAC&R systems, subsystems, and equipment.
- E. Tests will be performed using design conditions whenever possible.
- F. Simulated conditions may need to be imposed using an artificial load when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.
- G. The CxA may direct that set points be altered when simulating conditions is not practical.
- H. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.
- I. If tests cannot be completed because of a deficiency outside the scope of the HVAC&R system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.
- J. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

3.4 HVAC&R SYSTEMS, SUBSYSTEMS, AND EQUIPMENT TESTING PROCEDURES

- A. HVAC&R Instrumentation and Control System Testing: Field testing plans and testing requirements are specified in Section 230900 "Instrumentation and Control for HVAC". Assist the CxA with preparation of testing plans.
- B. HVAC&R Distribution System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of air and hydronic distribution systems; special exhaust; and other distribution systems, including HVAC&R terminal equipment and unitary equipment.
- C. Vibration and Sound Tests: Provide technicians, instrumentation, tools, and equipment to test performance of vibration isolation and seismic controls.

END OF SECTION

SECTION 23 09 00

INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls. The system will monitor specified electrical and plumbing systems.
- B. Furnish and install an expansion to the existing Harris Health Building Automation System within the Ben Taub Hospital Campus. The expansion shall be Johnson Controls Metasys, furnished and installed by the Houston Branch office (no exceptions). All new controllers, both supervisory and for field equipment, shall be BACnet compliant per ASHRAE standard MS/TP Bus Protocol SSPC-135, Clause 9 on the controller network. Controllers shall be BACnet Testing Labs (BTL) certified and carry the BTL Label.

1.2 ACTION SUBMITTALS

- A. Product Data: For each control device indicated.
- B. Shop Drawings:
 - 1. Schematic flow diagrams.
 - 2. Power, signal, and control wiring diagrams.
 - 3. Details of control panel faces.
 - 4. DDC System Hardware: Wiring diagrams, schematic floor plans, and schematic control diagrams.
 - 5. Control System Software: Schematic diagrams, written descriptions, and points list.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and maintenance data.
- B. Software and firmware operational documentation.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.2 CONTROL SYSTEM

- A. Manufacturers: Johnson Controls, Inc.; Metasys Houston Branch Office.
- B. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, and accessories to control mechanical systems.

2.3 DDC EQUIPMENT

- A. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.
 - 1. Supervisory Control Units shall utilize Ben Taub's existing IT LAN as their mode of communication to/from the existing Server. Communication standard shall be BACnet IP. Owner shall provide any new data drops to any new Supervisory Control Units.

- 2. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation.
- 3. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - d. Software applications, scheduling, and alarm processing.
 - e. Testing and developing control algorithms without disrupting field hardware and controlled environment.
- B. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source (UPS) for critical equipment controllers controlling and monitoring major equipment such as central plant, AHU's, laboratory exhaust fans, and smoke exhaust fans. UPS's are not required for local control units controlling and monitoring non-critical equipment such as FCU's and general exhaust fans.
 - 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - 3. Local control units provide for download from or upload to operator workstation.
- C. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.
 - 1. Binary Inputs: Allow monitoring of on-off signals without external power.
 - 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
 - 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
 - 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
 - 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or

Ben Taub Hospital Houston, Texas

current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.

- 6. Tri-State Outputs: Provide two coordinated binary outputs for control of threepoint, floating-type electronic actuators.
- 7. Universal I/Os: Provide software selectable binary or analog outputs.
- D. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 - 1. Output ripple of 5.0 mV maximum peak to peak.
 - 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 - 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.
- E. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 - 1. Minimum dielectric strength of 1000 V.
 - 2. Maximum response time of 10 nanoseconds.
 - 3. Minimum transverse-mode noise attenuation of 65 dB.
 - 4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.4 UNITARY CONTROLLERS

- A. Unitized, capable of stand-alone operation with sufficient memory to support its operating system, database, and programming requirements, and with sufficient I/O capacity for the application.
 - 1. Configuration: Diagnostic LEDs for power, communication, and processor; wiring termination to terminal strip or card connected with ribbon cable; memory with bios;
 - 2. Operating System: Manage I/O communication to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms. Perform automatic system diagnostics; monitor system and report failures.
 - 3. ASHRAE 135 Compliance: Communicate using read (execute and initiate) and write (execute and initiate) property services defined in ASHRAE 135. Reside on network using MS/TP datalink/physical layer protocol and have service communication port for connection to diagnostic terminal unit.
 - 4. Enclosure: rated for operation at 40 to 150 deg F

2.5 ELECTRONIC SENSORS

- A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.
- B. Thermistor Temperature Sensors and Transmitters:
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. Ebtron, Inc.
 - c. Heat-Timer Corporation.
 - d. I.T.M. Instruments Inc.
 - e. MAMAC Systems, Inc.
 - f. RDF Corporation.
 - g. BAPI
 - h. Johnson Controls
 - 2. Accuracy: Plus or minus 1 deg F at calibration point.
 - 3. Wire: Twisted, shielded-pair cable.
 - 4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft. .
 - 5. Averaging Elements in Ducts: 36 inches long, flexible or 18 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 10 sq. ft.
 - 6. Insertion Elements for Liquids: stainless-steel well with minimum insertion length of 2-1/2 inches
 - 7. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - a. Set-Point Adjustment: Concealed (exposed for ORs)
 - b. Set-Point Indication: Exposed.
 - c. Zone Temperature Indication: Concealed (exposed digital read-out for ORs)
 - d. Color: selected by architect or owner
 - e. Orientation: Vertical
 - 8. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
 - 9. Room Security Sensors: Stainless-steel cover plate with insulated back and security screws.
- C. RTDs and Transmitters:
 - 1. Manufacturers:
 - a. BEC Controls Corporation.

- b. MAMAC Systems, Inc.
- c. RDF Corporation.
- d. BAPI
- e. Johnson Controls
- 2. Accuracy: Plus or minus 0.2 percent at calibration point.
- 3. Wire: Twisted, shielded-pair cable.
- 4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft.
- 5. Averaging Elements in Ducts: 18 inches long, rigid use where prone to temperature stratification or where ducts are larger than 9 sq. ft. length as required.
- Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches
- 7. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - a. Set-Point Adjustment: Concealed (exposed in ORs)
 - b. Set-Point Indication: Exposed.
 - c. Zone Temperature Indication: Concealed (exposed for ORs)
 - d. Color: Selected by architect or owner
 - e. Orientation: Vertical or Horizontal.
- 8. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
- 9. Room Security Sensors: Stainless-steel cover plate with insulated back and security screws.
- D. Humidity Sensors: Thin film capacitance or bulk polymer sensor element.
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.
 - c. MAMAC Systems, Inc.
 - d. ROTRONIC Instrument Corp.
 - e. TCS/Basys Controls.
 - f. Vaisala.
 - g. Johnson Controls
 - 2. Accuracy: 3 percent full range with linear output.
 - 3. Room Sensor Range: 20 to 80 percent relative humidity.
 - 4. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - a. Set-Point Adjustment: Concealed
 - b. Set-Point Indication: Exposed

Issued for Construction – 7/13/2018

Houston, Texas

- c. Thermometer: Concealed
- d. Color: Selected by architect or owner
- e. Orientation: Vertical or Horizontal
- 5. Duct Sensor: 20 to 80 percent relative humidity range with element guard and mounting plate.
- Outside-Air Sensor: 20 to 80 percent relative humidity range with mounting enclosure, suitable for operation at outdoor temperatures of minus 22 to plus 185 deg F
- 7. Duct and Sensors: With element guard and mounting plate, range of 0 to 100 percent relative humidity.
- E. Pressure Transmitters/Transducers:
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.
 - c. MAMAC Systems, Inc.
 - d. ROTRONIC Instrument Corp.
 - e. TCS/Basys Controls.
 - f. Vaisala.
 - g. Johnson Controls
 - 2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - a. Accuracy: Maintain accuracy up to 20 to 1 ratio turndown.
 - b. Reference Accuracy: +0.25%, or 0.5% of full span.
 - c. Output: 4 to 20 mA.
 - d. Building Static-Pressure Range: 0- to 0.25-inch wg
 - e. Duct Static-Pressure Range: 0- to 5-inch wg
 - 3. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure; linear output 4 to 20 mA.
 - 4. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
 - 5. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
 - 6. Pressure Transmitters: Direct acting for gas or liquid service; range suitable for system; linear output 4 to 20 mA.

BEN TAUB HOSPITAL BRONCHOSCOPY SUITE RENOVATION

Ben Taub Hospital Houston, Texas

- 7. Room Sensor Cover Construction: Manufacturer's standard locking covers.
- 8. Set-Point Adjustment: Concealed
- 9. Set-Point Indication: Exposed.
- 10. Thermometer: Concealed
- 11. Color: Selected by architect or owner
- 12. Orientation: Vertical or Horizontal
- F. Room sensor accessories include the following:
 - 1. Insulating Bases: For sensors located on exterior walls.
 - 2. Guards: Locking; heavy-duty, transparent plastic; mounted on separate base, Metal wire, tamperproof or Locking, solid metal, ventilated.

2.6 STATUS SENSORS

- A. Status Inputs for Fans: Current Switch. See item C below.
- B. Status Inputs for Pumps: Current Switch. See item C below.
- C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.
- D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.
- E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.
- F. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.
- G. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
- H. Water-Flow Switches: Bellows-actuated mercury or snap-acting type with pilot-duty rating, stainless-steel or bronze paddle, with appropriate range and differential adjustment, in NEMA 250, Type 1 enclosure.
 - 1. Manufacturers:

Ben Taub Hospital Houston, Texas

- a. BEC Controls Corporation.
- b. I.T.M. Instruments Inc.
- c. Johnson Controls

2.7 GAS DETECTION EQUIPMENT

- A. Manufacturers:
 - 1. B. W. Technologies.
 - 2. CEA Instruments, Inc.
 - 3. Ebtron, Inc.
 - 4. Gems Sensors Inc.
 - 5. Greystone Energy Systems Inc.
 - 6. Honeywell International Inc.; Home & Building Control.
 - 7. INTEC Controls, Inc.
 - 8. I.T.M. Instruments Inc.
 - 9. MSA Canada Inc.
 - 10. QEL/Quatrosense Environmental Limited.
 - 11. Sauter Controls Corporation.
 - 12. Sensidyne, Inc.
 - 13. TSI Incorporated.
 - 14. Vaisala.
 - 15. Vulcain Inc.
 - 16. Kele
 - 17. Johnson Controls
- B. Carbon Monoxide Detectors: Single or multichannel, dual-level detectors using solidstate plug-in sensors with a 3-year minimum life; suitable over a temperature range of 32 to 104 deg F, with 2 factory-calibrated alarm levels at 50 and 100 ppm.
- C. Carbon Dioxide Sensor and Transmitter: Single detectors using solid-state infrared sensors; suitable over a temperature range of 23 to 130 deg F and calibrated for 0 to 2 percent, with continuous or averaged reading, 4- to 20-mA output;, for wall mounting.
- D. Occupancy Sensor: Passive infrared, with time delay, daylight sensor lockout, sensitivity control, and 180-degree field of view with vertical sensing adjustment; for flush mounting.

2.8 FLOW MEASURING STATIONS

- A. Duct Airflow Station: Combination of air straightener and multiport, self-averaging pitot tube station.
 - 1. Manufacturers:

Houston, Texas

- a. Air Monitor Corporation.
- b. Wetmaster Co., Ltd.
- c. Johnson Controls
- 2. Casing: Galvanized-steel frame.
- 3. Flow Straightener: Aluminum honeycomb, 3/4-inch parallel cell, 3 inches deep.
- 4. Sensing Manifold: Copper or aluminum manifold with bullet-nosed static pressure sensors positioned on equal area basis.

2.9 ACTUATORS

- A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 - 1. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 2. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
 - 3. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf
 - 4. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft: Size for running and breakaway torque of 150 in. x lbf.
- B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 - 1. Manufacturers:
 - a. Belimo Aircontrols (USA), Inc.
 - b. Johnson Controls
 - 2. Valves: Size for torque required for valve close off at maximum pump differential pressure.
 - 3. Dampers: Size for running torque calculated as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. of damper.
 - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 - c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft of damper.

JOHNSTON Project No. 17-00054-01

BEN TAUB HOSPITAL BRONCHOSCOPY SUITE RENOVATION

Ben Taub Hospital Houston, Texas

- d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft.- of damper.
- e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
- f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
- 4. Coupling: V-bolt and V-shaped, toothed cradle.
- 5. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
- 6. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.
- 7. Power Requirements (Two-Position Spring Return): 24 or 120-V ac.
- 8. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
- 9. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
- 10. Temperature Rating: Minus 22 to plus 122 deg F
- 11. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F
- 12. Run Time: 12 seconds open, 5 seconds closed

2.10 CONTROL VALVES

- A. Manufacturers:
 - 1. Danfoss Inc.; Air Conditioning & Refrigeration Div.
 - 2. Erie Controls.
 - 3. Hayward Industrial Products, Inc.
 - 4. Magnatrol Valve Corporation.
 - 5. Neles-Jamesbury.
 - 6. Parker Hannifin Corporation; Skinner Valve Division.
 - 7. Pneuline Controls.
 - 8. Sauter Controls Corporation.
 - 9. Johnson Controls
- B. Control Valves: Factory fabricated, of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated.
- C. Ball Valves, 1/2 through 2 in. (for terminal units, chilled water, hot water, and steam applications):
 - 1. Ball Valves shall have forged brass bodies.
 - 2. Valves shall have available either Chrome Plated Brass Balls or 300 Series Stainless Steel Balls in all sizes.

BEN TAUB HOSPITAL BRONCHOSCOPY SUITE RENOVATION

Ben Taub Hospital Houston, Texas

- 3. Valves shall have available either Nickel Plated Brass Stems or 300 Series Stainless Steel Stems with a blow-out proof stem design in all sizes.
- 4. Valves shall have Graphite reinforced Polytetrafluoroethylene (PTFE) seats with Ethylene Propylene Diene Monomer (EPDM) O-ring backing.
- 5. Stem seals shall be double EPDM O-rings.
- 6. Flow Characterization Disk shall be manufactured from Amodel AS-1145HS Polyphthalamide Resin and rated for 50 psid maximum differential pressure and shall be inserted against the casting of the valve.
- 7. All ball valves with internal pipe thread end connections shall be rated to 580 psi maximum static pressure at 203°F (95°C) fluid temperature.
- 8. All ball valves with sweat end connections or press end connection shall be rated to 300 psig maximum static pressure at 203°F (95°C) fluid temperature
- 9. All valves shall be rated for service with hot water, chilled water and 50% glycol solutions.
- 10. Ball Valves with stainless steel balls and stems shall be rated for use with 15 psig saturated steam.
- 11. Flow Characteristics shall be equal percentage on the control port. Bypass port on three-way valves shall have linear flow characteristics.
- 12. Valves shall have a maximum leakage specification of 0.01% of maximum flow for the control port, ANSI/FCI 70-2, Class 4 and 1% of maximum flow, bypass port.
- 13. Valves shall be maintenance free
- 14. Valves shall be provided with a 5 year warranty.
- 15. Valves shall be rated for 200 psid closeoff pressure.
- 16. Valve actuators shall be UL-recognized or CSA-certified.
- 17. Valves shall be Johnson Controls VG1000 Series ball valves or approved equal.
- D. Ball Valves, 2-1/2 through 4 in. Flanged (for chilled water, hot water, and steam applications):
 - 1. Ball Valves shall have forged brass bodies with ASME Class 150 ductile iron flanges.
 - 2. Valves shall have 300 Series Stainless Steel Balls.
 - 3. Valves shall have 300 Series Stainless Steel Stems with a blow-out proof stem design.
 - 4. Valves shall have Graphite reinforced Polytetrafluoroethylene (PTFE) seats with Ethylene Propylene Diene Monomer (EPDM) O-ring backing.
 - 5. Stem seals shall be double EPDM O-rings.
 - 6. Flow Characterization Disk shall be manufactured from Amodel AS-1145HS Polyphthalamide Resin and rated for 50 psid maximum differential pressure.
 - 7. Flow Characteristics shall be equal percentage on the control port. Bypass port on three-way valves shall have linear flow characteristics.
 - 8. Valves shall have a maximum leakage specification of 0.01% of maximum flow

Ben Taub Hospital Houston, Texas

for the control port, ANSI/FCI 70-2, Class 4 and 1% of maximum flow, bypass port.

- 9. All valves shall be rated for service with hot water, chilled water, 50% glycol solutions and rated for use with 25 psig saturated steam.
- 10. Two-Way Valves shall be rated for 100 psid closeoff pressure and Three-Way Valves shall be rated for 50 psid closeoff pressure.
- 11. Valves shall be maintenance free.
- 12. Valves shall be provided with a 5 year warranty.
- 13. Valve actuators shall be UL-recognized or CSA-certified.
- 14. Valves shall be Johnson Controls VG1000 Series ball valves or approved equal.
- E. Butterfly Valves: 150-psig maximum pressure differential, ASTM A 126 cast-iron or ASTM A 536 ductile-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals.
 - 1. Body Style: Wafer, Lug or Grooved.
 - 2. Disc Type: Nickel-plated ductile iron
 - 3. Sizing: 1-psig maximum pressure drop at design flow rate.
- F. Self-Contained Control Valves: Bronze body, bronze trim, two or three ports as indicated, replaceable plugs and seats, and union and threaded ends.
 - 1. Rating: Class 125 for service at 125 psig and 250 deg F operating conditions.
 - 2. Thermostatic Operator: Wax or Liquid-filled, integral or remote sensor with integral or remote adjustable dial.

2.11 DAMPERS

- A. Manufacturers:
 - 1. Air Balance Inc.
 - 2. Don Park Inc.; Autodamp Div.
 - 3. TAMCO (T. A. Morrison & Co. Inc.).
 - 4. United Enertech Corp.
 - 5. Vent Products Company, Inc.
 - 6. Johnson Controls
- B. Dampers: AMCA-rated, opposed-blade design; 0.108-inch- minimum thick, galvanizedsteel or 0.125-inch- minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch- thick galvanized steel with maximum blade width of 8 inches and length of 48 inches

- 1. Secure blades to 1/2-inch- diameter, zinc-plated axles using zinc-plated hardware, with oil-impregnated sintered bronze blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
- 2. Operating Temperature Range: From minus 40 to plus 200 deg F
- 3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.
- 4. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. of damper area, at differential pressure of 4-inch wg when damper is held by torque of 50 in. x lbf when tested according to AMCA 500D.

2.12 CONTROL CABLE

A. Electronic and fiber-optic cables for control wiring are specified in Section 271500 "Communications Horizontal Cabling."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above the floor.
 - 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
- B. Install guards on thermostats in the following locations:
 - 1. Entrances.
 - 2. Public areas.
 - 3. Where indicated on drawings.
- C. Install automatic dampers according to Section 233300 "Air Duct Accessories."
- D. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.
- E. Install labels and nameplates to identify control components according to Section 230553 "Identification for HVAC Piping and Equipment."
- F. Install hydronic instrument wells, valves, and other accessories according to

Section 232116 "Hydronic Piping Specialties.

- G. Install refrigerant instrument wells, valves, and other accessories according to Section 232300 "Refrigerant Piping."
- H. Install duct volume-control dampers according to Section 233113 "Metal Ducts"
- I. Install electronic and fiber-optic cables according to Section 271500 "Communications Horizontal Cabling."

3.2 ELECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Install raceways, boxes, and cabinets according to Section 260533 "Raceways and Boxes for Electrical Systems."
- B. Install building wire and cable according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Install signal and communication cable according to Section 271500 "Communications Horizontal Cabling."
 - 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
 - 2. Install exposed cable in raceway.
 - 3. Install concealed inaccessible cable in raceway.
 - 4. Install concealed assessable cable without raceway. Use plenum rated cable.
 - 5. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 - 6. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 - 7. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 - 8. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.
- D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.
- E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to
BEN TAUB HOSPITAL BRONCHOSCOPY SUITE RENOVATION

Ben Taub Hospital Houston, Texas

inspect field-assembled components and equipment installation, including connections, and to assist in field testing with Commissioning Agent (CxA), TAB, and/or Authority Having Jurisdiction (AHJ). Provide all necessary support labor as dictated by CxA and/or AHJ.. Report results in writing.

- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
 - 2. Test and adjust controls and safeties.
 - 3. Test calibration of controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
 - 4. Test each point through its full operating range to verify that safety and operating control set points are as required.

Houston, Texas

- 5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
- 6. Test each system for compliance with sequence of operation.
- 7. Test software and hardware interlocks.
- C. DDC Verification:
 - 1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
 - 2. Check instruments for proper location and accessibility.
 - 3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
 - 4. Check instrument tubing for proper fittings, slope, material, and support.
 - 5. Check pressure instruments, piping slope, installation of valve manifold, and selfcontained pressure regulators.
 - 6. Check temperature instruments and material and length of sensing elements.
 - 7. Check control valves. Verify that they are in correct direction.
 - 8. Check air-operated dampers. Verify that pressure gages are provided and that proper blade alignment, either parallel or opposed, has been provided.
 - 9. Check DDC system as follows:
 - a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 - b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 - c. Verify that spare I/O capacity has been provided.

Ben Taub Hospital Houston, Texas

- d. Verify that DDC controllers are protected from power supply surges.
- D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.4 ADJUSTING

- A. Calibrating and Adjusting:
 - 1. Calibrate instruments.
 - 2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
 - 3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
 - 4. Control System Inputs and Outputs:
 - a. Check analog inputs at 0, 50, and 100 percent of span.
 - b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 - c. Check digital inputs using jumper wire.
 - d. Check digital outputs using ohmmeter to test for contact making or breaking.
 - e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.
 - 5. Flow:
 - a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
 - b. Manually operate flow switches to verify that they make or break contact.
 - 6. Pressure:
 - a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 - b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.
 - 7. Temperature:
 - a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
 - b. Calibrate temperature switches to make or break contacts.

INSTRUMENTATION AND CONTROL FOR HVAC 23 09 00 - 17 Issued for Construction – 7/13/2018

- 8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
- 9. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
- 10. Provide diagnostic and test instruments for calibration and adjustment of system.
- 11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.
- B. Adjust initial temperature and humidity set points.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Section 017900 "Demonstration and Training."

END OF SECTION

SECTION 23 31 13

METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Rectangular ducts and fittings.
- 2. Round ducts and fittings.
- 3. Sheet metal materials.
- 4. Sealants and gaskets.
- 5. Hangers and supports.
- B. Related Sections:
 - 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.2 **PERFORMANCE REQUIREMENTS**

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible"
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.

- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Duct layout indicating sizes, configuration, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.
- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment and vibration isolation.
- C. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports
- D. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.

PART 2 - PRODUCTS

2.1 RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. Sheet Metal Connectors, Inc.
 - e. Spiral Manufacturing Co., Inc.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

- 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Fabricate round ducts larger Than 90 inches in diameter with butt-welded longitudinal seams.
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- D. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches or 6 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

- F. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Table 5-1, (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.2 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Exhaust Ducts: Seal Class C.
 - 4. Outdoor, Return-Air Ducts: Seal Class C.

METAL DUCTS 23 31 13 - 7 Issued for Construction – 7/13/2018

5.

- 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
- 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
- 8. Unconditioned Space, Return-Air Ducts: Seal Class B.
- 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
- 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
- 11. Conditioned Space, Exhaust Ducts: Seal Class B.
- 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.3 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 2. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 3. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.4 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.5 DUCT CLEANING

- A. Clean new and existing duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 - 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 - 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.
- E. Mechanical Cleaning Methodology:

- 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
- 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
- 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
- 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
- 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
- 6. Provide drainage and cleanup for wash-down procedures.
- 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.6 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.7 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
- B. Supply Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 3-inch wg
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6
- C. Return Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:

- a. Pressure Class: Positive or negative 1-inch wg
- b. Minimum SMACNA Seal Class: C.
- c. SMACNA Leakage Class for Rectangular: 24.
- d. SMACNA Leakage Class for Round and Flat Oval: 12
- 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6
- D. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 2-inch wg
 - b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12
 - 2. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg
 - b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 6
 - d. SMACNA Leakage Class for Round and Flat Oval: 3
- E. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel
 - 2. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
 - 3. Aluminum Ducts: Aluminum
- F. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.

- 2) Mitered Type RE 4 without vanes.
- b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam
- G. Branch Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
- 2. Round: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test. Duct leakage shall not exceed SMACNA Leakage Class 3. Welded duct shall demonstrate zero leakage.
 - 2. Test the following systems:
 - a. Ducts with a Pressure Class Higher Than 2-Inch wg: Test all duct sections.
 - b. Supply Ducts with a Pressure Class of 2-Inch wg: Test representative duct sections totaling no less than 25 percent of total installed duct.
 - c. Return Ducts with a Pressure Class of 2-Inch wg or Higher: Test all duct sections.
 - d. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test all duct sections
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements. Isolate any components that might be damaged by leak testing.
 - 4. Test for leaks before applying external insulation.
 - 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 6. Give seven days' advanced notice for testing.

END OF SECTION

SECTION 23 33 00

AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Manual volume dampers.
 - 3. Control dampers.
 - 4. Fire dampers.
 - 5. Smoke Dampers
 - 6. Flange connectors.
 - 7. Turning vanes.
 - 8. Duct-mounted access doors.
 - 9. Flexible connectors.
 - 10. Flexible ducts.
 - 11. Duct accessory hardware.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control-damper installations.
 - d. Fire-damper and smoke-damper installations, including sleeves; and ductmounted access doors.
 - e. Wiring Diagrams: For power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and exposed ducts.
- C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Air Balance Inc.; a division of Mestek, Inc.
- 2. American Warming and Ventilating; a division of Mestek, Inc.
- 3. Cesco Products; a division of Mestek, Inc.
- 4. Greenheck Fan Corporation.
- 5. Lloyd Industries, Inc.
- 6. Nailor Industries Inc.
- 7. NCA Manufacturing, Inc.
- 8. Pottorff.
- 9. Ruskin Company.
- 10. Vent Products Company, Inc.
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 2000 fpm
- D. Maximum System Pressure: 3-inch wg
- E. Frame: Hat-shaped 0.094-inch thick, galvanized sheet steel with welded corners or mechanically attached and mounting flange.
- F. Blades: Multiple single-piece blades, center pivoted, maximum 6-inch width, 0.050-inch thick aluminum sheet with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Neoprene, mechanically locked.
- I. Blade Axles:
 - 1. Material: Stainless steel
 - 2. Diameter: 0.20 inch
- J. Tie Bars and Brackets: Galvanized steel.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball
- M. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Electric actuators.
 - 4. Chain pulls.
 - 5. Screen Mounting: Front mounted in sleeve.

- a. Sleeve Thickness: 20 gage minimum.
- b. Sleeve Length: 6 inches minimum.
- 6. Screen Material: Aluminum.
- 7. Screen Type: Bird and Insect.
- 8. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. Flexmaster U.S.A., Inc.
 - d. McGill AirFlow LLC.
 - e. Nailor Industries Inc.
 - f. Pottorff.
 - g. Ruskin Company.
 - h. Trox USA Inc.
 - i. Vent Products Company, Inc.
 - 2. Standard leakage rating, with linkage outside airstream
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Frame: Hat-shaped, 0.094-inch thick, galvanized sheet steel
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized steel, 0.064 inch thick.
 - 6. Blade Axles: Stainless steel
 - 7. Bearings:
 - a. Oil-impregnated bronze
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

- 8. Tie Bars and Brackets: Galvanized steel.
- B. Standard, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. McGill AirFlow LLC.
 - d. Nailor Industries Inc.
 - e. Pottorff.
 - f. Ruskin Company.
 - g. Trox USA Inc.
 - h. Vent Products Company, Inc.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames: Hat-shaped, 0.10-inch thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Roll-Formed Aluminum Blades: 0.10-inch thick aluminum sheet.
 - e. Extruded-Aluminum Blades: 0.050-inch thick extruded aluminum.
 - 6. Blade Axles: Stainless steel
 - 7. Bearings:
 - a. Oil-impregnated bronze
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Tie Bars and Brackets: Aluminum.
- C. Jackshaft:
 - 1. Size: 0.5-inch diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- D. Damper Hardware:

- 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
- 2. Include center hole to suit damper operating-rod size.
- 3. Include elevated platform for insulated duct mounting.

2.5 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Arrow United Industries; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Greenheck Fan Corporation.
 - 5. Nailor Industries Inc.
 - 6. NCA Manufacturing, Inc.
 - 7. Pottorff.
 - 8. Prefco; Perfect Air Control, Inc.
 - 9. Ruskin Company.
 - 10. Vent Products Company, Inc.
 - 11. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
- D. Fire Rating: 1-1/2 and 3 hours.
- E. Frame: Curtain type with blades Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream]; fabricated with roll-formed, 0.034-inch thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.138 inch or 0.39 inch thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.034-inch thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch thick, galvanized-steel blade connectors.

- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.
- K. Heat-Responsive Device: Electric, resettable and replaceable link and switch package, factory installed, 165 deg F and 212 deg F rated.

2.6 SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Greenheck Fan Corporation.
 - 4. Nailor Industries Inc.
 - 5. Pottorff.
 - 6. Ruskin Company.
- B. General Requirements: Label according to UL 555S by an NRTL.
- C. Smoke Detector: Integral, factory wired for single-point connection.
- D. Frame: Hat-shaped, 0.094-inch- thick, galvanized sheet steel, with welded or mechanically attached corners and mounting flange.
- E. Blades: Roll-formed, horizontal, interlocking or overlapping, 0.034-inch- thick, galvanized sheet steel.
- F. Leakage: Class I
- G. Rated pressure and velocity to exceed design airflow conditions.
- H. Mounting Sleeve: Factory-installed, 0.039-inch-thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- I. Damper Motors: Modulating or two-position action.
- J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

- Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230900 "Instrumentation and Control for HVAC."
- 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
- 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
- 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
- 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf
- 7. Electrical Connection: 115 V, single phase, 60 Hz
- K. Accessories:
 - 1. Auxiliary switches for signaling or position indication.
 - 2. Momentary test switch, Test and reset switches, remote mounted.

2.7 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Nexus PDQ; Division of Shilco Holdings Inc.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.8 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.

- 3. Elgen Manufacturing.
- 4. METALAIRE, Inc.
- 5. SEMCO Incorporated.
- 6. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resinbonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- E. Vane Construction: Single or Double wall.

2.9 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Ductmate Industries, Inc.
 - 4. Elgen Manufacturing.
 - 5. Flexmaster U.S.A., Inc.
 - 6. Greenheck Fan Corporation.
 - 7. McGill AirFlow LLC.
 - 8. Nailor Industries Inc.
 - 9. Pottorff.
 - 10. Ventfabrics, Inc.
 - 11. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 7-2, "Duct Access Doors and Panels," and 7-3, "Access Doors - Round Duct."
 - 1. Door:

- a. Double wall, rectangular.
- b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
- c. Vision panel.
- d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
- e. Fabricate doors airtight and suitable for duct pressure class.
- 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
- 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches Three hinges and two compression latches with outside and inside handles.
 - d. Access Doors Larger Than 24 by 48 Inches Continuous and two compression latches with outside and inside handles.
- C. Pressure Relief Access Door:
 - 1. Door and Frame Material: Galvanized sheet steel.
 - 2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
 - 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
 - 4. Factory set at 3.0- to 8.0-inch wg
 - 5. Doors close when pressures are within set-point range.
 - 6. Hinge: Continuous piano.
 - 7. Latches: Cam.
 - 8. Seal: Neoprene or foam rubber.
 - 9. Insulation Fill: 1-inch thick, fibrous-glass or polystyrene-foam board.

2.10 DUCT ACCESS PANEL ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Flame Gard, Inc.
 - 3. 3M.
- B. Labeled according to UL 1978 by an NRTL.
- C. Panel and Frame: Minimum thickness 0.0428-inch stainless steel.
- D. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.

- E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F
- F. Minimum Pressure Rating: 10-inch wg positive or negative.

2.11 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Elgen Manufacturing.
 - 4. Ventfabrics, Inc.
 - 5. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch wide, 0.028-inch thick, galvanized sheet steel or 0.032-inch thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd.
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F

2.12 FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flexmaster U.S.A., Inc.
 - 2. McGill AirFlow LLC.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Noninsulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm
 - 3. Temperature Range: Minus 10 to plus 160 deg F

- C. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm
 - 3. Temperature Range: Minus 20 to plus 210 deg F
 - 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1
- D. Flexible Duct Connectors:
 - 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches to suit duct size.
 - 2. Non-Clamp Connectors: Adhesive plus sheet metal screws.

2.13 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116,
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and stainless-steel accessories in stainless-steel ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.

- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire and smoke dampers according to UL listing.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream and downstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 7. At each change in direction and at maximum 50-foot spacing.
 - 8. Upstream from turning vanes.
 - 9. Upstream or downstream from duct silencers.
 - 10. Control devices requiring inspection.
 - 11. Elsewhere as indicated.
- I. Install access doors with swing against duct static pressure.
- J. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches
 - 2. Two-Hand Access: 12 by 6 inches
 - 3. Head and Hand Access: 18 by 10 inches
 - 4. Head and Shoulders Access: 21 by 14 inches
 - 5. Body Access: 25 by 14 inches
 - 6. Body plus Ladder Access: 25 by 17 inches
- K. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- L. Install flexible connectors to connect ducts to equipment.
- M. Connect terminal units to supply ducts with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

- N. Connect diffusers or light troffer boots to ducts with maximum 72-inch lengths of flexible duct clamped or strapped in place.
- O. Connect flexible ducts to metal ducts with draw bands
- P. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.

END OF SECTION

SECTION 23 34 23

HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Centrifugal roof ventilators.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
 - 3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 4. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Hartzell Fan Incorporated.
 - 3. Loren Cook Company.
- B. Housing: Removable, spun-aluminum, dome top and outlet baffle, one-piece, aluminum base with venturi inlet cone.
 - 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains
 - 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.
- D. Belt Drives:
 - 1. Resiliently mounted to housing.
 - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 4. Pulleys: Cast-iron, adjustable-pitch motor pulley.
 - 5. Fan and motor isolated from exhaust airstream.
- E. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
 - 3. Bird Screens: Removable, 1/2-inch (13-mm) mesh, aluminum or brass wire.
 - 4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
 - 5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
- F. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- (40-mm-) thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch (40-mm) wood nailer. Size as required to suit roof opening and fan base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange

- 2. Overall Height: 8 inches (200 mm) or 12 inches (300 mm)]
- 3. Sound Curb: Curb with sound-absorbing insulation.
- 4. Pitch Mounting: Manufacture curb for roof slope.
- 5. Metal Liner: Galvanized steel.
- 6. Burglar Bars: 1/2-inch- (13-mm-) thick steel bars welded in place to form 6-inch (150-mm) squares.
- 7. Mounting Pedestal: Galvanized steel with removable access panel.
- 8. Vented Curb: Unlined with louvered vents in vertical sides.

2.2 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Enclosure Type: Totally enclosed, fan cooled or totally enclosed, nonventilated.

2.3 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Equipment Mounting:
 - 1. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- B. Secure roof-mounted fans to roof curbs with cadmium-plated hardware.
- C. Install units with clearances for service and maintenance.

D. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.
 - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 - 10. Shut unit down and reconnect automatic temperature-control operators.
 - 11. Remove and replace malfunctioning units and retest as specified above.

- C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

END OF SECTION
SECTION 23 36 00

AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:1. Dual duct terminal units

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For air terminal units. Include plans, elevations, sections, details, and attachments to other work.
- C. Delegated-Design Submittal:
 - 1. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 2. Design Calculations: Calculations for selecting hangers and supports

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-Up."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7

2.2 DUAL-DUCT AIR TERMINAL UNITS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Environmental Technologies, Inc.
 - 2. Krueger.
 - 3. METĂLAIRE, Inc.
 - 4. Nailor Industries Inc.
 - 5. Price Industries.
 - 6. Titus.
 - 7. Trane; a business of American Standard Companies.
 - B. Dual Duct Units: Pressure independent with multi-axis flow ring. Boxes shall be constant volume or variable volume as indicated on Drawings.
 - 1. Acoustical liner:
 - a. Dual Wall : Interior liner of 26 gauge phosphatized steel covering insulation. All cut edges of insulation shall be covered with metal flange. All wire penetrations shall be covered by grommets. High density, glass fiber insulation, 1" thick, 1.9 lb/cu.ft, R-Value of 4.2. Comply with the requirements of UL 181 and NFPA 90A.
 - 2. Casing: Minimum 22 gauge galvanized steel.
 - 3. Provide insulated gasketed access panel on bottom of box for access to integral, internal air valves and heating coil inspection.
 - 4. Leakage: Maximum 1% of nominal capacity at 1" wg. inlet static pressure.
 - 5. Multipoint, multiaxis flow ring or cross sensor.
 - 6. Provide integral flow taps and calibration chart on each unit.
 - 7. Factory calibrate sensor and controller for design maximum and minimum CFM.
 - 8. Factory mount, wire, connect, calibrate, set-up and test DDC controller, pressure transducer, and electronic damper actuator furnished to box manufacturer under Section 230900. Damper actuators integral with box may be furnished by box manufacturer and operation coordinated with DDC controller.
 - 9. Control transformer: Provide and factory mount 120v/24v control circuit transformer for each box, sized to handle all box controls. Provide safety devices including toggle disconnect switch and primary and secondary fusing.

2.3 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Steel Cables: Galvanized steel complying with ASTM A 603
- D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- E. Air Terminal Unit Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- F. Trapeze and Riser Supports: Steel shapes and plates for units with steel casings; aluminum for units with aluminum casings.

2.4 SOURCE QUALITY CONTROL

- A. Factory Tests: Test assembled air terminal units according to ARI 880.
 - 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, coil type, and ARI certification seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
- B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.
- C. Install wall-mounted thermostats or temperature sensors

Houston, Texas

3.2 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.
- C. Hangers Exposed to View: Threaded rod and angle or channel supports.
- D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.3 CONNECTIONS

- A. Connect ducts to air terminal units according to Section 233113 "Metal Ducts.", Section 233116 "Nonmetal Ducts."
- B. Make connections to air terminal units with flexible connectors complying with requirements in Section 233300 "Air Duct Accessories."

3.4 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:

- 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
- 2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
- 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Air terminal unit will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
 - 3. Verify that controls and control enclosure are accessible.
 - 4. Verify that control connections are complete.
 - 5. Verify that nameplate and identification tag are visible.
 - 6. Verify that controls respond to inputs as specified.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION

SECTION 23 37 13

DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Rectangular and square ceiling diffusers.
 - 2. Perforated returns.
 - 3. Louver face diffusers.
 - 4. Adjustable bar registers and grilles
 - 5. Fixed face registers and grilles.
- B. Related Sections:
 - 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volumecontrol dampers not integral to diffusers, registers, and grilles.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
- B. Samples: For each exposed product and for each color and texture specified.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

- A. Rectangular and Square Ceiling Diffusers
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 - a. Krueger.
 - b. METALAIRE, Inc.

- c. Nailor Industries Inc.
- d. Price Industries.
- e. Titus.
- 2. Devices shall be specifically designed for variable-air-volume flows.
- 3. Material: Steel or Aluminum as indicated on the drawings
- 4. Finish: Baked enamel, white or Baked enamel, color selected by Architect
- 5. Face Size: 24 by 24 inches or 12 by 12 inches
- 6. Face Style: Three cone, Four cone or Plaque as indicated on the drawings.
- 7. Mounting: Surface,T-bar, Snap in, Spline or Mounting panel. Reference Architectural plans.
- 8. Pattern: Fixed, Two position or Adjustable.
- 9. Dampers: Radial opposed blade
- 10. Accessories:
 - a. Equalizing grid.
 - b. Plaster ring.
 - c. Safety chain.
 - d. Wire guard.
 - e. Sectorizing baffles.
 - f. Operating rod extension.
- B. Perforated Return
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 - a. Krueger.
 - b. METĂLAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. Material: Steel backpan and pattern controllers, with steel or aluminum face.
 - 4. Finish: Baked enamel, white or Baked enamel, color selected by Architect
 - 5. Face Size: 12 by 12 inches or 24 by 12 inches or specified on plans
 - 6. Duct Inlet: Round or Square.
 - 7. Face Style: Flush or Drop extended
 - 8. Mounting: Surface, T-bar, Snap in, Spline or Mounting panel. Reference architectural drawings.
 - 9. Accessories:
 - a. Plaster ring.
 - b. Safety chain.
 - c. Operating rod extension.

2.2 **REGISTERS AND GRILLES**

- A. Adjustable Bar Register:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 - а.
 - b. Krueger.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.
 - e. Price Industries.
 - f. Titus.
 - 2. Material: Steel or Aluminum
 - 3. Finish: Baked enamel, white or Baked enamel, color selected by Architect
 - 4. Face Blade Arrangement: Horizontal or Vertical spaced 3/4 inch or 1/2 inch apart.
 - 5. Core Construction: Integral or Removable.
 - 6. Rear-Blade Arrangement: Horizontal or Vertical spaced 3/4 inch or 1/2 inch apart.
 - 7. Frame 1 inch wide.
 - 8. Mounting Frame: Filter
 - 9. Mounting: Countersunk screw or Concealed.
 - 10. Damper Type: Adjustable opposed blade or NRTL listed, opposed blade, spring closing, and with fusible link for 160 deg F
 - 11. Accessories:
 - a. Front or Rear-blade gang operator.
 - b. Filter.
- B. Fixed Face Grille
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - а. .
 - b. Krueger.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - 2. Material: Steel or Aluminum.
 - 3. Finish: Baked enamel, white or Baked enamel, color selected by Architect
 - 4. Face Arrangement: 1/2-by-1/2-by-1/2-inch grid core.
 - 5. Core Construction: Integral or Removable.
 - 6. Frame: 1 inch wide.
 - 7. Mounting Frame: Filter
 - 8. Mounting: Countersunk screw, Concealed or Lay in.
 - 9. Accessory: Filter.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION